第七章三角形复习课[下学期]--新人教版-2020-0926
- 格式:pdf
- 大小:1.26 MB
- 文档页数:8
人教版七年级下第七章“三角形”复习课(1)——“与角有关的三角形复习课”教学设计方案一、教学目标:通过复习“与角有关的三角形”知识点,进一步领会建模、有序思维、数形结合、分类、化归、从特殊——一般——特殊等数学思想,体会事物之间相互联系和运动变化、量变引起质变等辩证唯物主义观点:同时培养学生分析问题、解决问题能力,培养学生学习数学的乐趣;体现“探究有尺度,归纳有顺序,习题有难易,精彩有延续”.二、教学重点、难点:教学重点:有序思维、数形结合教学难点:动点问题教学手段:多媒体课件教学方法:探究式互动性教学三、教学过程一.温顾新知,巩固认知1.三角形内角和三角形内角和等于180度直角三角形的两个锐角互余。
2.三角形外角和三角形的三个外角的和是360°3.三角形的外角与内角的关系三角形的一个外角等于与它不相邻的两个内角的和.三角形的一个外角大于与它不相邻的任何一个内角.4. 三角形的分类(1) 按角分三角形 直角三角形 斜三角形 锐角三角形钝角三角形 (2) 按边分三角形 不等边三角形 等腰三角形 底和腰不等的等腰三角形 等边三角形二、应用新知,深化认知1.根据下图已知角的度数,求x 的值.⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩(5) (6) (7)2. 在△ABC 中,∠B=∠C=2∠A ,则∠A=__36°_____,∠B= 72° 。
3.在△ABC 中 若∠A :∠B :∠C =1:9:10,则∠A=___9°____,∠B= 81° 。
小结:求三角形角的一般方法。
由形定数,由数思形,数形结合,方程思想。
三、应用新知,活化认知4.已知等腰三角形的一个内角为75°,则其顶角为(D )A .30°B .75°C .105°D .30°或75°5. 等腰三角形的一个外角为70°,则它的底角为( A )A.35°B.110°C.35°或110°D.以上都不对小结:等腰三角形的角的求法,体现分类思想.四、应用新知,升华认知6.有一块直角三角尺DEF ,放在△ABC 上,如图所示,△DEF 的两条直角边DE 、DF 分别经过B 、C 两点,在△ABC 中,∠A =500 求∠ABD +∠ACD 的度数;问题1:若∠D =800(锐角),其它条件不变, 求∠ABD +∠ACD 的度数;问题2:若∠D =1000(钝角)呢?问题3:探究∠ABD 、∠ACD 、∠D 与∠ A 之间的数量关系. AB C E FD变式二:若点D 在△ABC 的外部,两条边DE 、DF 仍过B 、C 两点,∠ABD +∠ACD =∠D-∠ A 是否还成立?请画出图形,探究∠ABD 、∠ACD 、∠D 与∠ A 之间的数量关系?特例1:若点D 是△ABC 中∠ ABC 、∠ ACB 的角平分线交点,试探究∠D 与∠ A 之间的数量关系.答案: 特例2: 若点D 是∠ABC 的角平分线与∠ACB 的外角平分线的交点,试探究∠D 与∠ A 与之间的数量关系.答案: 特例3: 若点D 是∠ABC 的外角平分线与∠ACB 的外角平分线的交点,试探究∠D 与∠ A 与之间的数量关系.答案:变式三: 若将△DEF 的两条边DE 、DF 分别经过B 、C 两点,改为△DEF 的两条边DE 、DF 分别与△ABC 两条边AB 、AC 相交,以上探究的结论是否还成立?12D ∠=∠AA B C E FD1902D ∠=︒+∠A 1902D ∠=︒-∠A小结:数学的解题方法:从特殊——一般——特殊.五:归纳总结,反思提炼本节课,你有什么收获?还有什么困惑?学习数学常用有序思维、数形结合、分类、从特殊——一般——特殊等数学思想,解题时学会多思、多想、多动,学起数学感觉趣味无穷.教学反思本节课为复习课,为了区分复习课和习题课,整节课贯穿了由形定数,由数思形,数形结合,方程思想、有序思维、分类讨论、从特殊——一般——特殊等重要数学思想,从学生最熟悉的简单习题入手,再层层提升问题难度,培养学生思考的逻辑性。