04傅立叶变换.
- 格式:ppt
- 大小:867.00 KB
- 文档页数:20
1 / 24种傅里叶变换形式离散傅里叶变换作为谱分析的重要手段在众多领域中广泛应用.离散傅里叶变换不仅作为有限长序列的离散频域表示法在理论上相当重要,而且由于存在计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数学信号处理的算法中起着核心作用.连续傅里叶变换FT当x(t)为连续时间非周期信号,而且满足傅里叶变换条件,它的傅里叶变换为X(j Ʊ).x(t)与X(j Ʊ)之间变换关系为傅里叶变换对:⎰∞∞-Ω=Ωdt e t x j X t j )()( ⎰∞∞-ΩΩΩ=d e j X t x t j )(21)(π 傅里叶变换的结果通常是复数形式,其模为幅度谱,其相位为相位谱.连续时间傅里叶变换的时间频域都连续.连续傅里叶变换级数FS当~x 是周期为T 的连续时间周期信号,在满足傅里叶级数收敛条件下,可展开成傅里叶级数,其傅里叶级数的系数为X(jk 0Ω).其中,T π20=Ω,单位为rad/s ,称作周期信号的基波角频率,同时也是离散谱线的间隔.)(~t x 与)(0Ωjk X 之间的变换关系为傅里叶级数变换对:dt e t x T jk X T T t jk ⎰-Ω-=Ω22~00)(1)( t jk k e jk X t x 0)(21)(0Ω∞-∞=∑Ω=π时域波形周期重复,频域幅度谱为离散谱线,离散谱线频率间隔为模拟角频率0Ω=T π2.幅度谱|)(0Ωjk X |表明连续时间周期信号是由成谐波关系的有限个或者无限个单频周期信号t jk e 0Ω组合而成,其基波角频率为0Ω,单位为rad/s.离散时间傅里叶变换DTDT当x(n)为离散时间非周期信号,且满足离散时间傅里叶变换条件,其离散时间傅里叶变换为)(ωj e X .x(n)与)(ωj e X 之间变换关系为离散时间傅里叶变换对:∑∞∞--=n nj j e n x e X ωω)()(ωπωππωd e e X n x n j j ⎰-=)(21)(时域波形以抽样间隔s T 为时间间隔离散化,而频域频谱图则是连续的,且以数字角频率2π为周期化.离散傅里叶级数DFS当~x (n)为离散时间周期为N 的周期信号,可展开成傅里叶级数,其傅里叶级数系数为)(~k x .~x (n 与))(~k x 之间变换关系为离散傅里叶级数变换对:∑-=-=102~~)()(N n nk N j en x k X π -∞<k<∞∑-==102~~)(1)(N k nk N j ek X N n x π时域与频域都离散且周期.时域波形以N 为周期,以抽样间隔s T 为时间间隔离散化.频域频谱图|)(~k X |以N 为周期,离散谱线间隔为数字角频率Nπ2,对应模拟角频率为s NT π2.频谱图表明离散时间周期信号是由成谐波关系的有限个角频周期序列kn N je π2组合而成,基波频率为N π2,单位为rad/s-----精心整理,希望对您有所帮助!。
傅里叶变换常用公式1. 简介傅里叶变换是一种重要的数学工具,用于将一个信号从时域转换到频域。
它常被应用于信号处理、图像处理、通信等领域。
本文将介绍傅里叶变换的基本概念和常用公式。
2. 傅里叶级数傅里叶级数是傅里叶变换的基础,它用于将周期信号表示为一系列正弦和余弦函数的和。
傅里叶级数的公式如下:傅里叶级数公式傅里叶级数公式在上述公式中,f(t)表示周期为T的函数,a0是直流成分,ak和bk是傅里叶系数。
3. 傅里叶变换傅里叶变换是将非周期信号表示为一组连续的频谱的过程。
傅里叶变换的公式如下:傅里叶变换公式傅里叶变换公式在上述公式中,F(w)表示频域信号,f(t)表示时域信号,j是虚数单位。
4. 反傅里叶变换反傅里叶变换是将频域信号恢复为时域信号的过程。
反傅里叶变换的公式如下:反傅里叶变换公式反傅里叶变换公式在上述公式中,F(w)表示频域信号,f(t)表示时域信号。
5. 常见傅里叶变换公式下面列举了一些常见的傅里叶变换公式:5.1 正弦函数的傅里叶变换正弦函数的傅里叶变换的公式如下:正弦函数的傅里叶变换公式正弦函数的傅里叶变换公式在上述公式中,f(t)是正弦函数,F(w)是其频域信号。
5.2 余弦函数的傅里叶变换余弦函数的傅里叶变换的公式如下:余弦函数的傅里叶变换公式余弦函数的傅里叶变换公式在上述公式中,f(t)是余弦函数,F(w)是其频域信号。
5.3 矩形脉冲的傅里叶变换矩形脉冲的傅里叶变换的公式如下:矩形脉冲的傅里叶变换公式矩形脉冲的傅里叶变换公式在上述公式中,f(t)是矩形脉冲,F(w)是其频域信号。
5.4 高斯函数的傅里叶变换高斯函数的傅里叶变换的公式如下:高斯函数的傅里叶变换公式高斯函数的傅里叶变换公式在上述公式中,f(t)是高斯函数,F(w)是其频域信号。
6. 结论傅里叶变换是一种非常强大的数学工具,用于将信号从时域转换到频域。
本文介绍了傅里叶级数、傅里叶变换和反傅里叶变换的基本公式,并列举了一些常见的傅里叶变换公式。
详解傅里叶变换公式傅里叶变换(Fourier Transform)是一种将时域信号转换到频域信号的数学方法。
它可以将一个信号分解为不同频率的正弦波之和,从而揭示信号的频率结构。
傅里叶变换在信号处理、图像处理、通信、物理学等领域具有广泛的应用。
首先,我们要理解时域(Time Domain)和频域(Frequency Domain)的概念。
1. 时域:在时域中,信号表示为时间轴上的函数,例如:```f(t) = A * cos(2 * π* t) + B * sin(2 * π* t)```在这个例子中,f(t) 是一个正弦波函数,t 是时间。
2. 频域:在频域中,信号表示为频率轴上的函数,例如:```F(ω) = A * cos(2 * π* ω) + B * sin(2 * π* ω)```在这个例子中,F(ω) 是一个正弦波函数,ω是频率。
傅里叶变换可以将时域信号转换为频域信号,公式如下:```F(ω) = ∫_{-∞}^{∞} f(t) e^(-jωt) dt```其中,F(ω) 是频域信号,ω是频率,t 是时间,j 是虚数单位,e 是自然对数的底数。
傅里叶变换的逆变换公式如下:```f(t) = ∫_{-∞}^{∞} F(ω) e^(jωt) dω```现在,我们来通过一个简单的例子来说明傅里叶变换。
假设我们有一个正弦波信号,如下所示:f(t) = A * sin(2 * π* t) + B * sin(2 * π* t + π/4)```我们可以使用傅里叶变换将其转换为频域信号,如下所示:```F(ω) = A * cos(2 * π* ω) + B * cos(2 * π* ω+ π/2)```通过傅里叶变换,我们可以看到信号中包含的主要频率成分。
例如,在这个例子中,我们可以看到信号主要包含两个频率成分:一个是A = 1,ω= π/2 的正弦波,另一个是B = 1,ω= π/4 的正弦波。
常用傅里叶变换公式大全傅里叶变换是一种重要的数学工具,它可以将时域信号转换为频域信号,从而更好地理解信号的特性。
下面就是常用的傅里叶变换公式大全:1、傅里叶变换:$$F(u)=\int_{-\infty}^{\infty}f(x)e^{-2\pi iux}dx$$2、傅里叶反变换:$$f(x)=\int_{-\infty}^{\infty}F(u)e^{2\pi iux}du$$3、离散傅里叶变换:$$F(u)=\sum_{n=-\infty}^{\infty}f(n)e^{-2\pi iun}$$4、离散傅里叶反变换:$$f(n)=\frac{1}{N}\sum_{u=-\infty}^{\infty}F(u)e^{2\pi iun}$$5、快速傅里叶变换:$$F(u)=\sum_{n=0}^{N-1}f(n)W_N^{nu}$$6、快速傅里叶反变换:$$f(n)=\frac{1}{N}\sum_{u=0}^{N-1}F(u)W_N^{-nu}$$7、离散余弦变换:$$F(u)=\sum_{n=0}^{N-1}f(n)\cos\frac{(2n+1)u\pi}{2N}$$8、离散余弦反变换:$$f(n)=\frac{1}{N}\sum_{u=0}^{N-1}F(u)\cos\frac{(2n+1)u\pi}{2N}$$9、离散正弦变换:$$F(u)=\sum_{n=0}^{N-1}f(n)\sin\frac{(2n+1)u\pi}{2N}$$10、离散正弦反变换:$$f(n)=\frac{1}{N}\sum_{u=0}^{N-1}F(u)\sin\frac{(2n+1)u\pi}{2N}$$以上就是常用的傅里叶变换公式大全,它们可以帮助我们更好地理解信号的特性,并且可以用来解决许多实际问题。
因此,傅里叶变换在科学研究和工程应用中都有着重要的作用。
傅里叶变换简表
傅里叶变换(Fourier Transform)是一种将信号从时域(时间域)转换到频域(频率域)的数学方法。
傅里叶变换在信号处理、图像处理、通信等领域都有广泛的应用。
下面是傅里叶变换的简表:
傅里叶变换函数:
傅里叶变换F(k) = ∫[f(x) * e^(-2πikx)] dx
反变换函数:
反傅里叶变换f(x) = ∫[F(k) * e^(2πikx)] dk
常见信号的傅里叶变换:
1. 矩形函数(方波)的傅里叶变换:
F(k) = T * sin(πkT) / (πk)
2. 三角波的傅里叶变换:
F(k) = 2AT * sinc(2πATk)
3. 周期函数的傅里叶级数展开:
f(x) = a0 + Σ(an * cos(nωt) + bn * sin(nωt))
4. 高斯函数的傅里叶变换:
F(k) = σ * sqrt(2π) * e^(-π^2σ^2k^2)
5. 常见频率域运算的傅里叶变换:
a. 时移:f(x - x0) 的傅里叶变换F(k) * e^(2πikx0)
b. 频移:e^(2πik0x) 的傅里叶变换 F(k - k0)
c. 放大:f(ax) 的傅里叶变换 F(k/a) / a
d. 缩小:f(bx) 的傅里叶变换 F(k/b) * b
这只是一些傅里叶变换的简单例子,实际上傅里叶变换的应用十分广泛,还有很多复杂的数学关系和公式。
需要根据具体的问题和需求来进行深入研究和学习。