详细经典的正激变换器工作原理
- 格式:ppt
- 大小:1019.00 KB
- 文档页数:46
单端正激变换器電路解說★电路拓扑图2、电路原理其变压器T1起隔离和变压的作用,在输出端要加一个电感器Lo(续流电感)起能量的储存及传递作用,变压器初级需有复位绕组Nr(此点上我对一些参考书籍存疑,当然有是最好,实际应用中考虑到变压器脚位的问题)。
在实际使用中,我也发现此绕组也用RCD吸收电路取代亦可,如果芯片的辅助电源用反激供给则也可削去调整管的部分峰值电压(相当一部份复位绕组)。
输出回路需有一个整流二极管D1和一个续流二极管D2。
由于其变压器使用无气隙的磁芯,故其铜损较小,变压器温升较低。
并且其输出的纹波电压较小。
3、变压器计算一般来说高频变压器的设计可划分为以下六个步骤:a、选择磁芯材料和磁芯结构形式。
b、确定工作频率,工作最大磁感应强度Bm。
c、计算并初选磁芯型号。
d、计算并调整原、副边匝数。
e、计算并确定导线线径。
f、校核窗口面积和最大磁感应强度Bm。
现就这六个步骤来讨论单端正激式变压器的设计:★ 选择磁芯材料和磁芯结构形式高频变压器磁性材料选择的标准为高初始磁导率μi、低矫顽力Hc、高饱和磁感应强度Bs、低剩磁Br、高电阻率ρ和高居里温度点。
磁导率高,变压器工作时励磁电流就小;矫顽力低则磁滞损耗比较小;高饱和磁感应,低剩磁,变压器工作时磁通变化范围 B可以较大,相应减小了变压器体积;高电阻率,高频工作时涡流损耗比较小;高居里温度点,变压器工作温度可以相应提高,但以上各项要求不可能同时得到满足,不同的磁性材料存在其长处也必然存在不足,需视具体应用条件加以选择。
一次电源工作频率一般选择在60KHz~150KHz 之间,二次电源产品工作频率一般选择在100KHz~400KHz之间,在这个频率范围,宜选用Mn-Zn铁氧体材料,目前二次电源常用的铁氧体材料包括TDK的PC30-PC40,Magnetics的P 材料,PHILIP的3F3及899厂的R2KB2等。
磁芯结构形式的选择一是考虑能量传递,二是考虑几何尺寸的限制,三是考虑磁芯截面积和窗口面积的比例,多路输出变压器一般要求有较大的窗口面积,选择EE型、EI型或PQ 型磁芯,可具有较大的窗口和良好的散热性,DC/DC模块电源可选用FEY型、FEE型、EUI型等,铃流变压器要求磁芯截面积比较大,可选用GU形磁芯;此外还应考虑变压器的安装,加工方便性,成本等,目前中、大功率通常选用GU形磁芯,这种磁芯特点是有较大的截面积,漏磁很小,采用国产材料,成本低,但出线需手焊。
第2章有源箝位正激变换器的工作原理2。
1 有源箝位正激变换器拓扑的选择单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合.但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和[36]。
传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD箝位技术。
这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷[37—39]。
(1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。
它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。
(2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。
它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。
(3) LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。
它存在的缺点是:在磁复位过程中,箝位网络的谐振电流峰值较大,增加了开关管的电流应力和通态损耗,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。
而有源箝位正激变换器是在传统的正激式变换器的基础上,增加了由箝位电容和箝位开关管串联构成的有源箝位支路,虽然与传统的磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器的成本,但是有源箝位磁复位技术有以下几个优点:(1)有源箝位正激变换器的占空比可以大于0。
5,使得变压器的原副边匝比变大,从而可以有效地减少原边的导通损耗;(2)在变压器磁复位过程中,寄生元件中存储的能量可以回馈到电网,有利于变换器效率的提高;(3)变压器磁芯双向对称磁化,工作在B—H回线的第一、三象限,因而有利于提高了磁芯的利用率;(4)有源箝位正激变换器的变压器原边上的电压是是有规律的方波,能够为副边同步整流管提供有效、简单的自驱动电压信号,因而大大降低了同步整流电路的复杂度。
正激变换器的工作原理
正激变换器(flyback converter)是一种电力转换器,常用于
电源供应、电池充电和其他电能转换应用中。
其工作原理可以简述如下:
1. 输入电压施加到电路的开关管(通常是MOSFET)上,控
制开关管的导通和截止,从而产生交流信号。
通常会通过一个电感进行滤波。
2. 当开关管导通时,输入电流通过电感和二极管流入负载电路,同时电容储存能量。
3. 当开关管截止时,输出回路中的电流将由电感和负载提供。
同时,储存在电容中的能量被释放以保持输出电压稳定。
4. 通过调整开关管导通和截止的频率,可以实现输出电压的调整和稳定,同时减少能量损耗。
正激变换器的工作原理利用了开关管的开关特性,通过调整开关管的导通和截止时间,实现了对输入电能的转换和输出电压的调整。
同时,辅助电感、二极管和电容等元件的协同工作,使得电能以稳定的形式输出到负载上。
第1章Flyback正激变换器的工作原理1.1 引言有隔离变换器的DC/DC变换器按照铁芯磁化方式,可分为双端变换器(全桥、半桥、推挽等)和单端变换器(正激式、反激式等)。
和双端变换器比较,单端变换器线路简单、无功率管共导通问题、也不存在高频变换器单向偏磁和瞬间饱和问题,但由于高频变换器只工作在磁滞回线一侧,利用率低。
因此,它只适用于中小功率输出场合。
单端正激变换器是一个隔离开关变换器,隔离型变换器的一个根本特点是有一个用于隔离的高频变压器,所以可以用于高电压的场合。
由于引入了高频变压器极大的增加了变换器的种类,丰富了变换器的功能,也有效的扩大了变换器的使用范围。
单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。
在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。
当今,节能和环保已成为全球对耗能设备的基本要求。
所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。
而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;dv/dt和di/dt大等。
为了克服这些缺陷,提出了有源钳位正激变换器拓扑,从根本上改变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了dv /dt和di/dt,改善了电磁兼容性。
因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。
本章主要介绍Flyback型有源箝位正激变换器的稳态工作原理与电路设计。
1.2 Flyback 型有源箝位正激变换器稳态工作原理有源箝位正激变换器由有源箝位支路和功率输出电路组成。
有源箝位支路由箝位开关和箝位电容串联组成,并联在主开关或变压器原边绕组两端。
利用箝位电容及开关管的输出电容与变压器绕组的激磁电感谐振,创造主开关和箝位开关的ZVS 工作条件,并在主开关关断期间,利用箝位电容的电压限制主开关两端的电压基本保持不变,从而避免了主开关过大的电压应力;另一方面,在正激变换器中采用有源箝位技术还可实现变压器铁芯的自动磁复位,并可以使激磁电流沿正负两个方向流动,使其工作在双向对称磁化状态,提高了铁芯的利用率。
有源钳位正激电源变换器的工作原理及优势该电源变换器具有以下几个优势:
1.高效率:有源钳位正激电源变换器在功率开关管导通时,电流与电
压的乘积变小,从而减小了功率损耗。
这使得该变换器的效率很高,节约
了能源。
2.快速响应:有源钳位正激电源变换器能够快速响应输入电压的变化,迅速调整输出电压,使其保持稳定。
这个特点使得该变换器在需要快速响
应的应用中表现出色,例如电动车充电器、UPS电源等。
3.宽工作范围:有源钳位正激电源变换器可以在宽范围的输入电压下
工作,从而适应不同的工作环境。
这个特点使得该变换器具有较大的应用
范围,能够满足不同领域的需求。
4.输出稳定性好:有源钳位正激电源变换器在反馈控制的作用下,通
过对输入电压进行调节,使输出电压保持稳定。
这大大提高了稳压性能,
使得该变换器在需要高稳定性的应用中表现出色,例如精密仪器、工业控
制系统等。
5.体积小、重量轻:有源钳位正激电源变换器采用了高频开关方式,
使得变换器的体积小、重量轻。
这使得该变换器适合在体积、重量有限的
场合使用,例如移动设备、航空航天等。
总之,有源钳位正激电源变换器作为一种电源变换器,具有高效率、
快速响应、宽工作范围、输出稳定性好和体积小、重量轻等优势。
这些优
势使得该变换器在许多领域中有着广泛的应用前景。
第2章有源箝位正激变换器的工作原理2.1有源箝位正激变换器拓扑的选择单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。
但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和[36]。
传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD箝位技术。
这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷[37-39]o(1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。
它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。
(2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。
它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。
(3)LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。
它存在的缺点是:在磁复位过程中,箝位网络的谐振电流峰值较大,增加了开关管的电流应力和通态损耗,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。
而有源箝位正激变换器是在传统的正激式变换器的基础上,增加了由箝位电容和箝位开关管串联构成的有源箝位支路,虽然与传统的磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器的成本,但是有源箝位磁复位技术有以下几个优点:(1)有源箝位正激变换器的占空比可以大于0.5,使得变压器的原副边匝比变大,从而可以有效地减少原边的导通损耗;(2) 在变压器磁复位过程中,寄生元件中存储的能量可以回馈到电网, 有利于变换器效率的提高;(3) 变压器磁芯双向对称磁化,工作在 B-H 回线的第一、三象限,因而 有利于提高了磁芯的利用率;(4)有源箝位正激变换器的变压器原边上的电压是是有规律的方波,能够为副边同步整流管提供有效、简单的自驱动电压信号,因而大大降低了同 步整流电路的复杂度图2-2高边有源箝位电路 Fig. 2-2 High-Side a ctive c lamp c ircuit图2-1和图2-2是两种有源箝位正激变换器电路,这两种电路虽然看上去非常^C oOs3^rD3 F VT4D4,oos4CoRIfl VT3图2-1低边有源箝位电路 Fig. 2-1 Low-Side a ctive c lamp c ircuitVin VT2N1:N2■■'Lo'VT1 D1相似,但在工作细节的具体实现上还是存在着不少差别[40]。
第2章有源箝位正激变换器的工作原理2.1 有源箝位正激变换器拓扑的选择单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。
但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和[36]。
传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD箝位技术。
这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷[37-39]。
(1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。
它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。
(2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。
它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。
(3) LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。
它存在的缺点是:在磁复位过程中,箝位网络的谐振电流峰值较大,增加了开关管的电流应力和通态损耗,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。
而有源箝位正激变换器是在传统的正激式变换器的基础上,增加了由箝位电容和箝位开关管串联构成的有源箝位支路,虽然与传统的磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器的成本,但是有源箝位磁复位技术有以下几个优点:(1)有源箝位正激变换器的占空比可以大于0.5,使得变压器的原副边匝比变大,从而可以有效地减少原边的导通损耗;(2)在变压器磁复位过程中,寄生元件中存储的能量可以回馈到电网,有利于变换器效率的提高;(3)变压器磁芯双向对称磁化,工作在B-H回线的第一、三象限,因而有利于提高了磁芯的利用率;(4)有源箝位正激变换器的变压器原边上的电压是是有规律的方波,能够为副边同步整流管提供有效、简单的自驱动电压信号,因而大大降低了同步整流电路的复杂度。