(完整版)精心整理图像的傅里叶变换
- 格式:ppt
- 大小:10.26 MB
- 文档页数:72
图像傅里叶变换冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。
棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。
傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。
当我们考虑光时,讨论它的光谱或频率谱。
同样, 傅立叶变换使我们能通过频率成分来分析一个函数。
Fourier theory讲的就是:任何信号(如图像信号)都可以表示成一系列正弦信号的叠加,在图像领域就是将图像brightness variation 作为正弦变量。
比如下图的正弦模式可在单傅里叶中由三个分量编码:频率f、幅值A、相位γ这三个value可以描述正弦图像中的所有信息。
1.frequencyfrequency在空间域上可由亮度调节,例如左图的frequency比右图的frequency 低……2.幅值magnitude(amplitude)sin函数的幅值用于描述对比度,或者说是图像中最明和最暗的峰值之间的差。
(一个负幅值表示一个对比逆转,即明暗交换。
)3.相位表示相对于原始波形,这个波形的偏移量(左or右)。
=================================================================一个傅里叶变换编码是一系列正弦曲线的编码,他们的频率从0开始(即没有调整,相位为0,平均亮度处),到尼奎斯特频率(即数字图像中可被编码的最高频率,它和像素大小、resolution有关)。
傅里叶变换同时将图像中所有频率进行编码:一个只包含一个频率f1的信号在频谱上横坐标f为f1的点处绘制一个单峰值,峰值高度等于对应的振幅amplitude,或者正弦曲线信号的高度。
如下图所示。
DC term直流信号对应于频率为0的点,表示整幅图像的平均亮度,如果直流信号DC=0就表示整幅图像平均亮度的像素点个数=0,可推出灰度图中,正弦曲线在正负值之间交替变化,但是由于灰度图中没有负值,所以所有的真实图像都有一个正的DC term,如上图所示。
常用傅里叶变换表在数学和工程领域中,傅里叶变换是一种非常重要的工具,它可以将一个时域信号转换为频域信号,从而帮助我们更好地理解和分析信号的特征。
为了方便使用,人们总结出了一些常用的傅里叶变换对,形成了常用傅里叶变换表。
傅里叶变换的基本思想是将一个复杂的信号分解为不同频率的正弦和余弦波的叠加。
这就像是把一道混合了各种食材的大菜分解成各种单一的原料,让我们能够更清楚地了解每一种成分的特性。
首先,让我们来看看单位冲激函数δ(t) 的傅里叶变换。
单位冲激函数在 t = 0 处取值为无穷大,在其他时刻取值为 0,其积分值为 1。
它的傅里叶变换是 1,也就是说,在频域中,它是一个常数。
这一结果从某种程度上反映了单位冲激函数包含了所有频率的成分,且各个频率成分的强度相同。
再来看常数信号 c 的傅里叶变换。
假设常数信号在整个时间轴上都取值为 c,那么它的傅里叶变换是2πcδ(ω),其中δ(ω) 是频域中的单位冲激函数。
这意味着常数信号在频域中只在ω = 0 处有值,其他频率处的值均为 0。
接着是指数函数 e^(at)u(t)(其中 a > 0,u(t) 是单位阶跃函数)的傅里叶变换。
它的傅里叶变换是 1/(a +jω)。
这个变换结果表明,指数函数的频率特性随着 a 的增大而衰减得更快。
对于正弦函数sin(ω₀t),它的傅里叶变换是πjδ(ω ω₀) jδ(ω +ω₀)/2 。
而余弦函数cos(ω₀t) 的傅里叶变换是πδ(ω ω₀) +δ(ω +ω₀)/2 。
这两个结果反映了正弦和余弦函数在频域中只在±ω₀处有值,体现了它们的频率单一性。
矩形脉冲函数 rect(t/T)(在 T/2 到 T/2 之间取值为 1,其他地方取值为 0)的傅里叶变换是T sinc(ωT/2),其中 sinc(x) = sin(x) / x 。
这个变换结果展示了矩形脉冲的频谱是一个 sinc 函数的形状,其主瓣宽度与脉冲宽度 T 成反比。
第一章 信号与系统的基本概念1.信号、信息与消息的差别?信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。
2.什么是奇异信号?函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。
例如:单边指数信号 (在t =0点时,不连续),单边正弦信号 (在t =0时的一阶导函数不连续)。
较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。
3.单位冲激信号的物理意义及其取样性质?冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。
它表达的是一类幅度很强,但作用时间很短的物理现象。
其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰ 4.什么是单位阶跃信号?单位阶跃信号也是一类奇异信号,定义为:10()00t u t t >⎧=⎨<⎩它可以表示单边信号,持续时间有限信号,在信号处理中起着重要的作用。
5.线性时不变系统的意义同时满足叠加性和均匀性以及时不变特性的系统,称为线性时不变系统。
即:如果一个系统,当输入信号分别为1()x t 和2()x t 时,输出信号分别是1()y t 和2()y t 。
当输入信号()x t 是1()x t 和2()x t 的线性叠加,即:12()()()x t ax t bx t =+,其中a 和b 是任意常数时,输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+;且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。
其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性;如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。
傅里叶变换常用公式大全傅里叶变换是一种重要的数学工具,用于将信号从时域转换到频域。
在信号处理、图像处理和通信领域广泛应用。
本文将介绍一些傅里叶变换中常用的公式,以帮助读者更好地理解和应用傅里叶变换。
1. 傅里叶变换的定义公式傅里叶变换的定义公式如下:F(ω) = ∫[f(t) * e^(-jωt)]dt其中F(ω)表示信号f(t)在频率ω处的傅里叶变换。
2. 傅里叶变换的逆变换公式傅里叶变换的逆变换公式如下:f(t) = ∫[F(ω) * e^(jωt)]dω其中f(t)表示频域信号F(ω)的逆变换。
3. 傅里叶级数展开公式傅里叶级数展开公式将一个周期信号表示为一系列正弦和余弦函数的和。
公式如下:f(t) = a₀ + Σ[aₙ * cos(nω₀t) + bₙ * sin(nω₀t)]其中a₀, aₙ, bₙ为系数,n为正整数,ω₀为基本角频率。
4. 傅里叶级数系数计算公式傅里叶级数系数的计算公式如下:a₀ = 1/T₀ * ∫[f(t)]dtaₙ = 2/T₀ * ∫[f(t) * cos(nω₀t)]dtbₙ = 2/T₀ * ∫[f(t) * sin(nω₀t)]dt其中T₀为周期。
5. 傅里叶变换的线性性质公式傅里叶变换具有线性性质,公式如下:F(a * f(t) + b * g(t)) = a * F(f(t)) + b * F(g(t))其中a和b为常数。
6. 傅里叶变换的频移性质公式傅里叶变换具有频移性质,公式如下:F(f(t - t₀)) = e^(-jωt₀) * F(f(t))其中t₀为时间偏移量。
7. 傅里叶变换的频率缩放公式傅里叶变换具有频率缩放性质,公式如下:F(f(a * t)) = (1/|a|) * F(f(t/a))其中a为常数。
8. 傅里叶变换的频域微分公式傅里叶变换的频域微分公式如下:F(d/dt[f(t)]) = jωF(f(t))其中d/dt表示对时间t的导数。
图像处理1--傅⾥叶变换(FourierTransform)楼下⼀个男⼈病得要死,那间壁的⼀家唱着留声机;对⾯是弄孩⼦。
楼上有两⼈狂笑;还有打牌声。
河中的船上有⼥⼈哭着她死去的母亲。
⼈类的悲欢并不相通,我只觉得他们吵闹。
OpenCV是⼀个基于BSD许可(开源)发⾏的跨平台计算机视觉库,可以运⾏在Linux、Windows、Android和Mac OS操作系统上。
它轻量级⽽且⾼效——由⼀系列 C 函数和少量 C++ 类,同时提供了Python、Ruby、MATLAB等语⾔的接⼝,实现了和计算机视觉⽅⾯的很多通⽤算法。
OpenCV⽤C++语⾔编写,它的主要接⼝也是C++语⾔,但是依然保留了⼤量的C语⾔。
该库也有⼤量的Python、Java andMATLAB/OCTAVE(版本2.5)的接⼝。
这些语⾔的API接⼝函数可以通过在线获得。
如今也提供对于C#、Ch、Ruby,GO的⽀持。
所有新的开发和算法都是⽤C++接⼝。
⼀个使⽤CUDA的GPU接⼝也于2010年9⽉开始实现。
图像的空间域滤波:空间域滤波,空间域滤波就是⽤各种模板直接与图像进⾏卷积运算,实现对图像的处理,这种⽅法直接对图像空间操作,操作简单,所以也是空间域滤波。
频域滤波说到底最终可能是和空间域滤波实现相同的功能,⽐如实现图像的轮廓提取,在空间域滤波中我们使⽤⼀个拉普拉斯模板就可以提取,⽽在频域内,我们使⽤⼀个⾼通滤波模板(因为轮廓在频域内属于⾼频信号),可以实现轮廓的提取,后⾯也会把拉普拉斯模板频域化,会发现拉普拉斯其实在频域来讲就是⼀个⾼通滤波器。
既然是频域滤波就涉及到把图像⾸先变到频域内,那么把图像变到频域内的⽅法就是傅⾥叶变换。
关于傅⾥叶变换,感觉真是个伟⼤的发明,尤其是其在信号领域的应⽤。
⾼通滤波器,⼜称低截⽌滤波器、低阻滤波器,允许⾼于某⼀截频的频率通过,⽽⼤⼤衰减较低频率的⼀种滤波器。
它去掉了信号中不必要的低频成分或者说去掉了低频⼲扰。
常用傅里叶变换表在数学和工程领域中,傅里叶变换是一种极其重要的工具,它能够将复杂的时域信号转换为频域表示,从而帮助我们更好地理解和分析各种信号的特性。
而常用傅里叶变换表则为我们提供了一系列常见函数的傅里叶变换结果,方便我们在实际应用中快速查找和使用。
首先,让我们来了解一下什么是傅里叶变换。
简单来说,傅里叶变换是一种数学变换,它将一个函数从时域(以时间为变量)转换到频域(以频率为变量)。
通过这种转换,我们可以将一个信号分解为不同频率的正弦和余弦波的组合,从而揭示出信号中所包含的频率成分。
在常用傅里叶变换表中,有一些基本的函数及其对应的傅里叶变换值得我们熟悉。
单位冲激函数(也称为狄拉克δ函数)是一个非常特殊的函数。
它在某一时刻有一个无限大的值,而在其他时刻的值都为零。
其傅里叶变换是常数 1。
这意味着单位冲激函数包含了所有频率的成分,且各个频率成分的幅度相同。
单位阶跃函数,它在 t < 0 时取值为 0,在t ≥ 0 时取值为 1。
其傅里叶变换是 1 /(jω) +πδ(ω) ,其中 j 是虚数单位,ω 是角频率,δ(ω) 是狄拉克δ函数。
正弦函数sin(ω₀t) 的傅里叶变换是jπδ(ω ω₀) δ(ω +ω₀) 。
这表明正弦函数只包含两个频率成分,即±ω₀。
余弦函数cos(ω₀t) 的傅里叶变换是πδ(ω ω₀) +δ(ω +ω₀) 。
指数函数 e^(jω₀t) 的傅里叶变换是2πδ(ω ω₀) 。
矩形脉冲函数,即在某个时间段内取值为 1,其他时间段为 0 的函数,其傅里叶变换是一个 sinc 函数。
这些常见函数的傅里叶变换在信号处理、通信、控制工程等领域有着广泛的应用。
例如,在通信系统中,我们需要对信号进行调制和解调。
调制过程可以看作是将原始信号与一个高频载波信号相乘,而解调过程则需要通过傅里叶变换将调制后的信号转换到频域,然后提取出原始信号的信息。
在图像处理中,傅里叶变换可以用于图像的滤波、增强和压缩等操作。
图像处理与傅里叶变换1背景傅里叶变换是一个非常复杂的理论,我们在图像处理中集中关注于其傅里叶离散变换离散傅立叶变换(Discrete Fourier Transform) 。
1.1离散傅立叶变换图象是由灰度(RGB )组成的二维离散数据矩阵,则对它进行傅立叶变换是离散的傅立叶变换。
对图像数据f(x,y)(x=0,1,… ,M-1; y=0,1,… ,N-1)。
则其离散傅立叶变换定义可表示为:式中,u=0,1,…, M-1;v= 0,1,…, N-1 其逆变换为式中,x=0,1,…, M-1;y= 0,1,…, N-1在图象处理中,一般总是选择方形数据,即M=N影像f(x,y)的振幅谱或傅立叶频谱: 相位谱:能量谱(功率谱) )1(2exp ),(1),(101∑∑-=-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=M x N y N vy M uxi y x f MNv u F π)2(2exp ),(1),(101∑∑-=-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=M u N v N vy M uxi v u F MNy x f π),(),(),(22v u I v u R v u F +=[]),(/),(),(v u R v u I arctg v u =ϕ),(),(),(),(222v u I v u R v u F v u E +==1.2快速傅里叶变化可分离性的优点是二维的傅立叶变换或逆变换由两个连续的一维傅立叶变换变换来实现,对于一个影像f(x,y),可以先沿着其每一列求一维傅立叶变换,再对其每一行再求一维变换正变化逆变换由于二维的傅立叶变换具有可分离性,故只讨论一维快速傅立叶变换。
正变换 逆变换由于计算机进行运算的时间主要取决于所用的乘法的次数。
按照上式进行一维离散由空间域向频率域傅立叶变换时,对于N 个F∑∑∑∑-=-=-=-=⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+=110101)(2exp ),(1)(2exp ),(1)(2exp ),(1),(N v N u N u N v N vy i v u F NN ux i v u F N N vy ux i v u F NNy x f πππ∑-=⎥⎦⎤⎢⎣⎡-=12exp )(1)(N x N ux i x f Nu F π∑∑∑∑-=-=-=-=⎥⎦⎤⎢⎣⎡-⨯⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=11101)(2exp ),(1)(2exp ),(1)(2exp ),(1),(N y N x N x N y N vy i y x f NN ux i y x f NN vy ux i y x f NNv u F πππ∑-=⎥⎦⎤⎢⎣⎡=12exp )(1)(N u N ux i u F Nx f π(u)值,中的每一个都要进行N 次运算,运算时间与N 2成正比。
傅里叶变换概念傅里叶变换(Fourier Transform)是一种数学技术,用于将一个函数从时域(时间域)表示转换为频域表示。
傅里叶变换广泛应用于信号处理、图像处理、通信系统等领域,具有重要的理论和实际意义。
傅里叶变换的概念可以通过将一个信号分解成多个正弦波和余弦波的叠加来解释。
任何复杂的周期信号都可以被视为多个不同频率的正弦波的叠加。
傅里叶变换就是将这个信号从时域分解成它不同频率的正弦波和余弦波分量的过程。
傅里叶变换的数学表示如下:F(ω)= ∫ f(t) * e^(-jωt) dt其中,F(ω)表示频域函数,f(t)表示时域函数,e^(-jωt)是欧拉公式中的复指数函数,ω是变量频率。
根据傅里叶变换的定义,我们可以将一个复杂的时域信号分解成多个频率分量,并且这些分量对应于频域函数F(ω)的不同频率部分。
傅里叶变换提供了一种量化信号在频域上的能力,揭示了信号的频谱特征,可以从中提取出信号中的频率、幅度、相位等信息。
傅里叶变换的应用非常广泛。
在信号处理领域,傅里叶变换常用于滤波、降噪、频谱分析等任务。
例如,在音频处理中,可以使用傅里叶变换将声音信号从时域转换到频域,通过分析频谱可以得知声音中包含的不同音调的频率和强度。
在图像处理领域,傅里叶变换可以提供图像的频域信息,用于图像增强、去噪、压缩等任务。
通过傅里叶变换,我们可以将一个图像分解成不同空间频率上的分量,从而更好地理解图像的特征和结构。
在通信系统中,傅里叶变换常用于信号调制、解调、信道估计等任务,以提高通信信号的传输质量和效率。
此外,傅里叶变换还有着重要的数学和物理意义。
傅里叶变换将一个函数从时域转换到频域,可视化了函数在不同频率上的分布情况。
通过傅里叶变换,我们可以将一个函数中的周期性模式展示出来,并且可以通过重建时域函数来还原原始信号。
为了实现傅里叶变换,通常使用快速傅里叶变换(FFT)算法。
FFT算法通过利用对称性质和迭代计算来大大加快傅里叶变换的计算速度,使得实时处理和大规模数据分析成为可能。