第3章抽样误差陆
- 格式:pptx
- 大小:950.13 KB
- 文档页数:59
抽样误差实例一、范围误差和无回答误差的例子1936年,《文学文摘》杂志预测:堪萨斯州州长阿尔弗·兰登将会在总统选举中获得57%的选票,压倒性地超过弗兰克林·D·罗斯福总统,挫败其再次当选的企图。
然而,兰登最终只获得38%的选票,被彻底地打败了。
这种由一家杂志社与主要民意调查机构造成的失误,过去从未发生过,因而是史无前例的。
这次预测使这家杂志社的名誉扫地,并最终导致了其破产。
《文学文摘》的民意调查者认为他们所做的预测不存在什么问题,因为这是根据一个很大的样本预测的,这个样本是根据从抽样框中选出的1,000万登记的选民、给他们寄出调查问卷所回收的240万张答卷所组成的。
错误怎么会发生呢?实际上存在着两个原因:抽样框范围的选择误差和无回答误差。
为了了解选择抽样框范围时的误差,有必要解释一下当时的历史背景。
1936年时,美国仍受到大萧条的影响。
《文学文摘》没有考虑到这个情况,把电话薄上的用户、俱乐部会员、杂志订户和汽车用户等作为形成抽样框的资料来源(见参考文献3)。
这就无意之中选择了一个主要由富人构成的抽样框,而没有把选民中的大部份人包括进去,这些人在大萧条时期不可能拥有电话、汽车、俱乐部会员卡和订阅杂志。
这样,所预测的57%的选民会投兰登的票也许与抽样框非常接近,但显然与全美国真实的人口总体相距甚远。
在1,000万登记的选民这个容量巨大的样本中,只回收了240万份答卷,这种无回答的误差就会产生偏差。
回答率仅为24%,无法确定不回答的760万选民的真实想法,这对正确估计总体参数而言实在是太低了。
然而,无回答偏差所造成的问题没有选择性偏差大,即使此样本中1,000万登记的选民都回答了问卷,仍无法弥补这样一个事实:抽样框与真实的选民总体的结构之间是不同的。
二、非概率抽样所造成的危害1948年,主流的民意调查者们对美国总统的选举结果进行了预测。
在当时的总统哈里·S·杜鲁门和纽约市长托马斯·E·杜威两个侯选人之间,他们预测杜威会获胜。
练习题答案第一章医学统计中的基本概念练习题一、单向选择题1. 医学统计学研究的对象是A. 医学中的小概率事件B. 各种类型的数据C. 动物和人的本质D. 疾病的预防与治疗E.有变异的医学事件2. 用样本推论总体,具有代表性的样本指的是A.总体中最容易获得的部分个体 B.在总体中随意抽取任意个体C.挑选总体中的有代表性的部分个体 D.用配对方法抽取的部分个体E.依照随机原则抽取总体中的部分个体3. 下列观测结果属于等级资料的是A.收缩压测量值 B.脉搏数C.住院天数 D.病情程度E.四种血型4. 随机误差指的是A. 测量不准引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 选择总体不当引起的误差E. 由偶然因素引起的误差5. 收集资料不可避免的误差是A. 随机误差B. 系统误差C. 过失误差D. 记录误差E.仪器故障误差答案: E E D E A二、简答题1.常见的三类误差是什么?应采取什么措施和方法加以控制?[参考答案]常见的三类误差是:(1)系统误差:在收集资料过程中,由于仪器初始状态未调整到零、标准试剂未经校正、医生掌握疗效标准偏高或偏低等原因,可造成观察结果倾向性的偏大或偏小,这叫系统误差。
要尽量查明其原因,必须克服。
(2)随机测量误差:在收集原始资料过程中,即使仪器初始状态及标准试剂已经校正,但是,由于各种偶然因素的影响也会造成同一对象多次测定的结果不完全一致。
譬如,实验操作员操作技术不稳定,不同实验操作员之间的操作差异,电压不稳及环境温度差异等因素造成测量结果的误差。
对于这种误差应采取相应的措施加以控制,至少应控制在一定的允许范围内。
一般可以用技术培训、指定固定实验操作员、加强责任感教育及购置一定精度的稳压器、恒温装置等措施,从而达到控制的目的。
(3)抽样误差:即使在消除了系统误差,并把随机测量误差控制在允许范围内,样本均数(或其它统计量)与总体均数(或其它参数)之间仍可能有差异。
抽样误差和假设检验练习题在实验和调查中,我们经常会使用随机抽样的方法来得到代表性样本。
然而,抽样误差是不可避免的问题,它可能会对最终的统计结果产生影响。
因此,我们需要了解和掌握如何对抽样误差进行估计和校正,以及如何运用假设检验方法来确定样本的显著性。
一、抽样误差的估计和校正在随机抽样的过程中,我们从总体中选择一部分样本,并对这些样本进行测量或观察。
但由于样本数量的有限性,样本结果可能无法完全准确地代表总体。
因此,通过计算估计统计分析结果的精确性,以及根据样本中不确定性的大小,对样本估计结果进行校正。
抽样误差有两个主要来源:随机误差和系统误差。
随机误差是由于偶然因素而引起的误差,例如样本的选择不够随机或测量误差。
系统误差是由于测量设备、样本选择方法或操作员错误等系统因素引起的误差。
在统计分析中,通常会计算抽样误差和置信区间。
抽样误差是指结果(例如平均值、比例、标准差等)与总体参数之间的差异。
置信区间是指给定的置信水平下,总体参数可能位于的概率区间。
例如,95%的置信区间表示,在95%的情况下,总体参数位于该范围内。
二、假设检验的基本原理假设检验是一种统计推断方法,用于检验样本数据是否支持某个关于总体的假设。
我们通常将总体参数的假设表示为零假设(H0),并检验是否有足够的证据来拒绝该假设。
如果拒绝H0,则我们可以接受备择假设(H1),即总体参数与H0不同。
假设检验分为以下步骤:1. 确定零假设和备择假设2. 选择适当的检验统计量3. 确定统计显著性水平(通常为0.05或0.01)4. 计算检验统计量的观察值5. 计算零假设条件下检验统计量的概率,即p值6. 根据p值和显著性水平,做出决策如果p值小于显著性水平,则拒绝H0,接受H1。
如果p值大于显著性水平,则无法拒绝H0,即无法得到足够的证据来接受H1。
三、练习题以下是一些关于抽样误差和假设检验的练习题,供读者参考。
1. 对于一个总体,样本大小为100,平均值为20,标准差为5,估计总体平均值的95%置信区间。
抽样误差名词解释
抽样误差(Sampling Error):
一、定义
抽样误差(Sampling Error)是指当抽取一定数量的样本用于进行科学
分析时,根据样本结果得到的统计结论,与实际总体情况存在的偏差。
二、分类
它大概有三类:
1. 第一类是抽筹误差:由抽取样本中偶然性造成的,它表现为随机性
变化,例如,抽取多次同样的样本,每次的样本中所含有的实体可能
并不完全一样。
2. 第二类是选空误差:由样本中漏抽某些实体造成的,它表现为实体
数量仍为抽取样本大小的实际样本,但是可能与实际总体的构成不同,因此产生的统计结论也就存在误差。
3. 第三类是抽取操纵误差,即抽取时采取的方法出现问题造成的误差,因为选取样本的方法可能造成抽取出来的实际样本与实际总体的构成
偏离。
三、计算
抽样误差主要是指样本所表示的样本总体和实际总体的均值的差距,
可以通过均方根误差(Standard Error of mean)来计算。
四、控制
为了控制抽样误差,有以下几项基本要求需要注意:
1. 确定实际总体,详细精确地了解它的特点;
2. 明确抽取样本的目的,是抽筹误差还是选空误差;
3. 采用科学的样本抽取方法和取样数量,以控制抽样误差;
4. 完备记录样本抽取过程中的要素,保证以航安全;
5. 采取不同的统计方法,使结果能体现出总体的真实状况;
6. 最终的结论要进行统计检验,以评价抽样误差的程度。
抽样误差的名词解释在进行统计学研究和调查时,抽样误差是一个非常重要的概念。
抽样误差指的是由于从总体中抽取样本导致的统计结果与总体真实情况之间的差异。
在实际应用中,抽样误差是无法避免的,但我们可以通过增加样本量、选择合适的抽样方法以及进行统计修正来降低抽样误差。
下面将从定义、产生原因和影响等方面来解释抽样误差。
定义:抽样误差是指从总体中选择一个小样本,然后进行统计分析,得到的结果与总体实际的平均值或者分布不一致的程度。
从严格的统计学意义上讲,抽样误差也是随机误差的一种,但其与其他类型的误差,如非抽样误差、测量误差等有所区别。
产生原因:1. 随机性:抽样本身是一个随机的过程,即使按照正确的抽样方法进行,仍然可能由于随机性而产生抽样误差。
2. 抽样框偏差:当抽样时使用的抽样框不完善或者有偏差时,就会导致抽出来的样本与总体存在一定的差异,从而产生抽样误差。
3. 非响应误差:在调查中,有些被抽中的个体可能会拒绝参与调查或者无法联系到,由于这些个体的信息无法获得,就会导致抽样误差。
4. 抽样方法选择不当:使用不合适的抽样方法也会引入抽样误差。
影响:抽样误差对统计结果的影响主要体现在以下几个方面:1. 可信性:抽样误差会导致我们对总体特征的估计不准确,降低了结果的可信度。
当抽样误差很大时,我们对总体的推断就会更不可靠。
2. 精确性:抽样误差会降低统计结果的精确度。
如果抽样误差较大,那么得到的统计结果与总体真实情况之间的差距就会更大,就无法得出精确的结论。
3. 变异性:抽样误差会导致统计结果的变异性增加。
即使重复进行同样的抽样,由于抽样误差的存在,每次得出的结果也会有所不同。
4. 推广性:抽样误差会影响对总体的推广。
如果抽样误差很大,那么从样本中得出的结论就无法准确地推广到整个总体。
降低抽样误差的方法:1. 增加样本量:样本量是降低抽样误差的有效手段之一。
样本量越大,抽样误差就越小。
2. 选择合适的抽样方法:不同的研究目的需要选择不同的抽样方法,合适的抽样方法可以降低抽样误差。