第03章抽样误差
- 格式:doc
- 大小:1.53 MB
- 文档页数:9
抽样误差、抽样平均误差与抽样极限误差一、基本概念抽样误差是指由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全及指标之间的绝对离差。
因此,又称为随机误差,它不包括登记误差,也不包括系统性误差。
影响抽样误差的因素有:1、总体各单位标志值的差异程度;2、样本的单位数;3、抽样的方法;4、抽样调查的组织形式。
抽样误差又分为两种:1、抽样平均误差。
抽样平均误差是反映抽样误差一般水平的指标,它的实质含义是指抽样平均数(或成数)的标准差。
即它反映了抽样指标与总体指标的平均离差程度。
抽样平均误差的作用首先表现在它能够说明样本指标代表性的大小。
平均误差大,说明样本指标对总体指标的代表性低;反之,则高。
(记为μx 或μp )2、抽样极限误差。
抽样极限误差指在进行抽样估计时,根据研究对象的变异程度和分析任务的要求所确定的样本指标与总体指标之间可允许的最大误差范围(记为∆)。
二、计算公式(一)抽样平均误差1、样本平均数的平均误差以μx 表示样本平均数的平均误差,σ表示总体的标准差。
根据定义:即n x σμ=,(若为不重复抽样,则总体方差σ要用进行修正)它说明在重复抽样的条件下,抽样平均误差与总体标准差成正比,与样本容量的平方根成反比。
例1:有5个工人的日产量分别为(单位:件):6,8,10,12,14,用重复抽样的方法,从中随机抽取2个工人的日产量,用以代表这5个工人的总体水平。
则抽样平均误差为多少?解:根据题意可得:(件)总体标准差(件)抽样平均误差(件)注意:在计算抽样平均误差时,通常得不到总体标准差的数值,一般可以用样本标准差来代替总体标准差。
2、抽样成数的平均误差总体成数P 可以表现为总体是非标志的平均数。
即E(X)=P ,它的标准差。
根据样本平均误差和总体标准差的关系,可以得到样本成数的平均误差的计算公式。
(不重复抽样时要修正)注意:当总体成数未知时,可以用样本成数来代替。
抽样误差抽样误差是抽样区间估计中的一个重要的条件。
它是由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全及指标之间的绝对离差,因此,又称为随机误差。
影响抽样误差的因素有:总体各单位标志值的差异程度;样本的单位数;抽样的方法;抽样调查的组织形式。
我们在进行总体参数的区间估计时,涉及到的抽样误差指标有以下几个:1.抽样平均误差抽样平均误差是反映抽样误差一般水平的指标,它的实质含义是指抽样平均数(或成数)的标准差。
即它反映了抽样指标与总体指标的平均离差程度。
抽样平均误差的作用首先表现在它能够说明样本指标代表性的大小。
平均误差大,说明样本指标对总体指标的代表性低;反之,说明样本指标对总体指标的代表性高。
抽样平均误差的计算:重复抽样: n x σμ= n p p p )1(-=μ不重复抽样: )1(2N n n x -=σμ)1()1(N n n p p p --=μ 2.抽样极限误差抽样极限误差是指用绝对值形式表示的样本指标与总体指标偏差的可允许的最大范围。
它表明被估计的总体指标有希望落在一个以样本指标为基础的可能范围。
它是由抽样指标变动可允许的上限或下限与总体指标之差的绝对值求得的。
由于总体平均数和总体成数是未知的,它要靠实测的抽样平均数成数来估计。
因而抽样极限误差的实际意义是希望总体平均数落在抽样平均数的范围内,总体成数落在抽样成数的范围内。
3.抽样误差的概率度基于理论上的要求,抽样极限误差需要用抽样平均误差x μ或p μ为标准单位来衡量。
即把极限误差 △x 或 △p 相应除以x μ或p μ,得出相对的误差程度t倍,t 称为抽样误差的概率度。
于是有:x x t μ=∆抽样平均误差反映了样本指标与总体指标误差的一般水平,抽样极限误差给出了由样本指标估计总体指标时的一个最大的误差范围,抽样误差的概率度则可以测定抽样估计的可靠程度。