第七章 三角形(复习)
- 格式:ppt
- 大小:346.50 KB
- 文档页数:6
七年级下期数学导学案课题:第七章 三角形复习 课型:新授 编号: 25 班级: 姓名: 审核人: 一、请梳理一下本章的知识结构二、典型例题分析 (一)与三角形有关的线段1. 在下面四个图形中,正确画出AC 边上高的是( )2. 以下列各组线段为边,能组成三角形的是( )A. 1cm ,2cm ,4cmB. 8cm ,6cm ,4cmC. 12cm ,5cm ,6cmD. 2cm ,3cm ,6cm 3. 在△ABC 中,AD 是中线,则△ABD 的面积 △ACD 的面积(填“>” “<” “=”) 4. 等腰三角形一边的长是5cm ,另一边的长是8cm ,则它的周长是 , 若另一边长为10cm ,则它的周长为 .5. 小颖要制作一个三角形木架,现有两根长度为8cm 和5cm 的木棒,如果要求第三根木棒的长度是整数,她有几种选法?第三根木棒的长度可以是多少cm ?(二)与三角形有关的角6. △ABC 中,若∠A=∠B+∠C ,则△ABC 是 三角形.7. 如图,在直角三角形ABC (也记作RT △ABC )中,AC ≠AB ,AD 是斜边上的高,DEEBA C C ABC ABCABE EE ABCDACBD第3题A⊥AC,DF⊥AB,垂足分别为E,F,则图中与∠C(∠C除外)相等的角的个数是.8. 如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE,则∠CDF= °9. △ABC中,∠ABC、∠ACB的平分线相交于点O,(1)若∠ABC=40°,∠ACB=50°,则∠BOC= (2)若∠ABC+∠ACB=116°,则∠BOC=(3)若∠A=76°,则∠BOC=(4)若∠BOC =120°,则∠A =(5)你能找出∠A与∠BOC之间的数量关系吗?(三)多边形的内角和、外角和10. n边形的内角和为,外角和为,从一个顶点出发,nDCBFE第7题AB CEDF第8题AOCB第9题。
AB6题图BCE ABDE CAB CDBA CDF EG ABCDE第七章 三角形复习提纲与三角形有关的线段 类型一 三角形概念题型1 与三角形有关的一些概念 题型2 确定三角形的个数1.如图,图中有_____个三角形,把它们用符号分别表示为 题型3 三角形的分类按边分类:等腰三角形、等边三角形、一般三角形 按角分类:锐角三角形、直角三角形、钝角三角形 类型二 三角形三边的关系题型1 利用三边关系判断三角形的存在性1.下列长度的三条线段能组成三角形的是( ) A 、3,4,8 B 、5,6,11 C 、1,2,3 D 、5,6,102.有人说,自己的步子大,一步能走三米多,你相信吗?用你学过的数学知识说明理由。
题型2 利用三边关系求范围1.三角形有两条边的长度分别是5和7,则其周长x 的取值范围是___________。
2.若三角形的两边长分别是3和6,第三边长是奇数,则第三边长为3.一个三角形的周长是偶数,其中两条边分别是5和9,则满足上述条件的三角形个数是 个 题型3 应用三边关系化简与计算机相关的式子1.已知a 、b 、c 是三角形的三边长,化简:|a -b +c|-|a -b -c|=_____________。
类型三 有关三角形边长的综合问题 题型1 有关边长的计算1.三角形的三边是三个连续的自然数,且周长为18,求三角形的三边长? 题型2 等腰三角形中的相关问题1. 若等腰三角形的两边长a 、b 满足∣a-3∣+(b-8)2=0,则它的周长是 。
2. 等腰三角形的周长为56,其中两边的比为3:2,求该等腰三角形的三边长? 三角形的高、中线与角平分线类型一 三角形的高、中线与角平分线的相关概念 1.三角形一边上的高( )。
A 必在三角形内部B 必在三角形的边上C 必在三角形外部D 以上三种情况都有可能 2.一个三角形最多有 个直角,有 个钝角,有 个锐角。
3.能将三角形的面积分成相等的两部分的是( )。
第七章 三角形第一节 与三角形有关的线段一、基础知识:1、三角形的概念由不在同一直线上的三条线段首位顺次连接所组成的图形叫做三角形。
表示法:如右图,顶点:通常用大写字母A 、B 、C 表示,,三角形:△ABC ,边:线段AB 、BC 、AC ,或线段a 、b 、c ,内角:∠A 、∠B 、∠C 。
说明:通常∠A 、∠B 、∠C 所对的边记为边a 、b 、c 。
2、三角形中三种重要线段(1)三角形的角平分线定义:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段称为三角形角平分线。
如图,三角形三条角平分线AD 、BE 、CF ,特殊说明:①三角形的角平分线是一条线段,可以度量;角的平分线是经过角的顶点且平分此角的一条射线。
②三角形有三条角平分线,且交于一点,这一点在三角形的内部。
(2)三角形的中线定义:三角形中连结一个顶点和它的对边中点的线段,称为三角形的中线。
如图,三角形中线AD 、BE 、CF ,说明:三角形有三条中线,中线为线段,且它们交于一点,该点位于三角形内部。
(3)三角形的高线定义从三角形一个顶点向它的对边作垂线,顶点和垂足间的线段,简称三角形的高。
说明:①三角形的三条高是线段,②三角形有三条高且交于一点,③锐角三角形三高交点在三角形内部,钝角三角形三高交点在三角形外部,直角三角形三高交点在三角形直角顶点。
3、三角形三边关系(1)三角形任意两边之和大于第三边。
(2)三角形任意两边之差小于第三边。
a +b >c↔|a -c |<b ;b +c >a ↔|b -a |<c ;c +a >b↔|c -b |<a 。
说明:三边关系用于判断三条线段能否构成三角形。
4、三角形的稳定性三角形三边确定了,那么它的形状、大小都确定了,三角形的这个性质叫做三角形的稳定性。
如,起重机的支架采用三角形结构就是运用这个道理。
5、三角形的分类(1)按边分类:三角形⎩⎪⎨⎪⎧等腰三角形⎩⎨⎧底和腰不等的等腰△等边三角形不等边三角形有两边相等的三角形叫做等腰三角形三边都相等的三角形叫做等边三角形三边互不相等的三角形叫做不等边三角形。
第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
第七章 三角形期中考复习题一 选择题1、以下列各组长度的线段为边:能构成三角形的是: A .7cm :5cm :12cm B .6cm :8cm :15cm C .4cm :6cm :5cm D .8cm :4cm :3cm2、如图2:已知∠B =∠C :则∠ADC 与∠AEB 的大小关系是: A 、∠ADC >∠AEB B 、∠ADC <∠AEB C 、∠ADC =∠AEB D 、大小关系不能确定3、一个多边形的内角和比它的外角和的2倍还大180°:这个多边形的边数为: A .7 B .8 C .9 D .104、用一批完全相同的多边形地砖铺地面:不能进行镶嵌的是( )A 、正三角形B 、正方形C 、正八边形D 、正六边形 5、已知线段a 、b 、c :有a >b >c :则组成三角形必须满足的条件是( )A.a+b>cB.b+c>aC.c+a>bD.a-b>c 6、能把三角形的面积平分的是( )7、下列图形中能够用来作平面镶嵌的是( )A 、正八边形B 、正七边形C 、正六边形D 、正五边形 8、△ABC 中:三边长分别为6,7:x :则x 的取值范围为( )。
A 、2<x <12B 、1<x <13C 、6<x <7D 、无法确定9、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点:且S △ABC =4cm 2:则S 阴影的值为( )A 、2cm 2B 、cm 2C 、cm 2 D 、1cm 210、如图:在锐角△ABC 中:CD 、BE 分别是AB 、AC 边上的高: 且相交于一点P :若∠A=50°:则∠BPC 的度数是( )A .150°B .130°C .120°D .100°11、中华人民共和国国旗上的五角星:它的五个锐角的度数和是( )A 、500B 、100 0C 、180 0D 、 20012、在 ABC 中:三个内角满足∠B -∠A=∠C -∠B :则∠B 等于( ) A 、70° B 、60° C 、90° D 、120° 13、在锐角三角形中:最大内角的取值范围是( )A 、0°<<90°B 、60°<<180°C 、60°<<90°D 、60°≤<90DA BECP14、给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点:这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点:且这点在三角形内。
总复习题第四题。
引入资料及出处
本节课在上节课系统整理知识的基础, 能应用本章的知 组长
识去解决实际,在解决问题的过程中学生能主动的积极 ______________________________ 的参与,能多角度的思考问题, 分析问题解决问题,但 _____________________________ 是解决问题的灵活度还欠缺老师要加强训练。
教 导 处
板 书 设 计
例题2:
女口图 4, AB// CD / BAE 2 DCE=45 , 求/ E 。
教
学
过
程
学生能由老师的引导认真的分析问题, 会正确的添加辅助线把问题转化, 并能 与组内的同学进行充分的讨论,
达成知
识的共识,正确的完成此问题的解答过 程。
(四) 总结拓展
老师引导学生完成本节课知识的小结。
老师强调重点知识: 挖掘图形中的隐含性质;聚拢集中,能让题 设与结论聚拢到有关的图形中去; 化繁为简;
发挥特殊点的作用,特殊线的作用;构建图 形的作用。
(五) 布置作业
学生能由老师的引导完成本节课知识 的小结:
通过本节课的学习,是否善于与他人合 作,听别人的意见,积极表达自己的意 见,是否能用不同的方法解决问题,
你
有哪些收获呢,你还有哪些没有解决的 问题呢?。
第七章三角形复习练习(一)1.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为.2. 锐角三角形的三条高都在,钝角三角形有条高在三角形外,直角三角形有两条高恰是它的。
3. 在△ABC中,若∠A=∠C=13∠B,则∠A= ,∠B= ,这个三角形是。
4、三角形有两条边的长度分别是5和7,则第三条边a的取值范围是___________。
5. 已知三角形的两边长为4,8,则第三边的长度可以是(写出一个即可).6.两根木棒的长分别为7cm和10cm.要选择第三根木棒,将它们钉成一个三角形框架,那么,第三根木棒长x(cm)的范围是____________.7.等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的腰边长为_____cm..8.若等腰三角形的两边长分别为3和7,则它的周长为_______; 若等腰三角形的两边长分别是3和4,则它的周长为_____.9.已知△ABC的周长是偶数,且a=2,b=7,则此三角形的周长是_________。
10.等腰△ABC的两边长分别为2和5,则第三边长为.11.若等腰三角形的一个内角为50°,则这个等腰三角形顶角的度数为.12.已知等腰三角形的一个角为70°,则它的顶角为度.13.若等腰三角形的一个外角为70°,则它的底角为度.14.等腰三角形的底边长为10cm,一腰上的中线将这个三角形分成两部分,这两部分的周长之差为2cm,则这个等腰三角形的腰长为_____________________.15.在等腰三角形ABC中,AB=AC,一腰上的中线BD•将这个等腰三角形周长分成15和6 两部分,则这个三角形的腰长及底边长分别是_____________________________________.16.将一个三角形截去一个角后,所形成的一个新的多边形的内角和__________。
第七章三角形复习指导一、复习目标1.了解与三角形有关的线段(边、高、中线、角平分线),知道三角形两边的和大于第三边,会画出任意三角形的高、中线、角平分线,了解三角形的稳定性.2.了解与三角形有关的角(内角、外角),会用平行线的性质与平角的定义说明三角形内角和等于180°,探索并了解三角形的一个外角等于与它不相邻的两个内角的和.3.了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并了解多边形的内角和与外角和公式.4.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.二、重点与难点:重点是:三角形的有关概念和性质,多边形的有关概念与多边形的内角和、外角和公式难点是:借助三角形建立多边形的有关概念和性质.三、知识归纳1.三角形的概念不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点,三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c 表示,AC可用b 表示,BC可用a表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC是三角形ABC的符号标记,单独的△没有意义.2.三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.3.三角形的中线、角平分线、高(1)三角形中,连结一个顶点和它对边中点的线段.A21D CB AD CB A表示法:1.AD 是△ABC 的BC 上的中线. 2.BD=DC=12BC. 注意:①三角形的中线是线段; ②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形. (2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC.注意:①三角形的角平分线是线段; ②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线. (3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:1.AD 是△ABC 的BC 上的高线. 2.AD ⊥BC 于D. 3.∠ADB=∠ADC=90°. 注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点. 4.三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性. 注意:(1)三角形具有稳定性; (2)四边形没有稳定性. 5.三角形的内角和定理 三角形的内角和等于180°.21B ACMD一、作CM ∥AB ,则∠4=∠1,而∠2+∠3+∠4=1800, 即∠A+∠B+∠ACB=1800.二、作MN ∥BC ,则∠2=∠B ,∠3=∠C ,而∠1+∠2+∠3=1800, 即∠BAC+∠B+∠C=1800.注意:(1)证明的思路很多,基本思想是组成平角.(2)应用内角和定理可解决已知二个角求第三个角或已知三角关系求三个角. 6.三角形的外角的定义三角形一边与另一边的延长线组成的角,叫做三角形的外角. 注意:每个顶点处都有两个外角,但这两个外角是对顶角. 如:∠ACD 、∠BCE 都是△ABC 的外角,且∠ACD=∠BCE. 所以说一个三角形有六个外角,但我们每个一个顶点处 只选一个外角,这样三角形的外角就只有三个了. 7.三角形外角的性质(1) 三角形的一个外角等于它不相邻的两个内角之和. (2)三角形的一个角大于与它不相邻的任何一个内角. 注意:(1)它不相邻的内角不容忽视; (2)作CM ∥AB 由于B 、C 、D 共线 ∴∠A=∠1,∠B=∠2. 即∠ACD=∠1+∠2=∠A+∠B. 那么∠ACD>∠A.∠ACD>∠B. 8.多边形的概念(1)在同一平面内,由不在一直线上的n (n≥3的整数)条线段首尾顺次相接而组成的图BAC ED(1)B ACD(2)BACD 注意:有几条边就是几边形;三角形、四边形是最简单的多边形. (2)多边形相邻两边组成的角是它的内角.(3)多边形的边和它邻边的延长线组成的角是它的外角. (4)连接多边形不相邻的两个顶点的线段是它的对角线. (5)各个角相等,各条边都相等的多边形是正多边形.(6)下面两图中,图(1)任何一条边所在的直线整个图形都在这条直线同一侧, 这样的图形我们称它为凸多边形,而图(2)就不满足上述凸多边形的特征, 因为我们画BD 所在直线、整个n 边形不都在这条直线的同一侧.我们称它为凹多边形, 今后我们提到的多边形都是凸多边形.9.多边形的内角和n 边形的内角和等于(n 一2)·180°.注意:(1)要得到多边形的内角和可通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形;(2)此公式可以已知边数求内角和,也可以已知内角和求边数. 10.多边形的外角和多边形的外角和等于360°. 注意:多边形的外角和与它的边数无关. 11.平面镶嵌(1)用一些不重叠摆放的多边形把平面的一部分完整覆盖,叫做多边形覆盖平面(或平面镶嵌)(2)用同一种正多边形镶嵌用同一种正多边形镶嵌,只要正多边形内角的度数整除360°,这种正多边形就能作平面镶嵌注意:①正三角形、正方形、正六边形能作平面镶嵌;②而正五边形、正七边形、正八边形、正九边形、……的内角的度数都不能整除360°,所以这些正多边形都不能镶嵌.(3)用两种或以上正多边形镶嵌用两种或以上正多边形镶嵌只要几个正多边形的内角和是3600就行.(4)用一般多边形镶嵌用同一种三角形、同一种四边形都可以.四、典题分析:考点一、数三角形的个数例1 图中三角形的个数是()A.8 B.9 C.10 D.11分析与解:以某一条线段为三角形的边依次找三角形.选B.点评:数三角形时不能重复,不能遗漏.注意按一定的顺序找.备用:当三角形内部有1个点时,互不重叠的三角形的数目为3;当三角形内部有2个点时,互不重叠的三角形的数目为5.(1)当三角形内部有3个点时,互不重叠的三角形的数目为________;(2)当三角形内部有4个点时,互不重叠的三角形的数目为_________;(3)当三角形内部有n个点时,互不重叠的三角形的数目为___________;(4)互不重叠的三角形的数目能否为2007,若能请求出三角形内部点的个数;若不能,请说明理由.分析与解:(1)作出图形,依次数,7;(2)探索规律,3,5,7,从而得9;(3)2n+1;(4)2n+1=2007,n=1003,当四边形内部有1003个点时,共有2007个三角形.考点二、三角形三边关系例2 (2006广州)已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( ) A.l,2,3 B.2,5,8 C.3,4,5 D.4,5,10分析与解:三条线段能否构成一个三角形,关键在于判定它们是否符合三角形三边的不等关系,符合即可构成一个三角形,不符合就不可能构成一个三角形.对于A,由于1+2=3,不能组成三角形;对于B,由于2+5<8,不能组成三角形;对于D,由于4+5<10,不能组成三角形.所以选C.点评:想用二根长为a、b(a>b)的木棒,构成一个三角形,由第三根木棒的长度应介于a—b 和a+b之间.备用:(1)下列各组条件中,不能组成三角形的是( )A.a+1、a+2、a+3(a>3)B.3cm、8cm、10cmC.三条线段之比为1:2:3D.3a、5a、2a+1(a>1)分析与解:选项C(2)以长为3cm,5cm,7cm,10cm的四根木棍中的三根木棍为边,可以构成三角形的个数是()A.2个B.3个C.4个D.5个分析与解:以四根木棍中的三根木棍主长共可以组成:3,5,7、3,5,10、3,7,10、5,7,10共四种情况.其中只有两种情况能组成三角形.选A.考点三、三角形的稳定性例3 下列图形具有稳定性的有( )(1)(2)(3)12图1BCAO (4)(5)A.只有(1),(2)B.只有(2),(3),(4)C.只有(5),(4)D.(1),(2),(3),(4),(5) 分析与解:三角形具有稳定性,四边形具有不稳定性.选B .备用:(1)如图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条,这样做的数学道理是 . 分析与解:三角形的稳定性.(2)下列由几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是( )A B C D 分析与解:三角形具有稳定性,四边形具有不稳定性.选C . 考点四、三角形内角和定理: 例4 △ABC 中,∠B=13∠A=14∠C ,求∠B 的度数. 分析与解:设∠B=x 0,则∠A=3x 0,∠C=4x 0,从而x+3x+4x=180,x=22.5. 即:∠B=22.50,∠A=67.50,∠C=900.点评:在一个三角形中,当已知三角关系时,可通过列方程的方法求出三个角.例5 如图,点O 是△ABC 内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 650 分析与解: ∠O=1800—(∠OBC+∠OCB )=1800—(1800—(∠1+∠2+∠A )=∠1+∠2+∠A=1350. 点评:几何题的解题关键是:把未知向已知转化.例6 (1)如图1,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .直角顶点x 在△ABC 内部,若∠A =30°,则∠ABC +∠ACB = 度,∠XBC +∠XCB = 度;(2)如图2,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、XZ 仍然分别经过点B 、C ,直角顶点x 还在△ABC 内部,那么∠ABX +∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX 的大小.分析与解:(1)∠ABC+∠ACB=1800—∠A=1800—300=1500, ∠XBC+∠XCB=1800—∠X=1800—900=900; (2)∵∠ABX+∠XBC+∠XCB+∠ACX+∠A=1800, 又∠XBC+∠XCB=1800—∠X=1800—900=900, ∴∠ABX+∠ACX=1800—900—300=600. 备用:在△ABC 中,∠A=21(∠B +∠C )、∠B -∠C=20°,求∠A 、∠B 、∠C 的度数. 分析与解:∵∠A=21(∠B +∠C ),∠B+∠C=180—∠A , ∵∠A=21(180—∠A ),∠A=60°, ∴∠B+∠C=120°,∵∠B -∠C=20°,∴∠B=700,∠C=50°. 考点五、三角形的外角例7 (2006金华)下图能说明∠1>∠2的是( )分析与解:利用三角形的一个角大于与它不相邻的任何一个内角.选C.点评:比较角的大小一般用外角大于不相邻的一个内角.备用:一个零件的形状如图,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,李叔叔量得∠DCB=142°,就断定这个零件不合格,你能说出道理吗?分析与解:连接AC,并延长至E,则∠1=∠3+∠D,∠2=∠4+∠B,∠DCB=∠3+∠4+∠D+∠B=142°,即这个零件不合格考点六、多边形的对角线例8 观察下面图形,并回答问题.①四边形、五边形、六边形各有几条对角线?从中你能得到什么规律?②根据规律你知道七边形有多少条对角线吗?③你知道n边形有多少条对角线吗?分析与解:从多边形的一个顶点出发,可以引(n—3)条对角线,n个顶点共有n(n—3)条对角线,但有一半是重复的,所以n边形的对角线数目为2)3(nn.点评:请记住多边形的对角线数目的公式.备用:从一个多边形的一个顶点出发,可引12条对角线,则这个多边形的边数为( ).A.12 B.13 C.14 D.15分析与解:从多边形的一个顶点出发,引对角线,本身和相邻的两个点不可以引对角线,其它的点均可以引对角线,选D.考点七、多边形的内角、外角例9 (06长沙)正五边形的一个内角的度数是.分析与解:本题有两个思路.(1)从内角和方面考虑:001085180)25(=⨯-;(2)从外角和方面考虑:每一个外角为00725360=,所以每一个外角为1800—720=1080. 例10(2006南安)如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n = .分析与解:设这个多边形的边数为n ,则03602180)2(⨯=⨯-n .n=6. 点评:要学会用代数的方法解几何题.例11 小华从点A 出发向前走10m ,向右转36°然后继续向前走10m ,再向右转36°,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回到点A 时共走多少米?若不能,写出理由.分析与解: 360可以看成是一个正多边形的外角,它正好是正十边形.故能回到A 点,共走了100m .例12 如图,已知∠DAB+∠D=180°,AC 平分∠DAB ,且∠CAD=25°,∠B=95°(1)求∠DCA的度数;(2)求∠ECA 的度数.分析与解: AB ∥CD ,∠DCA=∠CAB=∠CAD=250, ∠ECA=∠CAB+∠B=1200.备用:(1)若两个多边形的边数之比是1:2,这两个多边形的内角和为1980°,求这两个多边形的边数.分析与解:设一个多边形的边数为x ,则另一个多边形的边数为2x , (x —2)180+(2x —2)180=1980,x=5, 这两个多边形分别为五边形和十边形. (2)在四边形ABCD 中,若∠A+∠D=160°.(1)有一块直角三角板XYZ 放置在四边形ABCD 的边BC 上,恰好三角板XYZ 的两条ABDCE直角边XY、XZ分别经过点B、C.直角顶点x在四边形ABCD的内部.则∠ABC+∠DCB=度,∠XBC+∠XCB=度;(2)若改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过点B、C,直角顶点x还在四边形ABCD的内部,那么∠ABX+∠DCX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠DCX的大小.分析与解:(1)∠ABC+∠DCB=360°—160°=200°,∠XBC+∠XCB=180°—90°=90°;(2)∠ABX+∠DCX=∠ABC+∠DCB—(∠XBC+∠XCB)=200°—90°=110°.考点八、平面镶嵌例13 装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形.若只选购其中某一种地砖镶嵌地面,可供选用的地砖有()A. ○1○2○3B. ○1○2○4C. ○2○3○4D. ○1○3○4分析与解:用一种图形镶嵌,有三角形,四边形,正六边形.选B.例14.(2006盐城)如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是()A.3 B.4 C.5 D.6分析与解:用两种或以上正多边形镶嵌,其几个正多边形的内角和是3600.=+⨯nn.90=2360,360备用:某体育馆用大小相同的长方形木块镶嵌地面.(1)第1次铺2块,如图1;(2)第2次把第1次铺的完全围起来,如图2.共用_____________块;(3)第3次把第2次铺的完全围起来,如图3.共用______________块;…;(4)依此方法,第n次铺完后,用字母n表示第n次镶嵌所使用的木块块数为.(n为正整数)(5)王师傅说:“在镶嵌地面时,有一次铺完后,我用去了100块木块”,小红说:“不可能”,你认为小红说得有无道理?分析与解:(2)10;(3)18;(4)8n—6;(5)8n—6=100,n无整数解.小红说得有道理.五、思想方法总结:本章涉及到了类比、化归、方程建模、分类讨论的数学思想方法:如多边形的问题可化归成三角形的问题,求多边形的角度或多边形的边长可用方程建模的思想.。