反激式和正激式变换器的工作原理
- 格式:docx
- 大小:3.24 KB
- 文档页数:3
反激式正激式推挽式半桥式全桥式开关电源优缺点反激式开关电源是一种常见的开关电源拓扑结构,其工作原理是利用电感储能和电容滤波器来实现电压变换。
以下是反激式、正激式、推挽式、半桥式和全桥式开关电源的优缺点分析。
1.反激式开关电源:优点:-体积小,结构简单,成本较低。
-输出电流大,适用于一些高功率应用。
-效率较高,在负载率低时仍能提供稳定的输出电压。
缺点:-输出电压稳定性较差,容易受到输入电压波动的影响。
-输入电流波形不纯净,含有较高的谐波成分。
-输出电流变化较大时容易产生振荡和噪音。
2.正激式开关电源:优点:-输出电压稳定性较好,能够提供较为纯净的输出电流。
-输出电流较大,适用于一些高负载应用。
-效率较高,在大部分负载条件下都能保持较高的效率。
缺点:-体积较大,结构相对复杂。
-成本较高。
-在负载率低时效率较低。
3.推挽式开关电源:优点:-输出频率较高,适用于一些高频应用。
-输出电压稳定性较好。
-体积相对较小,结构简单。
缺点:-输出电流相对较小。
-效率较低,在大负载条件下会有较大的功率损耗。
-容易受到电容和电感等元器件的损耗影响,导致输出电压不稳定。
4.半桥式开关电源:优点:-输出电压稳定性较好。
-输出电流较大。
-效率较高。
-结构简单,成本相对较低。
缺点:-输入电流波形较复杂,含有较高的谐波成分。
-输出电流较小负载时容易出现振荡。
-适用负载范围较窄。
5.全桥式开关电源:优点:-输出电压稳定性较好。
-输出电流较大。
-效率较高。
-结构简单,成本相对较低。
缺点:-输入电流波形较复杂,含有较高的谐波成分。
-输出电流较小负载时容易出现振荡。
-适用负载范围较窄。
总结:根据以上分析,不同的开关电源拓扑在不同应用场景中具有不同的优缺点。
在选择开关电源时,应根据具体应用需求,综合考虑输出电压稳定性、输出电流、效率、结构复杂性、成本等因素,选择最适合的拓扑结构。
开关电源拓扑结构概述(降压,升压,反激、正激)主回路—开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck拓扑型开关电源就是属于串联式的开关电源上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。
其中L 是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。
在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。
1 单零点微分器单零点微分电路实际应当是单零点单极点电路;相位滞后90度,不是超前90度2穿越频率和转折频率穿越频率为增益为1或0dB处的频率,转转频率为-3dB处的频率,或者是增益降低一半处的频率;如果说穿越频率向低频处靠,那么可以提高系统的稳定性,但是系统动态响应变差(就是快速的跟随性能变差)。
如果穿越频率向转折频率处靠,性能快速跟随性能会变好,但是系统的稳定性会变差。
所以在确定穿越频率时候我们需要选择一个折中的方案。
经验表示穿越频率选择标准是为1/10的转折频率比较适合。
选择一个合适的穿越频率的意义是:要求系统稳定而又快速。
系统是即可以满足系统的稳定性,又能兼容系统的快速跟随性能。
3正激式变换器和反激式变换器正激式变换器是变压器同相,开关导通时,二极管正偏导通供电,反激式变换器是变压器反相,开关断开时,二极管正偏导通供电。
在正激电路中,变压器只传递能量,储能元件是副边整流后的电感.而反激电路的变压器事实上是个耦合电感,既传递能量同时又储能元件。
正激变换器原理与BUCK电路原理基本相同,也就是在功率开关和LC滤波器之间加了个变压器来提升或降低输入电压。
义上的变压器作用。
当开关关断时,唯一存储能量的是变压器的漏感。
这是为什么MOSFET的漏极电压高于输入电压,并且能够使磁芯复位的原因。
4增益裕度和相位裕度幅值裕度或增益裕度为是相角穿越频率处的幅值分贝值与0dB线之间的差值(用分贝标示)相位裕度是增益穿越频率处的相角与-180度线之间的差值相位裕度可以看作是系统进入不稳定状态之前可以增加的相位变化,相位裕度越大,系统越稳定,但同时时间响应速度减慢了,因此必须要有一个比较合适的相位裕度。
相位裕度(phase margin,PM)在电路设计中是非常重要的一个指标,主要用来衡量负反馈系统的稳定性,并能用来预测闭环系统阶跃响应的过冲。
首先定义使增益幅值等于1的频率点位“增益交点”(gain crossover point),设为频率点w1;使增益相位等于—180°的频率点位“相位交点”(phase crossover point),设为频率点W2。
半桥,全桥,反激,正激、推挽拓扑结构的区别和特点1.单端正激式单端:通过一只开关器件单向驱动脉冲变压器。
正激:脉冲变压器的原/付边相位关系,确保在开关管导通,驱动脉冲变压器原边时,变压器付边同时对负载供电。
该电路的最大问题是:开关管T交替工作于通/断两种状态,当开关管关断时,脉冲变压器处于“空载”状态,其中储存的磁能将被积累到下一个周期,直至电感器饱和,使开关器件烧毁。
图中的D3与N3构成的磁通复位电路,提供了泄放多余磁能的渠道。
2.单端反激式反激式电路与正激式电路相反,脉冲变压器的原/付边相位关系,确保当开关管导通,驱动脉冲变压器原边时,变压器付边不对负载供电,即原/付边交错通断。
脉冲变压器磁能被积累的问题容易解决,但是,由于变压器存在漏感,将在原边形成电压尖峰,可能击穿开关器件,需要设置电压钳位电路予以保护D3、N3构成的回路。
从电路原理图上看,反激式与正激式很相象,表面上只是变压器同名端的区别,但电路的工作方式不同,D3、N3的作用也不同。
3.推挽(变压器中心抽头)式这种电路结构的特点是:对称性结构,脉冲变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断,工作过程类似于线性放大电路中的乙类推挽功率放大器。
主要优点:高频变压器磁芯利用率高(与单端电路相比)、电源电压利用率高(与后面要叙述的半桥电路相比)、输出功率大、两管基极均为低电平,驱动电路简单。
主要缺点:变压器绕组利用率低、对开关管的耐压要求比较高(至少是电源电压的两倍)。
4.全桥式这种电路结构的特点是:由四只相同的开关管接成电桥结构驱动脉冲变压器原边。
图中T1、T4为一对,由同一组信号驱动,同时导通/关端;T2、T3为另一对,由另一组信号驱动,同时导通/关端。
两对开关管轮流通/断,在变压器原边线圈中形成正/负交变的脉冲电流。
主要优点:与推挽结构相比,原边绕组减少了一半,开关管耐压降低一半。
主要缺点:使用的开关管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。
正激和反激工作原理嘿,朋友们!今天咱来聊聊正激和反激工作原理。
咱先说说正激工作原理哈,这就好比是一辆勇往直前的赛车,动力源源不断地输出,一刻不停歇。
电源通过开关管导通,能量就像洪水一样涌出来,然后经过变压器传递到负载端,那叫一个干脆利落!这过程就像是给机器注入了一股强大的力量,让它能够高效地运转起来。
你说神奇不神奇?再看看反激工作原理呢,它就有点像个调皮的小精灵啦!电源先给变压器储能,就像小精灵先把力量攒起来,等开关管关断的时候,这攒起来的能量一下子就释放出来啦,给负载供电。
这是不是很有意思呀?就好像小精灵在和我们玩捉迷藏,先藏起来能量,然后突然蹦出来给我们个惊喜。
你想想看,要是没有正激工作原理,那好多设备不就没办法稳定地工作啦?没有那持续不断的能量供应,那不就抓瞎啦!反激工作原理也是一样重要呀,它能在一些特定的情况下发挥出独特的作用,让整个系统更加灵活多变。
正激就像是一位可靠的大力士,总是坚定地提供力量;而反激呢,像是个机灵的小鬼头,总能找到巧妙的方式来发挥作用。
它们俩呀,就像是一对好搭档,相互配合,让各种电子设备能够正常运行。
你说我们生活中得有多少东西是靠着这正激和反激工作原理才能好好工作的呀!从我们每天用的手机,到家里的各种电器,哪一个离得开它们呀?这就像是一场无声的魔法,在背后默默地为我们服务呢!那我们是不是得好好珍惜它们呀?得好好了解它们的工作原理,这样我们才能更好地使用和维护我们身边的这些电子宝贝们呀!别小看这小小的正激和反激工作原理,它们可有着大用处呢!它们就像是隐藏在电子世界里的秘密武器,默默地守护着我们的科技生活。
所以呀,朋友们,可别小瞧了这正激和反激工作原理哦!它们可是电子世界里不可或缺的重要角色呢!原创不易,请尊重原创,谢谢!。
反激式变压器的设计反激式变压器的工作与正激式变压器不同。
正激式变压器两边的绕组是同时流过电流的,而反激式变压器先是通过一次绕组把能量存储在磁心材料中,一次侧关断后再把能量传到二次回路。
因此,典型的变压器阻抗折算和一次、二次绕组匝数比关系不能在这里直接使用。
这里的主要物理量是电压、时间、能量。
在进行设计时,在黑箱估计阶段,应先估计出电流的峰值。
磁心尺寸和磁心材料也要选好。
这时,为了变压器能可靠工作,就需要有气隙。
刚开始,在开关管导通时把一次绕组看作是一个电感器件,并满足式(24)。
(24)把Lpri移到左边,用Ton=Dmax/f代到上式中,用已知的电源工作参数,通过式(25)就可以算出一次最大电感——最大占空比(通常为50%或0.5)。
(25)这个电感值是在输入最小工作电压时,电源输出仍能达到额定输出电压所允许选择的最大电感值。
在开关管导通的每个周期中,存储在磁心的能量为:(26)要验证变压器最大连续输出的功率能否满足负载所需的最大功率,可以使用下式:(27)所有磁心工作在单象限的场合,都要加气隙。
气隙的长度(cm)可以用下式近似(CGS制(美国)):(28a)式中Ac——有效磁心面积,单位为;Bmax——最大磁通密度,单位为G(Wb/cm )。
在MKS系统(欧洲)中气隙的长度(m)为(28b)式中Ac——有效磁心面积,单位为;Bmax——最大磁通密度,单位为T(Wb/m )。
这只是估算的气隙长度,设计者应该选择具有最接近气隙长度的标准磁心型号。
磁心制造厂商为气隙长度提供了一个A L的参数。
这参数是电感磁心绕上1000匝后的数据(美国)。
根据设计好的电感值,绕线的匝数可以用式(29)计算确定。
(29)式中Lpri——一次电感量,单位为mH。
如果有些特殊的带有气隙的磁心材料没有提供A L。
的值,可以使用式(30)。
注意不要混淆CGS和MKS两种单位制(G和cm与T和m)。
(30)现在就用式(3- 31)来确定输出最大功率时的二次绕组匝数。
5.2 反激变换器反激变换器就是在Buck-Boost变换器的开关管与续流二极管之间插入高频开关变压器,从而实现输入与输出电气隔离的一种DC-DC变换器,因此,反激变换器实际上就是带隔离的Buck-Boost变换器。
反激变换器能量传输的时机与正激变换器正好相反,它是在开关关断期间向负载传输能量。
由于反激变换器的高频变压器除了起变压作用外,还相当于一个储能电感,因此,反激变换器也称之为“电感储能式变换器”或“电感变换器”。
5.2.1 单管反激变换器的组成和工作原理1. 单管反激变换器的电路组成及工作原理单管反激变换器的主电路结构如图5.2.1所示,图中V i为输入电压、V O为输出电压、i O 为输出电流、VT为开关管,VD为续流二极管、C为输出滤波电容、R L为负载电阻。
L1、L2为高频变压器T的原、副边分别对应的电感,流过原、副边的电流分别为i N1、i N2,变压器变比n=N1/N2,变压器变比的倒数用“γ”表示,即γ= N2/N1(后面的分析会发现:对于反激变换器,其有关表达式中用“γ”表示更好)。
oV图5.2.1单端反激变换器的主电路图单管反激变换器的工作原理:在开关管VT导通期间,输入电压V i加在一次电感L1上,流过原边的电流i N1线性增加,高频变压器将电能转换成磁能储存在电感L1中。
因二次绕组同名端与一次绕组同名端相反,使得整流二极管VD因反偏而截止,二次侧无电流流过,负载仅由输出滤波电容C提供电能。
在开关管VT关断期间,流过原边的电流i N1变为零,其变压器二次侧感应电压使续流二极管VD正偏而导通,储存在变压器原边电感L1中的磁能通过互感耦合到L2,变压器释放能量,流过变压器副边的电流i N2线性减小。
可见,反激变换器的高频变压器实际是一个初级与次级紧密耦合的电感器。
显然,对于反激变换器,当晶体管导通时,高频开关变压器的初级电感线圈储存能量;而当晶体管关断时,初级线圈中储存的能量才通过次级线圈释放给负载,即反激变换器在开关管导通期间储存能量,而在开关管关断期间才向负载传递能量。
反激式开关电源的优点和缺点1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。
即电压脉动系数等于2,电流脉动系数等于4。
反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。
由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。
2 反激式开关电源的瞬态控制特性相对来说比较差。
由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期事,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较差。
有时,当负载电流变化的频率和相位与取样、调宽控制电路输出的电压的延时特性在相位保持一致的时候,反激式开关电源输出电压可能会产生抖动,这种情况在电视机的开关电源中最容易出现。
3 反激式开关电源变压器初级和次级线圈的漏感都比较大,开关电源变压器的工作效率低。
反激式开关电源变压器的铁芯一般需要留一定的气隙,一方面是为了防止变压器的铁芯因流过变压器的初级线圈的电流过大,容易产生磁饱和。
另一方面是因为变压器的输出功率小,需要通过调整电压器的气隙和初级线圈的匝数,来调整变压器初级线圈的电感量的大小。
因此,反激式开关电源变压器初级和次级线圈的漏感都比较大,从而会降低开关电源变压器的工作效率,并且漏感还会产生反电动势,容易把开关管击穿。
第1章Flyback正激变换器的工作原理1.1 引言有隔离变换器的DC/DC变换器按照铁芯磁化方式,可分为双端变换器(全桥、半桥、推挽等)和单端变换器(正激式、反激式等)。
和双端变换器比较,单端变换器线路简单、无功率管共导通问题、也不存在高频变换器单向偏磁和瞬间饱和问题,但由于高频变换器只工作在磁滞回线一侧,利用率低。
因此,它只适用于中小功率输出场合。
单端正激变换器是一个隔离开关变换器,隔离型变换器的一个根本特点是有一个用于隔离的高频变压器,所以可以用于高电压的场合。
由于引入了高频变压器极大的增加了变换器的种类,丰富了变换器的功能,也有效的扩大了变换器的使用范围。
单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。
在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。
当今,节能和环保已成为全球对耗能设备的基本要求。
所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。
而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;dv/dt和di/dt大等。
为了克服这些缺陷,提出了有源钳位正激变换器拓扑,从根本上改变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了dv /dt和di/dt,改善了电磁兼容性。
因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。
本章主要介绍Flyback型有源箝位正激变换器的稳态工作原理与电路设计。
1.2 Flyback 型有源箝位正激变换器稳态工作原理有源箝位正激变换器由有源箝位支路和功率输出电路组成。
有源箝位支路由箝位开关和箝位电容串联组成,并联在主开关或变压器原边绕组两端。
利用箝位电容及开关管的输出电容与变压器绕组的激磁电感谐振,创造主开关和箝位开关的ZVS 工作条件,并在主开关关断期间,利用箝位电容的电压限制主开关两端的电压基本保持不变,从而避免了主开关过大的电压应力;另一方面,在正激变换器中采用有源箝位技术还可实现变压器铁芯的自动磁复位,并可以使激磁电流沿正负两个方向流动,使其工作在双向对称磁化状态,提高了铁芯的利用率。
正激电路和反激电路工作原理嗨,朋友!今天咱们来聊聊正激电路的工作原理吧。
正激电路呢,就像是一个很有秩序的小团队在工作。
想象一下,这里面有电源这个大老板,它可是能量的源泉哦。
然后呢,有一个开关管,这个开关管就像是一个小门卫,特别机灵。
当电路开始工作的时候,电源把能量都准备好啦。
这个时候,开关管就开始发挥作用啦。
在它导通的时候呀,就像打开了一扇大门,电源的能量就可以顺着这个打开的通道,欢快地流向变压器啦。
变压器呢,就像是一个神奇的魔法盒,它会根据自己的匝数比来改变电压的大小。
这时候的变压器初级绕组就像是在大口大口地吃着能量,可积极啦。
而在变压器的次级绕组那边呢,也没闲着。
因为初级绕组在接收能量,根据电磁感应的魔法,次级绕组也开始有了对应的能量。
这时候呀,有一个整流二极管,这个二极管就像是一个交通指挥员,只允许电流朝着一个方向走。
它把从次级绕组来的交流电变成了直流电,就像把一群乱跑的小动物排成了整齐的队伍。
接着呢,还有一个输出滤波电容,这个电容就像是一个温柔的大姐姐,它把整流二极管输出的直流电变得更加平滑。
就好像是把有小波纹的水面抚平一样,让输出的电压更加稳定。
这样呢,在负载那里得到的就是稳定又合适的电压啦。
在正激电路里,还有一个很重要的部分,就是复位绕组。
为啥要有这个复位绕组呢?就像是玩游戏要遵守规则一样,变压器也需要复位。
复位绕组可以确保变压器在每个周期都能恢复到初始状态,准备好迎接下一次的能量传输。
如果没有这个复位绕组,变压器可能就会乱了套,就像小朋友玩游戏没有规则就会一团糟一样。
正激电路的工作就是这样一环扣一环的,每个元件都有自己的任务,大家齐心协力,才能把电源的能量顺利地、稳定地转化成负载所需要的电能。
就像一个和谐的大家庭,每个成员都发挥着自己独特的作用,缺了谁都不行呢。
宝子!现在咱们再来说说反激电路的工作原理吧。
反激电路可有趣啦。
这里面也有电源这个能量的源头。
不过呢,反激电路里的开关管一开始导通的时候,就像是在悄悄地积攒能量。
正激反激电路原理正激反激电路是一种用于电源电路中的电路设计,它是一种在转换器中产生交流电压的方式。
这种电路可以被用于机器人、电子制造、计算机设备和医疗设备等很多领域。
本文将介绍正激反激电路的原理、工作方式和应用。
1. 原理正激反激电路是一种在转换器中产生交流电压的方式。
它是通过变压器、开关器件、电容器和二极管组成的。
这种电路可以产生可控的输出电压,并使用一个反馈回路来保持输出电压稳定。
应用这种电路的原理是利用输出端的屏蔽二极管对变压器产生自感峰值反向冲击的过程来完成。
2. 工作方式在正激反激电路中,开关器件是一个非常重要的组成部分。
开关器件的任务是打开和关闭电路,以便控制电压和电流。
当开关器件关闭时,电容器中的电荷被放电,电感器中的磁场随着电流变化而崩溃,导致二极管变成导通状态,从而使电容器的负极上升到一个负电压。
当开关器件打开时,磁势能被储存在电感器中,启动变压器的一端将产生一个高电流峰值。
使用此时的电容器,将其存储的电能释放,以达到输出电压的目的。
输出电压的稳定性由反馈回路控制。
此反馈回路可提供相应的控制信号,使反向电流在二极管上产生相同的电压,使输出电压保持在需要的范围内。
3. 应用在机器人中,电源电路通常需要承受较大的工作负载,在这种情况下,使用交流转换器就变得非常有用了。
此外,交流转换器的效率也高,可以为机器人提供所需的功率。
在计算机设备中,交流转换器可以用于调整电压,以便为其他设备提供所需的电流。
此外,它还可以提供更高的效率和更低的热量产生,从而延长设备的使用寿命。
在医疗设备中,需要高效率的电源电路以确保正确的电源工作。
正激反激电路可以为医疗设备提供所需的功率和稳定性,并且可以轻松地控制输出电压。
这个特点对于医疗设备来说非常重要。
电源正激反激工作原理嘿,朋友!你有没有想过,咱们日常使用的那些电子设备,像手机、电脑之类的,它们的电源是怎么工作的呢?今天呀,我就来给你讲讲电源里正激和反激工作原理这档子事儿。
先来说说正激吧。
想象一下,电源就像是一个小工厂,这个小工厂的任务就是把输入的电进行加工,然后输出适合我们设备使用的电。
正激电源里呢,就好像有一个非常守时的工人。
在变压器初级线圈通电的时候,这个工人就开始干活儿啦。
初级线圈一通上电,变压器就像是一个神奇的桥梁,把能量从这边传到那边。
初级线圈的电就像一群听话的小蚂蚁,按照规定的路线,有条不紊地在变压器里流动,然后在次级线圈感应出相应的电。
这时候呀,次级线圈输出的电就像是经过精心包装的商品,能够直接为我们的设备所用。
而且哦,在这个过程中,为了保证工作的稳定,还会有一个小小的电路来把多余的能量存储起来,就像小仓库一样。
你说,这是不是很神奇呢?你会不会想,这个正激电源的设计怎么这么巧妙呢?再来说说反激电源。
这反激电源呀,和正激有点不一样。
如果把正激电源比作是白天按部就班工作的工人,那反激电源就有点像是夜晚偷偷加班的神秘人。
在初级线圈通电的时候,反激电源不是马上就把能量传递到次级线圈,而是先把能量存储在变压器里,就像把宝藏先藏在一个神秘的地方。
这时候,变压器就像是一个大口袋,把初级线圈送来的能量一股脑儿地装起来。
等到初级线圈断电了,嘿,这时候才是反激电源真正发挥威力的时候呢!它把之前存储在变压器里的能量一下子释放到次级线圈,就像打开了一个装满宝藏的口袋,把宝藏一股脑儿地倒出来。
这种方式是不是很独特呢?你可能会觉得奇怪,为啥要这么折腾呢?其实呀,这样做有它的好处,对于一些小型的、对成本比较敏感的电源设计来说,反激电源的这种工作方式能够节省不少元件,就像我们过日子能省则省一样。
我有个朋友,叫小李,他之前对电源一窍不通。
有一次,他的手机充电器坏了,他就跑来问我电源的事儿。
我就给他讲了正激和反激电源的工作原理。
深度解析开关电源“正激”与“反激”的工作原理与区别
反激式:反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源。
“反激”指的是在开关管接通的情况下,当输入为高电平时输出线路中串联的电感为放电状态;相反,在开关管断开的情况下,当输入为高电平时输出线路中的串联的电感为充电状态。
工作原理:变压器的一次和二次绕组的极性相反,这大概也是Flyback名字的由来: a.当开关管导通时,变压器原边电感电流开始上升,此时由于次级同名端的关系,输出二极管截止,变压器储存能量,负载由输出电容提供能量。
b.当开关管截止时,变压器原边电感感应电压反向,此时输出二极管导通,变压器中的能量经由输出二极管向负载供电,同时对电容充电,补充刚刚损失的能量。
反激电路的演变:可以看作是隔离的Buck/Boost 电路:
在反激电路中,输出变压器T除了实现电隔离和电压匹配之外,还有储存能量的作用,前者是变压器的属性,后者是电感的属性,因此有人称其为电感变压器,有时我也叫他异步电感。
正激电源
正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。
所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。
单端正激式:。
1. 正激反激的区别(1) 正激的工作原理是在D的时候原边通过变压器向副边传输能量除了负载能量外多余的能量存储在输出电感和输出电容上。
1-D的时候输出电感和输出电容维持负载输出反激的工作原理是在D的时候原边将能量存储在变压器的励磁电感里面(标准反激电路没有输出电感),1-D的时候励磁电感释放能量给负载和输出电容供电,下一个D周期时输出电容维持负载输出。
所以你可以看出正激的变压器基本上只有能量传输的作用,反激的变压器不仅能量传输而且还具有能量存储的作用。
这就是你问题的答案。
(2) 首先你提出这个问题,我觉得你是真的在认真学习,但也能看的出没有仔细分析,其实正激跟反激相比最大的问题的用的器件更多,虽然好像没多几个,但都是必不可少,而且成本都是很高的。
我慢慢给你介绍:一。
电路比反激式变压器开关电源多用一个大储能滤波电感,以及一个续流二极管。
这儿基本电路中就能看出来二。
正激式变压器开关电源输出电压受占空比的调制幅度,相对于反激式变压器开关电源来说要低很多,因此,正激式变压器开关电源要求调控占空比的误差信号幅度比较高,误差信号放大器的增益和动态范围也比较大。
三,正激式变压器开关电源为了减少变压器的励磁电流,提高工作效率,变压器的伏秒容量一般都取得比较大,并且为了防止变压器初级线圈产生的反电动势把开关管击穿,正激式变压器开关电源的变压器要比反激式变压器开关电源的变压器多一个反电动势吸收绕组,因此,正激式变压器开关电源的变压器的体积要比反激式变压器开关电源的变压器的体积大。
四。
正激式变压器开关电源还有一个更大的缺点是在控制开关关断时,变压器初级线圈产生的反电动势电压要比反激式变压器开关电源产生的反电动势电压高。
因为一般正激式变压器开关电源工作时,控制开关的占空比都取在0.5左右,而反激式变压器开关电源控制开关的占空比都取得比较小。
主要就是比较难调啦。
应用区别就是反激主要用在150-200瓦以下的情况,正激则用在150w到几百瓦之间。
反激式和正激式变换器的工作原理
反激式变换器和正激式变换器是电力电子领域中常见的两种变换器结构,它们在不同的应用场景下具有不同的工作原理。
一、反激式变换器的工作原理
反激式变换器是一种常用的开关电源变换器,它通过开关管的开关动作来实现输入电压的变换。
反激式变换器一般由一个开关管、一个变压器、一个滤波电容和一个负载组成。
1. 工作原理
反激式变换器的工作原理主要分为两个阶段:导通阶段和关断阶段。
导通阶段:当开关管导通时,变压器的一侧与输入电源相连,另一侧与负载相连。
此时,输入电流通过变压器的一侧流入,变压器的另一侧产生电磁感应,使得负载得到相应的电压。
关断阶段:当开关管关断时,变压器的一侧与负载相连,另一侧与滤波电容相连。
此时,由于变压器一侧的电流无法立即变为零,电流会通过滤波电容继续流向负载,从而使得负载得到稳定的电压。
2. 特点与应用
反激式变换器具有体积小、成本低、效率高等优点,广泛应用于电力电子产品中。
例如,电视机、计算机、手机充电器等都采用了反激式变换器作为其电源模块,提供稳定的直流电压。
二、正激式变换器的工作原理
正激式变换器是一种将输入电压转换为输出电压的变换器,它通过不断开关的方式来实现电压的变换。
正激式变换器一般由一个开关管、一个变压器、一个整流电路和一个滤波电容组成。
1. 工作原理
正激式变换器的工作原理主要分为两个阶段:导通阶段和关断阶段。
导通阶段:当开关管导通时,输入电流通过变压器的一侧流入,变压器的另一侧产生电磁感应,使得负载得到相应的电压。
关断阶段:当开关管关断时,变压器的一侧与整流电路相连,另一侧与滤波电容相连。
此时,由于变压器一侧的电流无法立即变为零,电流会通过整流电路继续流向负载,从而使得负载得到稳定的电压。
2. 特点与应用
正激式变换器具有输出电压稳定、抗干扰能力强等优点,广泛应用于电力电子领域中。
例如,直流电源、变频器等都采用了正激式变换器作为其电源模块,提供稳定的输出电压。
总结:
反激式变换器和正激式变换器是电力电子领域中常见的两种变换器结构。
反激式变换器通过开关管的导通和关断来实现输入电压的变换,广泛应用于电力电子产品中。
正激式变换器通过不断开关的方式来实现电压的变换,具有输出电压稳定、抗干扰能力强等优点,
广泛应用于电力电子领域中。