九年级数学线段的垂直平分线3
- 格式:pdf
- 大小:1.07 MB
- 文档页数:20
初中数学垂直平分线有哪些全等性质垂直平分线是初中数学中的一个重要概念。
在本篇文章中,我们将探讨垂直平分线的全等性质,并且详细解释每个性质的几何意义。
让我们开始吧!首先,我们需要明确垂直平分线的定义。
垂直平分线是将一条线段分成两个相等的部分,并且与该线段垂直相交的线。
在这里,我们假设线段AB上有一条垂直平分线CD。
性质1:垂直平分线相互垂直首先,垂直平分线CD与线段AB相交于点E。
根据垂直平分线的定义,我们知道线段AE与线段BE是相等的。
而根据垂直线的性质,我们知道线段AE与线段BE是垂直的。
因此,垂直平分线CD与线段AB相互垂直。
几何意义:这个性质告诉我们,垂直平分线与线段相交后,将线段分成了两个相等的部分,并且这两个部分垂直于垂直平分线。
性质2:垂直平分线相互全等现在,我们考虑另一条垂直平分线EF,它也与线段AB相交于点G。
根据垂直平分线的定义,我们知道线段AG与线段BG是相等的。
同样,线段CG与线段DG也是相等的。
因此,根据ASA(对应边相等、对应角相等、对边相等)全等准则,三角形ACG与三角形BCG全等。
同样地,三角形ADG与三角形BDG也全等。
几何意义:这个性质告诉我们,两条垂直平分线相交于线段上的两个点,它们所形成的三角形与线段的两个端点所形成的三角形全等。
性质3:垂直平分线将角分成两个相等的角现在,我们关注线段AB上的点F,它是垂直平分线EF与线段AB的交点。
根据垂直平分线的定义,我们知道线段AF与线段BF是相等的。
因此,角DAF与角DBF也是相等的。
几何意义:这个性质告诉我们,垂直平分线将线段上的角分成了两个相等的角。
性质4:垂直平分线将线段分成两个相等的线段最后,我们考虑垂直平分线EF与线段AB的交点G。
根据垂直平分线的定义,我们知道线段AG与线段BG是相等的。
因此,线段CG与线段DG也是相等的。
几何意义:这个性质告诉我们,垂直平分线将线段分成了两个相等的线段。
通过以上的性质,我们可以看到垂直平分线在几何学中具有重要的作用。
线段的垂直平分线知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D,且A D=B D,若点C 在直线m上,则AC =BC.定理的作用:证明两条线段相等(2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若A C=BC,则点C 在直线m上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△A BC 三边AB 、B C、CA 的垂直平分线,则直线,,i j k 相交于一点O,且OA=OB=O C.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1 如图1,在△AB C中,B C=8c m,A B的垂直平分线交AB 于点D,交边AC 于m图1DABCm图2DABCjik图3OBCA点E,△B CE的周长等于18cm,则A C的长等于( ) A.6cm B.8cm ﻩ C.10cm D.12cm 针对性练习:已知:1)如图,AB=AC=14cm ,AB 的垂直平分线交AB 于点D,交BC于点 AE ,如果△EBC 的周长是24cm,那么BC= 2) 如图,A B=AC =14cm ,AB的垂直平分线交AB 于点D,交BC 于点 E ,如果BC=8cm ,那么△EB C的周长是如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E,如果∠A=28度,那么∠EBC 是例2. 已知:如图所示,AB=AC,DB =DC ,E 是AD 上一点,求证:B E=CE 。
垂直平分线的符号垂直平分线是指一个线段的中垂线。
它在数学中是重要的概念,有着广泛的应用。
在解题和证明过程中,我们经常会用到垂直平分线的性质和相关定理。
本文将介绍一些与垂直平分线相关的概念和公式,方便读者在解题中使用。
1. 定义:垂直平分线是指一个线段的中垂线,即将该线段平分,并且与该线段垂直相交的线。
2. 性质:(1) 垂直平分线将线段分成两段相等的部分。
(2) 垂直平分线的长度等于线段的一半。
(3) 垂直平分线与线段的两个端点之间的距离相等。
3. 构造垂直平分线的方法:(1) 利用尺规作图:根据线段的两个端点,利用尺规作出线段的中点,然后作出垂直于线段的线,经过中点即可构造垂直平分线。
(2) 利用直角三角形的性质:根据线段的两个端点,构造出线段的中垂线,即可得到垂直平分线。
4. 相关定理:(1) 垂直平分线的存在唯一性定理:对于任意一条线段,存在唯一一条垂直平分线。
(2) 线段的垂直平分线与线段的垂直平分线构成的角度是直角。
(3) 三角形的垂心:对于任意三角形,三条边的垂直平分线交于一点,该点称为三角形的垂心。
(4) 垂直平分线定理:如果一个点到一条线段的两个端点的距离相等,则该点在线段的垂直平分线上。
5. 解题方法:(1) 利用垂直平分线的性质:当题目中涉及到线段的等分、垂直、距离等概念时,可以考虑使用垂直平分线的性质来解题。
(2) 应用相关定理:根据题目要求,可以运用垂直平分线的相关定理进行证明或推理。
(3) 利用垂直平分线的构造方法:在解题过程中,可以运用垂直平分线的构造方法来完成特定的图形要求。
综上所述,垂直平分线在数学中有着重要的地位,它与线段的中点、角度的平分、三角形的垂心等概念密切相关。
掌握垂直平分线的概念、性质和相关定理,对于解题和证明来说都是非常有益的。
在实际应用中,垂直平分线也有广泛的应用,如建筑、地图制图、工程测量等领域。
因此,深入理解垂直平分线的概念和应用,对于数学的学习和实践都是必不可少的。
几何专题1:线段垂直平分线的性质定理和判定定理一、知识点(抄一遍):1.线段垂直平分线的定义:垂直并且平分一条线段的直线.2.线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.3.线段垂直平分线的判定定理:到线段两端距离相等的点在线段的垂直平分线上.二、专题检测题1.证明线段垂直平分线的性质定理.(注意:证明文字性命题的三个步骤:①根据题意,画出图形;②写出已知和求证;③写出证明过程.)2.证明线段垂直平分线的判定定理.3.定理的几何语言表示(1)线段垂直平分线的性质定理:∵,∴ .(2)线段垂直平分线的判定定理:∵,∴ .4.如图所示,CD垂直平分线段AB,AB平分∠CAD. 求证:AD∥BC.5.如图,在△ABC中,AD是BC边上的高.AC的垂直平分线交DC于点E,且BD=DE.求证:AB+BD=DC.6.如图,已知在△ABC中,边AB,BC的垂直平分线相交于点P.求证:点P在AC的垂直平分线上.7.如图,在△ABC中,点D为BC上一点,连接AD,点E在线段AD上,并且∠1=∠2,∠3=∠4. 求证:AD垂直平分BC.8.如图所示,在△ABC中,AB=AC,D是AB上的一点,DE⊥BC,交BC于点E,交CA的延长线于点F.求证:点A在DF的垂直平分线上.几何专题1:线段的垂直平分线答案1. 证明线段垂直平分线的性质定理.已知:如图,直线l 是线段AB 的垂直平分线,垂足为M ,P 为直线l 上的任意一点,连接PA ,PB.求证:PA=PB.证明:①当P 点不与M 点重合时,∵直线l 垂直平分AB ,∴∠PMA=∠PMB=90°,AM=MB.在△APM 和△BPM 中,AM=BM∠PMA=∠PMBPM=PM∴ △APM ≌△BPM (SAS ).∴ PA=PB. ②当P 点与M 点重合时, ∵AM=MB , ∴PA=PB. 由①②可知,该命题成立.2. 证明线段垂直平分线的判定定理.已知:如图,线段AB ,P 为平面内一点,且PA=PB.求证:点P 在线段AB 的垂直平分线上.证明: ①当P 点不在线段AB 所在的直线上时, 过点P 作PC ⊥AB ,垂足为C.∵PA=PB,∴△PAB 是等腰三角形.∵PC ⊥AB,∴AC=BC.∴点P 在线段AB 的垂直平分线上. ②当P 点在线段AB 所在的直线上时, ∵PA=PB, ∴点P 是线段AB 的中点. ∴点P 在线段AB 的垂直平分线上. 由①②可知,该命题成立. 3. 定理的几何语言表示(1)线段垂直平分线的性质定理:∵直线l 垂直平分AB ,∴AP=BP.(2)线段垂直平分线的判定定理:∵PA=PB,∴点P在线段AB的垂直平分线上.4.如图所示,CD垂直平分线段AB,AB平分∠CAD. 求证:AD∥BC.证明:∵CD垂直平分线段AB,∴AC=BC,∴∠CAB=∠B.∵AB平分∠CAD,∴∠CAB=∠DAB,∴∠B=∠DAB,∴AD∥BC.5.如图,在△ABC中,AD是BC边上的高.AC的垂直平分线交DC于点E,且BD=DE.求证:AB+BD=DC.证明:连接AE.∵AD是BC边上的高,BD=DE∴AD垂直平分BE,∴AB=AE.∵点E在AC的垂直平分线上,∴AE=CE,∴AB=CE,∴AB+BD=CE+DE,即AB+BD=DC.6.如图,已知在△ABC中,边AB,BC的垂直平分线相交于点P.求证:点P在AC的垂直平分线上.证明:连接AP,BP,CP.∵点P在AB的垂直平分线上,∴AP=BP同理可证:BP=CP∴AP=CP∴点P在AC的垂直平分线上.7.如图,在△ABC中,点D为BC上一点,连接AD,点E在线段AD上,并且∠1=∠2,∠3=∠4. 求证:AD垂直平分BC.证明:∵∠1=∠2,∴BE=CE.∴点E在线段BC的垂直平分线上.同理可证:点A在线段BC的垂直平分线上∴AE垂直平分BC.即AD垂直平分BC.8.如图所示,在△ABC中,AB=AC,D是AB上的一点,DE⊥BC,交BC于点E,交CA的延长线于点F.求证:点A在DF的垂直平分线上.证明:∵AB=AC,∴∠B=∠C.∵DE⊥BC,∴∠FEC=∠FEB=90°,∴∠B+∠BDE=90°,∠C+∠F=90°.∴∠BDE=∠F.∵∠BDE=∠FDA,∴∠F=∠FDA.∴AF=AD,∴点A在DF的垂直平分线上.。
中考数学复习----《角的平分线与线段的垂直平分线》知识点总结与专项练习题(含答案解析)知识点总结1.角平分线的定义:角的内部把角平均分成两个相等的角的射线叫做角的平分线。
2.角平分线的性质:①平分角。
②角平分线上任意一点到角两边的距离相等。
3.角平分线的判定:角的内部到角两边相等的点一定在角平分线上。
4.角平分线的尺规作图:具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。
如图①。
②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。
如图②。
③连接OP,OP即为角的平分线。
5.线段的垂直平分线的定义:过线段的中点且与线段垂直的直线是这条线段的垂直平分线。
6.垂直平分线的性质:①垂直且平分线段。
②垂直平分线上任意一点到这条线段两个端点的距离相等。
7.垂直平分线的判定:到线段两端点距离相等的点一定在线段的垂直平分线上。
8.垂直平分线的吃规作图:具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。
如图①②连接MN,过MN的直线即为线段的垂直平分线。
如图②练习题1、(2022•鄂尔多斯)如图,∠AOE=15°,OE平分∠AOB,DE∥OB交OA于点D,EC⊥OB,垂足为C.若EC=2,则OD的长为()A.2 B.2C.4 D.4+2【分析】过点E作EH⊥OA于点H,根据角平分线的性质可得EH=EC,再根据平行线的性质可得∠ADE的度数,再根据含30°角的直角三角形的性质可得DE的长度,再证明OD=DE,即可求出OD的长.【解答】解:过点E作EH⊥OA于点H,如图所示:∵OE平分∠AOB,EC⊥OB,∴EH=EC,∵∠AOE=15°,OE平分∠AOB,∴∠AOC=2∠AOE=30°,∵DE∥OB,∴∠ADE=30°,∴DE=2HE=2EC,∵EC=2,∴DE=4,∵∠ADE=30°,∠AOE=15°,∴∠DEO=15°,∴∠AOE=∠DEO,∴OD=DE=4,故选:C.2、(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S △ACD=.【分析】过D点作DH⊥AC于H,如图,根据角平分线的性质得到DE=DH=1,然后根据三角形面积公式计算.【解答】解:过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DE⊥AB,DH⊥AC,∴DE=DH=1,∴S△ACD=×2×1=1.故答案为:1.3、(2022•黑龙江)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.【分析】过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.4、(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25 B.22 C.19 D.18【分析】根据题意可知MN垂直平分BC,即可得到DB=DC,然后即可得到AB+BD+AD =AB+DC+AD=AB+AC,从而可以求得△ABD的周长.【解答】解:由题意可得,MN垂直平分BC,∴DB=DC,∵△ABD的周长是AB+BD+AD,∴AB+BD+AD=AB+DC+AD=AB+AC,∵AB=7,AC=12,∴AB+AC=19,∴△ABD的周长是19,故选:C.5、(2022•湖北)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】根据题意分别证明各个结论来判断即可.【解答】解:根据题意知,EF垂直平分AC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,∴AE=AF=CF=CE,即四边形AECF是菱形,故①结论正确;∵∠AFB=∠FAO+∠ACB,AF=FC,∴∠FAO=∠ACB,∴∠AFB=2∠ACB,故②结论正确;∵S四边形AECF=CF•CD=AC•OE×2=AC•EF,故③结论不正确;若AF平分∠BAC,则∠BAF=∠FAC=∠CAD=90°=30°,∴AF=2BF,∵CF=AF,∴CF=2BF,故④结论正确;故选:B.33.(2022•鄂尔多斯)如图,在△ABC中,边BC的垂直平分线DE交AB于点D,连接DC,若AB=3.7,AC=2.3,则△ADC的周长是.【分析】根据线段垂直平分线的性质可得BD=CD,进一步即可求出△ADC的周长.【解答】解:∵边BC的垂直平分线DE交AB于点D,∴BD=CD,∵AB=3.7,AC=2.3,∴△ADC的周长为AD+CD+AC=AB+AC=6,故答案为:6.34.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC 于点D,交BC于点E,∠BAE=10°,则∠C的度数是.【分析】根据线段垂直平分线的性质可得AE=EC,从而可得∠EAC=∠C,然后利用三角形内角和定理可得∠EAC+∠C=80°,进行计算即可解答.【解答】解:∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C,∵∠ABC=90°,∠BAE=10°,∴∠EAC+∠C=180°﹣∠BAE﹣∠ABC=80°,∴∠EAC=∠C=40°,故答案为:40°.。