实验中学2013--2014学年高一下学期期中考试数学试题及答案
- 格式:docx
- 大小:185.73 KB
- 文档页数:11
2023-2024学年河北省邯郸市八校联考高一(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M ={x |2x ﹣1>5},N ={x ∈N *|﹣1<x <5},则(∁R M )∩N =( ) A .{0,1,2,3}B .{1,2,3}C .{0,1,2}D .{1,2}2.设x ∈R ,则“|x ﹣3|<2”是“x 2+x ﹣2>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.若b ﹣6a =1,则8a212b =( )A .1B .12C .√22D .√24.已知函数f(x)={2x +1,x <23x 2−ax ,x ≥2,若f(f(12))=6,则a =( )A .2B .3C .4D .55.已知函数f (x )=ax 3+bx +2在[2,3]上的值域为[2,3],则g (x )=ax 3+bx ﹣1在[﹣3,﹣2]上的值域为( ) A .[﹣5,﹣4]B .[﹣4,﹣3]C .[﹣3,﹣2]D .[﹣2,﹣1]6.已知关于x 的不等式mx ﹣n >0的解集为{x |x <﹣2},函数f (x )=(b 2+1)a x (a >0且a ≠0)为指数函数,则f (n )•[f (m )]2=( ) A .1B .2C .3D .47.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上单调递增,又f (4)=0,则(3x ﹣1)f (2x )<0的解集是( ) A .(−2,13)B .(13,2)C .(−2,13)∪(2,+∞)D .(−∞,−2)∪(13,2)8.若a >b ,且ab =2,则(a−1)2+(b+1)2a−b的最小值为( )A .2√5−2B .2√6−4C .2√5−4D .2√6−2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列命题为真命题的是( )A.若a>b,则ac2>bc2B.若﹣3<a<2,1<b<4,则﹣7<a﹣b<1C.若b<a<0,m<0,则ma>mbD.若a>b>0,c>d>0,则ac>bd10.下列各组函数中,两个函数相同的是()A.f(x)=|x|,g(x)=√x2B.f(x)=√x33,g(x)=|x|C.f(x)=x 2−9x−3,g(x)=x+3D.f(x)=3x2+2x,g(t)=3t2+2t11.若函数y=a x﹣2b﹣1(a>0且a≠0)的图象过第一、三、四象限,则()A.0<a<1B.a>1C.b>0D.b<012.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y =[x]称为高斯函数,如[3.24]=3,[﹣1.5]=﹣2.若f(x)=x﹣[x],则下列说法正确的是()A.当2023≤x<2024时,f(x)=x﹣2023 B.f(x+1)﹣f(x)=1C.函数f(x)是增函数D.函数f(x)的值域为[0,1)三、填空题:本题共4小题,每小题5分,共20分.13.函数f(x)=(13)√−x2+2x+3的单调递减区间是.14.已知函数f(x)的定义域为[﹣2013,2013],则函数g(x)=f(x−1)x+1的定义域为.15.已知命题p:∃x∈[0,4],使得2x2﹣x﹣a<0,若p是真命题,则a的取值范围是.16.若函数f(x)与g(x)对于任意x1,x2∈[c,d],都有f(x1)•g(x2)≥m,则称函数f(x)与g(x)是区间[c,d]上的“m阶依附函数”,已知函数f(x)=x+7x+1与g(x)=x6﹣2x3+a是区间[1,2]上的“3阶依附函数”,则a的取值范围是.四、解答题:本题共6小题,共70分解答应写出必要的文字说明、证明过程及演算步骤.17.(10分)已知集合A={x|7x+2>1},B={x|x2+ax﹣12<0}.(1)若a=﹣11,求A∪B;(2)若A∩B={x|﹣2<x<2},求a的值.18.(12分)已知幂函数f(x)=(3a2+2a﹣7)x a(a∈R)在(0,+∞)上单调递增.(1)求f(x)的解析式;(2)判断f(x)的奇偶性,并证明.19.(12分)已知一次函数y=f(x)满足f(x﹣1)=ax﹣1,且f(−a2)=−1.(1)求y=f(x)的函数关系式;(2)求关于x的不等式xf(x)﹣2b2﹣b≤0的解集.20.(12分)已知函数f(x)=4x﹣a•2x﹣a+5(a∈R).(1)若a=2,求f(x)在区间[﹣1,1]上的最大值和最小值;(2)若f(x)+3≥0在(﹣∞,+∞)上恒成立,求a的取值范围.21.(12分)如图,某物业需要在一块矩形空地(记为矩形ABCD)上修建两个绿化带,矩形ABCD的面积为800m2,这两个绿化带是两个形状、大小完全相同的直角梯形,这两个梯形上下对齐,且中心对称放置,梯形与空地的顶部、底部和两边都留有宽度为5m的人行道,且这两个梯形之间也留有5m的人行道.设AB=xm.(1)用x表示绿化带的面积;(2)求绿化带面积的最大值.22.(12分)已知函数f(x)=a√1−x2+√1+x+√1−x(a∈R).(1)若a=0,求f(x)的值域;(2)求f(x)的最大值.2023-2024学年河北省邯郸市八校联考高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M ={x |2x ﹣1>5},N ={x ∈N *|﹣1<x <5},则(∁R M )∩N =( ) A .{0,1,2,3}B .{1,2,3}C .{0,1,2}D .{1,2}解:由题意知M ={x |2x ﹣1>5}={x |x >3},N ={x ∈N *|﹣1<x <5}={1,2,3,4}, 所以∁R M ={x |x ≤3},(∁R M )∩N ={1,2,3}. 故选:B .2.设x ∈R ,则“|x ﹣3|<2”是“x 2+x ﹣2>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:∵|x ﹣3|<2,∴1<x <5, ∵x 2+x ﹣2>0,∴x >1或x <﹣2,设集合A ={x |1<x <5},集合B ={x |x >1或x <﹣2},∵集合A 是集合B 的真子集,∴“|x ﹣3|<2”是“x 2+x ﹣2>0”的充分不必要条件. 故选:A .3.若b ﹣6a =1,则8a212b =( )A .1B .12C .√22D .√2解:8a 212b=23a−12b=26a−b 2=2−12=√2=√22. 故选:C .4.已知函数f(x)={2x +1,x <23x 2−ax ,x ≥2,若f(f(12))=6,则a =( )A .2B .3C .4D .5解:f(12)=2×12+1=2,f(f(12))=f(2)=3×22−2a =6,解得a =3.故选:B .5.已知函数f (x )=ax 3+bx +2在[2,3]上的值域为[2,3],则g (x )=ax 3+bx ﹣1在[﹣3,﹣2]上的值域为()A.[﹣5,﹣4]B.[﹣4,﹣3]C.[﹣3,﹣2]D.[﹣2,﹣1]解:令h(x)=ax3+bx,则h(x)=f(x)﹣2,因为函数f(x)=ax3+bx+2在[2,3]上的值域为[2,3],所以h(x)在[2,3]上的值域为[0,1],又h(x)=ax3+bx为奇函数,所以h(x)在[﹣3,﹣2]上的值域为[﹣1,0],又g(x)=ax3+bx﹣1=h(x)﹣1,则g(x)=ax3+bx﹣1在[﹣3,﹣2]上的值域为[﹣2,﹣1].故选:D.6.已知关于x的不等式mx﹣n>0的解集为{x|x<﹣2},函数f(x)=(b2+1)a x(a>0且a≠0)为指数函数,则f(n)•[f(m)]2=()A.1B.2C.3D.4解:∵不等式mx﹣n>0的解集为{x|x<﹣2},∴﹣2m﹣n=0,即n+2m=0,又f(x)为指数函数,∴b2+1=1,∴f(x)=a x,a>0,且a≠1,∴f(n)•[f(m)]2=a n•(a m)2=a n+2m=a0=1.故选:A.7.已知f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,又f(4)=0,则(3x﹣1)f(2x)<0的解集是()A.(−2,13)B.(13,2)C.(−2,13)∪(2,+∞)D.(−∞,−2)∪(13,2)解:由题意可得当﹣4<x<4时,有f(x)<0,当x<﹣4或x>4时,有f(x)>0,所以当f(2x)>0时,有2x<﹣4或2x>4,即x<﹣2或x>2,当f(2x)<0时,有﹣4<2x<4,即﹣2<x<2,由(3x﹣1)f(2x)<0,可得{3x−1<0f(2x)>0,或{3x−1>0f(2x)<0,所以x<﹣2或13<x<2,所以(3x﹣1)f(2x)<0的解集是(−∞,−2)∪(13,2).故选:D.8.若a >b ,且ab =2,则(a−1)2+(b+1)2a−b的最小值为( )A .2√5−2B .2√6−4C .2√5−4D .2√6−2解:因为ab =2, 所以由题意(a−1)2+(b+1)2a−b=a 2+b 2+2−2a+2ba−b=a 2+b 2+aba−b−2=(a−b)2+3aba−b−2=(a −b)+6a−b−2,因为a >b ,所以a ﹣b >0,所以由基本不等式可得(a−1)2+(b+1)2a−b =(a −b)+6a−b −2≥2√6−2,当且仅当{ab =2a −b =√6a >b 时等号成立,即当且仅当{a =√6−√142b =−√6−√142或{a =√6+√142b =−√6+√142时等号成立, 综上所述,(a−1)2+(b+1)2a−b 的最小值为2√6−2.故选:D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列命题为真命题的是( ) A .若a >b ,则ac 2>bc 2 B .若﹣3<a <2,1<b <4,则﹣7<a ﹣b <1C .若b <a <0,m <0,则m a>m bD .若a >b >0,c >d >0,则ac >bd解:对于A ,当c =0时,ac 2=bc 2=0,A 错误;对于B ,∵1<b <4,∴﹣4<﹣b <﹣1,又﹣3<a <2,∴﹣7<a ﹣b <1,B 正确; 对于C ,∵b <a <0,∴1a <1b ,又m <0,∴m a >mb,C 正确;对于D ,∵a >b >0,c >d >0,∴ac >bc >bd ,D 正确. 故选:BCD .10.下列各组函数中,两个函数相同的是( ) A .f (x )=|x |,g(x)=√x 2B .f(x)=√x 33,g (x )=|x | C .f(x)=x 2−9x−3,g (x )=x +3D .f(x)=3x 2+2x ,g(t)=3t 2+2t解:对于A ,f (x )=|x |,g(x)=√x 2=|x|的定义域均为R ,且对应关系相同,故两个函数相同,A 正确,对于B ,f(x)=√x 33=x ,g (x )=|x |,两个函数的对应关系不相同,故两个函数不相同,B 错误, 对于C ,f(x)=x 2−9x−3的定义域为{x |x ≠3},而g (x )=x +3的定义域为R ,两个函数的定义域不相同,故不是相同的函数,C错误,对于D,f(x)=3x2+2x,g(t)=3t2+2t的定义域均为(﹣∞,0)∪(0,+∞),且对应关系相同,故两个函数相同,D正确.故选:AD.11.若函数y=a x﹣2b﹣1(a>0且a≠0)的图象过第一、三、四象限,则()A.0<a<1B.a>1C.b>0D.b<0解:若函数y=a x﹣2b﹣1(a>0且a≠0)的图象过第一、三、四象限,则{a>11−2b−1<0,解得a>1,b>0.故选:BC.12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y =[x]称为高斯函数,如[3.24]=3,[﹣1.5]=﹣2.若f(x)=x﹣[x],则下列说法正确的是()A.当2023≤x<2024时,f(x)=x﹣2023 B.f(x+1)﹣f(x)=1C.函数f(x)是增函数D.函数f(x)的值域为[0,1)解:对于A,当2023≤x<2024时,f(x)=x﹣[x]=x﹣2023,故A正确;对于B,因为∀x∈R,∃k∈Z,使得k≤x<k+1,此时k+1≤x+1<k+2,从而f(x+1)﹣f(x)=x+1﹣(k+1)﹣(x﹣k)=0,故B选项错误;对于C,由B可知对于x<x+1,有f(x+1)=f(x),故C选项错误;对于D,由B选项分析可知,函数f(x)是以1为周期的周期函数,故只需讨论f(x)在[0,1)上的值域即可,当x∈[0,1)时,f(x)=x﹣[x]=x﹣0=x∈[0,1),即函数f(x)的值域为[0,1),故D正确.故选:AD.三、填空题:本题共4小题,每小题5分,共20分.13.函数f(x)=(13)√−x2+2x+3的单调递减区间是[﹣1,1].解:记u(x)=√−x2+2x+3,要使该函数式有意义,则﹣x2+2x+3≥0,解得x∈[﹣1,3],即原函数的定义域为[﹣1,3],又∵二次函数y=﹣x2+2x+3=﹣(x﹣1)2+4,∴该函数图象的对称轴为x=1,开口向下,根据复合函数单调性判断规则,讨论如下:①当x∈[﹣1,1]时,u(x)单调递增,f(x)=(13)u(x)单调递减;②当x∈[1,3]时,u(x)单调递减,f(x)=(13)u(x)单调递增;故填:[﹣1,1]14.已知函数f(x)的定义域为[﹣2013,2013],则函数g(x)=f(x−1)x+1的定义域为[﹣2012,﹣1)∪(﹣1,2014].解:因为f(x)的定义域为[﹣2013,2013],所以f(x﹣1)的定义域满足﹣2013≤x﹣1≤2013,解得:﹣2012≤x≤2014,即f(x﹣1)的定义域为[﹣2012,2014],所以函数g(x)=f(x−1)x+1的定义域满足{−2012≤x≤2014x+1≠0,解得﹣2012≤x<﹣1或﹣1<x≤2014,所以函数g(x)=f(x−1)x+1的定义域为[﹣2012,﹣1)∪(﹣1,2014].故答案为:[﹣2012,﹣1)∪(﹣1,2014].15.已知命题p:∃x∈[0,4],使得2x2﹣x﹣a<0,若p是真命题,则a的取值范围是(−18,+∞).解:由2x2﹣x﹣a<0得:a>2x2﹣x,∵∃x∈[0,4],使得2x2﹣x﹣a<0,∴a>(2x2﹣x)min,∵y=2x2﹣x为开口方向向上,对称轴为x=14的抛物线,∴当x∈[0,4]时,(2x2−x)min=2×(14)2−14=−18,∴a的取值范围为(−18,+∞).故答案为:(−18,+∞).16.若函数f(x)与g(x)对于任意x1,x2∈[c,d],都有f(x1)•g(x2)≥m,则称函数f(x)与g(x)是区间[c,d]上的“m阶依附函数”,已知函数f(x)=x+7x+1与g(x)=x6﹣2x3+a是区间[1,2]上的“3阶依附函数”,则a的取值范围是[2,+∞).解:∵f(x)=x+7x+1=1+6x+1,∴f(x)在[1,2]上单调递减,∴当x∈[1,2]时,f(x)∈[3,4];令t=x3,则当x∈[1,2]时,t∈[1,8],∵h (t )=t 2﹣2t +a =(t ﹣1)2+a ﹣1,∴当t ∈[1,8]时,h (t )∈[a ﹣1,a +48], 即当x ∈[1,2]时,g (x )∈[a ﹣1,a +48];由“3阶依附函数”定义可知:f (x 1)•g (x 2)≥3对于任意x 1,x 2∈[1,2]恒成立, ∵f (x 1)∈[3,4],∴g(x 2)≥3f(x 1)恒成立,即g(x 2)min ≥[3f(x 1)]max =3[f(x 1)]min=1, ∴a ﹣1≥1,即a ≥2,∴a 的取值范围为[2,+∞). 故答案为:[2,+∞).四、解答题:本题共6小题,共70分解答应写出必要的文字说明、证明过程及演算步骤. 17.(10分)已知集合A ={x|7x+2>1},B ={x |x 2+ax ﹣12<0}. (1)若a =﹣11,求A ∪B ;(2)若A ∩B ={x |﹣2<x <2},求a 的值. 解:(1)由A ={x|7x+2>1},可得A ={x|7−x−2x+2>0}={x|x−5x+2<0}={x|−2<x <5}, 当a =﹣11时,B ={x |x 2﹣11x ﹣12<0}={x |(x ﹣12)(x +1)<0}={x |﹣1<x <12}, 所以A ∪B ={x |﹣2<x <12};(2)A ∩B ={x |﹣2<x <2},A ={x |﹣2<x <5}, 所以x =2是方程x 2+ax ﹣12=0的一个根, 故22+2a ﹣12=0,故a =4.18.(12分)已知幂函数f (x )=(3a 2+2a ﹣7)x a (a ∈R )在(0,+∞)上单调递增. (1)求f (x )的解析式;(2)判断f (x )的奇偶性,并证明.解:(1)由幂函数的概念可知3a 2+2a ﹣7=1,解得a =﹣2或43,又因为幂函数在(0,+∞)单调递增,故a =43,即f(x)=x 43;(2)f (x )为偶函数,证明:f(x)=x 43定义域为R ,f(−x)=(−x)43=x 43=f(x),故f(x)=x 43为偶函数. 19.(12分)已知一次函数y =f (x )满足f (x ﹣1)=ax ﹣1,且f(−a2)=−1.(1)求y =f (x )的函数关系式;(2)求关于x 的不等式xf (x )﹣2b 2﹣b ≤0的解集. 解:(1)∵f (x ﹣1)=ax ﹣1=a (x ﹣1)+a ﹣1,∴f (x )=ax +a ﹣1,∴f(−a 2)=−a 22+a −1=−1,解得:a =0或a =2,又y =f (x )为一次函数,∴a ≠0,则a =2,∴f (x )=2x +1.(2)由(1)知:xf (x )﹣2b 2﹣b =2x 2+x ﹣b (2b +1)=(2x +2b +1)(x ﹣b )≤0; 令(2x +2b +1)(x ﹣b )=0,解得:x =−2b+12或x =b ; 当b =−2b+12,即b =−14时,(2x +2b +1)(x ﹣b )≤0的解集为{−14}; 当b >−2b+12,即b >−14时,(2x +2b +1)(x ﹣b )≤0的解集为[−2b+12,b]; 当b <−2b+12,即b <−14时,(2x +2b +1)(x ﹣b )≤0的解集为[b ,−2b+12]; 综上所述:当b =−14时,不等式解集为{−14};当b >−14时,不等式解集为[−2b+12,b];当b <−14时,不等式解集为[b ,−2b+12].20.(12分)已知函数f (x )=4x ﹣a •2x ﹣a +5(a ∈R ).(1)若a =2,求f (x )在区间[﹣1,1]上的最大值和最小值; (2)若f (x )+3≥0在(﹣∞,+∞)上恒成立,求a 的取值范围. 解:(1)当a =2时,f (x )=4x ﹣2•2x +3,x ∈[﹣1,1],令t =2x ,则f (x )=g (t )=t 2﹣2t +3,t ∈[12,2],开口向上,对称轴为x =1,∴g (t )在[12,1]上单调递减,在(1,2]上单调递增,∴当t =1,即x =0时,函数g (t )也就是f (x )取得最小值,f (x )min =f (0)=2, 当t =2,即x =1时,函数f (x )取得最大值,f (x )max =f (1)=3.(2)f (x )+3≥0在(﹣∞,+∞)上恒成立,即4x ﹣a •2x +8﹣a ≥0,令t =2x ,原不等式可化为t 2﹣at +8﹣a ≥0对任意的t >0成立,转化为a ≤t 2+8t+1对任意的t >0成立,∵t 2+8t+1=(t+1)2−2(t+1)+9t+1=(t +1)+9t+1−2≥2√9−2=4,当且仅当t +1=9t+1,即t =2时等号成立, ∴a ≤4.∴实数a 的取值范围为(﹣∞,4].21.(12分)如图,某物业需要在一块矩形空地(记为矩形ABCD )上修建两个绿化带,矩形ABCD 的面积为800m 2,这两个绿化带是两个形状、大小完全相同的直角梯形,这两个梯形上下对齐,且中心对称放置,梯形与空地的顶部、底部和两边都留有宽度为5m 的人行道,且这两个梯形之间也留有5m 的人行道.设AB =xm .(1)用x 表示绿化带的面积;(2)求绿化带面积的最大值.解:(1)已知AB =xm .则梯形的高为(800x −10)m ,设梯形的上底为a (m ),下底为b (m ),由题意可得:a +b =x ﹣15,则绿化带的面积为S =(a +b)×(800x −10)=(x −15)(800x−10)(m 2), 其中{800x −10>0x −15>0,即15<x <80;(2)由(1)可得S =(x −15)(800x −10)=950−(10x +12000x )≤950−2√10x ×12000x =950−200√3,当且仅当10x =12000x,即x =20√3(m )时取等号, 即绿化带面积的最大值为950−200√3(m 2).22.(12分)已知函数f(x)=a√1−x 2+√1+x +√1−x(a ∈R).(1)若a =0,求f (x )的值域;(2)求f (x )的最大值.解:(1)当a =0时,由题意可得:{1+x ≥01−x ≥0,解得﹣1≤x ≤1, 令t =√1+x +√1−x ,则t 2=2+2√1−x 2,t 2∈[2,4],即t ∈[√2,2],当a =0时,原函数可化为y =t ,故函数的值域为[√2,2].(2)由题意可得:{1−x 2≥01+x ≥01−x ≥0,解得﹣1≤x ≤1,由(1)可知函数f(x)=a√1−x 2+√1+x +√1−x(a ∈R)可转化为函数ℎ(t)=12at 2+t −a ,t ∈[√2,2],当a>0时,−1a<0,函数ℎ(t)=12at2+t−a开口向上,所以ℎ(t)=12at2+t−a在t∈[√2,2]上单调递增,设f(x)最大值为g(a),因此g(a)=h(2)=a+2;当a=0时,ℎ(t)=12at2+t−a在t∈[√2,2]上单调递增,此时g(a)=h(2)=2;当a<0时,−1a>0,函数ℎ(t)=12at2+t−a开口向下,若0<−1a≤√2,即a≤−√22时,函数ℎ(t)=12at2+t−a在t∈[√2,2]上单调递减,因此g(a)=ℎ(√2)=√2;若√2<−1a<2,即−√22≤a≤−12时,ℎ(t)=12at2+t−a在t∈[√2,−1a]上单调递增,在t∈[−1a,2]上单调递减,因此g(a)=ℎ(−1a)=−a−12a;若−1a≥2,即−12≤a<0时,ℎ(t)=12at2+t−a在t∈[√2,2]上单调递增,因此g(a)=h(2)=a+2;综上所述f(x)max={√2,a≤−√22−12a−a,−√22<a<−12 a+2,a≥−12.。
山东省2014届高三文科数学一轮复习之2013届名校解析试题精选分类汇编5:数列一、选择题1 .(【解析】山东省青岛一中2013届高三1月调研考试文科数学)已知数列{n a }满足*331log 1log ()n n a a n ++=∈N ,且2469a a a ++=,则15793log ()a a a ++的值是 ( )A .15-B .5-C .5D .15【答案】B 【解析】由*331log 1log ()n n a a n ++=∈N ,得313log log 1n n a a +-=,即13log 1n na a +=,解得13n n a a +=,所以数列{}n a 是公比为3的等比数列.因为3579246()a a a a a a q ++=++,所以35579933a a a ++=⨯=.所以5515791333log ()log 3log 35a a a ++==-=-,选 B .2 .(【解析】山东省德州市2013届高三3月模拟检测文科数学)若正项数列{}n a 满足1111n n ga ga +=+,且a 2001+a 2002+a 2003+a 2010=2013,则a 2011+a 2012+a 2013+a 2020的值为( )A .2013·1010B .2013·1011C .2014·1010D .2014·1011【答案】A 由条件知1111lg1n n n n a ga ga a ++-==,即110n naa +=为公比是10的等比数列.因为102001201020112020()a a q a a ++=++ ,所以1020112020201310a a ++=⋅ ,选A .3 .(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)在各项均为正数的等比数列{}n a 中,31,1,s a a ==则2326372a a a a a ++=( )A .4B .6C .8D.8-【答案】C 【解析】在等比数列中,23752635,a a a a a a a ==,所以22232637335522a a a a a a a a a ++=++22235()11)8a a =+=+==,选C .4 .(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)已知函数()()2cos f n n n π=,且()()1,n a f n f n =++则123100a a a a +++⋅⋅⋅+=( )A .100-B .0C .100D .10200【答案】A 解:若n 为偶数,则()()221=(1)(21)na f n f n n n n =++-+=-+,为首项为25a =-,公差为4-的等差数列;若n 为奇数,则()()221=(1)21n a f n f n n n n =++-++=+,为首项为13a =,公差为4的等差数列.所以123100139924100()()a a a a a a a a a a +++⋅⋅⋅+=+++++++ 50495049503450(5)410022⨯⨯=⨯+⨯+⨯--⨯=-,选A . 5 .(【解析】山东省济南市2013届高三3月高考模拟文科数学)等差数列}{n a 中,482=+a a ,则它的前9项和=9S ( )A .9B .18C .36D .72【答案】B 在等差数列中,28194a a a a +=+=,所以1999()941822a a S +⨯===,选 B .6 .(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知各项为正的等比数列{}n a 中,4a 与14a 的等比数列中项为22,则1172a a +的最小值 ( )A .16B .8C .22D .4【答案】B 【解析】由题意知224149a a a ==,即9a =.所以设公比为(0)q q >,所以22971192228a a a a q q +=+=+≥=,2=,即42q =,所以q =,所以最小值为8,选B .7 .(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))在各项均为正数的数列{a n }中,对任意m 、*n N Î都有m n m a a +=·n a 若636,a =则9a 等于 ( )A .216B .510C .512D .l024【答案】A 解:由题意可知26336a a ==,所以36a =,所以93636636216a a a a +===⨯= ,选A .8 .(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))如果等差数列{}n a 中,15765=++a a a ,那么943...a a a +++等于 ( )A .21B .30C .35D .40【答案】C 【解析】在等差数列中,由15765=++a a a 得663155a a ==,.所以3496...=77535a a a a +++=⨯=,选C .9 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)已知等差数列{}n a 的前n 项和为n S ,满足1313113a S a ===,则 ( )A .14-B .13-C .12-D .11-【答案】D 在等差数列中,1131313()132a a S +==,所以1132a a +=,即113221311a a =-=-=-,选 D .10.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)两旅客坐火车外出旅游,希望座位连在一起,且仅有一个靠窗,已知火车上的座位的排法如表格所示,则下列座位号码符合要求的是( )A .48,49B .62,63C .84,85D .75,76【答案】C 根据座位排法可知,做在右窗口的座位号码应为5的倍数,所以C 符合要求.选 C .11.(山东省威海市2013届高三上学期期末考试文科数学){}n a 为等差数列,n S 为其前n 项和,已知77521a S ==,,则10S =( )A .40B .35C .30D .28【答案】【答案】A 设公差为d ,则由77521a S ==,得1777()2a a S +=,即17(5)212a +=,解得11a =,所以716a a d =+,所以23d =.所以1011091092101040223S a d ⨯⨯=+=+⨯=,选 ( )A .12.(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)已知在等比数列{}n a 中,1346510,4a a a a +=+=,则该等比数列的公比为 ( )A .14B .12C .2D .8【答案】B 解:因为31346()a a q a a +=+,所以34613514108a a q a a +===+,即12q =,选B .13.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知等差数列{}n a 的公差为d 不为0,等比数列{}n b 的公比q 是小于1的正有理数,若211,d b d a ==,且321232221b b b a a a ++++是正整数,则q 的值可以是 ( )A .71 B .-71 C .21 D .21-【答案】C 【解析】由题意知21312,23a a d d a a d d =+==+=,22222131,b b q d q b b q d q ====,所以2222221232222212349141a a a d d d b b b d d q d q q q ++++==++++++,因为321232221b b b a a a ++++是正整数,所以令2141t q q=++,t 为正整数.所以2114t q q ++=,即21014t q q ++-=,解得q ===,因为t 为正整数,所以当8t =时,12122q -+===.符合题意,选C .14.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)已知数列{}n a 为等差数例,其前n 项的和为n S ,若336,12a S ==,则公差d = ( )A .1B .2C .3D .53【答案】B 在等差数列中,13133()3(6)1222a a a S ++===,解得12a =所以解得2d =,选 B . 15.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知数列{}n a 的前n 项和为n S ,且122-=n S n , 则=3a( )A .-10B .6C .10D .14【答案】C 解:22332231(221)10a S S =-=⨯--⨯-=,选 C .16.(【解析】山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知等差数列{n a }中,74a π=,则tan(678a a a ++)等于( )A .B .C .-1D .1【答案】C 在等差数列中6787334a a a a π++==,所以6784tan()tan14a a a π++==-,选 C . 17.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)已知等比数列{a n }的公比q=2,前n硕和为S n .若S 3=72,则S 6等于 ( )A .312B .632C .63D .1272【答案】B 【解析】3131(12)77122a S a -===-,所以112a =.所以6161(12)6363122a S a -===-,选 B .二、填空题18.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S =_____________ ;【答案】54- 由1532,3a a a ==得1143(2)a d a d +=+,即12d a =-=-,所以919899298542S a d ⨯=+=⨯-⨯=-. 19.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)等比数列}{n a ,2=q ,前n 项和为=24a S S n ,则____________. 【答案】215解:在等比数列中,4141(12)1512a S a -==-,所以4121151522S a a a ==.20.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)数列{}n a 满足113,1,n n n n a a a a A +=-=表示{}n a 前n 项之积,则2013A =_____________.【答案】1-【解析】由113,1,n n n a a a a +=-=得11n n na a a +-=,所以231233a -==,312a =-,43a =,所以{}n a 是以3为周期的周期数列,且1231a a a =-,又20133671=⨯,所以6712013(1)1A =-=-.21.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)在如图所示的数阵中,第9行的第2个数为___________.【答案】66 每行的第二个数构成一个数列{}n a ,由题意知23453,6,11,18a a a a ====,所以3243543,5,7,a a a a a a -=-=-=12(1)123n n a a n n --=--=-,等式两边同时相加得22[233](2)22n n n a a n n -+⨯--==-,所以()222223,2n a n n a n n n =-+=-+≥,所以29929366a =-⨯+=.22.(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)正项数列{}n a 满足:()222*121171,2,2,2,n n n a a a a a n N n a +-===+∈≥=则______.【答案】因为()222*112,2n n n a a a n N n +-=+∈≥,所以数列2{}n a 是以211a =为首项,以2221413d a a =-=-=为公差的等差数列,所以213(1)32n a n n =+-=-,所以1n a n =≥,所以7a ==23.(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10cm,最下面的三节长度之和为114cm,第6节的长度是首节与末节长度的等比中项,则n=_____.【答案】16 设对应的数列为{}n a ,公差为,(0)d d >.由题意知110a =,12114n n n a a a --++=,261n a a a =.由12114n n n a a a --++=得13114n a -=,解得138n a -=,即2111(5)()n a d a a d -+=+,即2(105)10(38)d d +=+,解得2d =,所以11(2)38n a a n d -=+-=,即102(2)38n +-=,解得16n =.24.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )已知等差数列{n a }中,35a a +=32,73a a -=8,则此数列的前10项和10S =____.【答案】190【解析】由7348a a d -==,解得2d =,由3532a a +=,解得110a =.所以101109101902S a d ⨯=+=. 25.(【解析】山东省潍坊市2013届高三第二次模拟考试文科数学)已知等差数列{}n a 的前n 项和为n S ,若2,4,3a 成等比数列,则5S =_________.【答案】40因为2,4,3a 成等比数列,所以232416a ==,所以38a =.又153535()525584022a a a S a +⨯====⨯=. 26.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)已知等比数列{a n }中,6710111,16a a a a ==g g ,则89a a g 等于_______【答案】4【解析】在等比数列中2676()10a a a q ==>g ,所以0q >,所以289670a a a a q =>g .所以67101116a a a a =,即289()16a a =g ,所以894a a =g .27.(【解析】山东省泰安市2013届高三上学期期末考试数学文)下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n 个图形中小正方形的个数是___________.【答案】(1)2n n +【解析】12341,3,6,10a a a a ====,所以2132432,3,4a a a a a a -=-=-=, 1n n a a n --=,等式两边同时累加得123n a a n -=+++ ,即(1)122n n n a n +=+++=,所以第n 个图形中小正方形的个数是(1)2n n + 三、解答题28.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)已知数列{a n }的前n 项和为S n ,且22n n S a =-.(1)求数列{a n }的通项公式;(2)记1213(21)n n S a a n a =+++-g g L g ,求S n【答案】29.(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))设数列{}n a 为等差数列,且9,553==a a ;数列{}n b 的前n 项和为n S ,且2=+n n b S . (I)求数列{}n a ,{}n b 的通项公式; (II)若()+∈=N n b a c nnn ,n T 为数列{}n c 的前n 项和,求n T . 【答案】30.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)已知数列{}n a 的前n 项和是n S ,且11()2n n S a n *+=∈N (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设113log (1)()n n b S n *+=-∈N ,令122311n T b b b b =++11n n b b ++,求n T . 【答案】31.(【解析】山东省临沂市2013届高三5月高考模拟文科数学)已知点(1,2)是函数()(01)x f x a a a =≠>且的图象上一点,数列{}n a 的前n 项和()1n S f n =-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)将数列{}n a 前2013项中的第3项,第6项,,第3k 项删去,求数列{}n a 前2013项中剩余项的和.【答案】解:(Ⅰ)把点(1,2)代入函数()x f x a =,得2a =.()121,n n S f n ∴=-=-当1n =时,111211;a S ==-= 当2n ≥时,1n n n a S S -=-1(21)(21)n n -=---12n -=经验证可知1n =时,也适合上式,12n n a -∴=.(Ⅱ)由(Ⅰ)知数列{}n a 为等比数列,公比为2,故其第3项,第6项,,第2013项也为等比数列,首项31324,a -==公比32012201328,2a ==为其第671项∴此数列的和为67120134(18)4(21)187--=- 又数列{}n a 的前2013项和为2013201320131(12)21,12S ⨯-==--∴所求剩余项的和为2013201320134(21)3(21)(21)77----=32.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知数列}{n a 的前n 项和为n S ,且)(14*∈+=N n a S n n . (Ⅰ)求21,a a ;(Ⅱ)设||log 3n n a b =,求数列{}n b 的通项公式.【答案】解:(1)由已知1411+=a S ,即31,14111=∴+=a a a ,又1422+=a S ,即91,1)42221-=∴+=+a a a a (;(2)当1>n 时,)1(41)1(4111+-+=-=--n n n n n a a S S a ,即13--=n n a a ,易知数列各项不为零(注:可不证不说),311-=∴-n n a a 对2≥n 恒成立, {}n a ∴是首项为31,公比为-31的等比数列,n n n n a ----=-=∴3)1()31(3111,n a n n -==∴-3log ||log 33,即n b n -=33.(【解析】山东省泰安市2013届高三上学期期末考试数学文)在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且222212,,n n S b S q a b b +==求与; 【答案】34.(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)设数列{}n a 的前n 项和为n S ,若对于任意的正整数n 都有23n n S a n =-.(I)设3n n b a =+,求证:数列{}n b 是等比数列,并求出{}n a 的通项公式; (II)求数列{}n nb 的前n 项和T n .【答案】35.(【解析】山东省德州市2013届高三3月模拟检测文科数学)数列{}n a 是公差不小0的等差数列a 1、a 3,是函数2()1(66)f x n x x =-+的零点,数列{}n b 的前n 项和为n T ,且*12()n n T b n N =-∈ (1)求数列{}n a ,{}n b 的通项公式;(2)记n n n c a b =,求数列{}n c 的前n 项和S n .【答案】36.(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))已知数列{a n }的公差为2的等差数列,它的前n 项和为n S ,且1321,1,1a a a +++成等比数列. (I)求{a n }的通项公式; (2)13{},.4n n n n T T S <记数列的前项求证: 【答案】37.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知等差数列{}n a 的前n 项和为n S ,且满足24a =,3417a a +=. (1)求{}n a 的通项公式; (2)设22n a n b +=,证明数列{}n b 是等比数列并求其前n 项和n T .【答案】解:(1)设等差数列{}n a 的公差为d .由题意知3411212317,4,a a a d a d a a d +=+++=⎧⎨=+=⎩解得,11a =,3d =, ∴32n a n =-(n N *∈) (2)由题意知, 2322n a n n b +==(n N *∈),3(1)33122n n n b ---==(,2n N n *∈≥)∴333312282n n n n b b --===(,2n N n *∈≥),又18b = ∴{}n b 是以18b =,公比为8的等比数列()()818881187n nn T -==-- 38.(山东省烟台市2013届高三3月诊断性测试数学文)设{a n }是正数组成的数列,a 1=3.若点()2*11,2()n n n a aa n N ++-∈在函数321()23f x x x =+-的导函数()y f x '=图像上. (1)求数列{a n }的通项公式; (2)设12n n nb a a +=⋅,是否存在最小的正数M,使得对任意n *N ∈都有b 1+b 2++b n <M 成立?请说明理由.【答案】39.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )(本小题满分l2分)设数列{n a }满足:a 1=5,a n+1+4a n =5,(n ∈N*)(I)是否存在实数t ,使{a n +t }是等比数列?(Ⅱ)设数列b n =|a n |,求{b n }的前2013项和S 2013.【答案】解:(I)由+1+4=5n n a a 得+1=4+5n n a a -令()+1+=4+n n a t a t -,得+1=45n n a a t -- 则5=5t -,=1t - 从而()+11=41n n a a --- .又11=4a -, {}1n a ∴-是首项为4,公比为4-的等比数列,∴存在这样的实数=1t -,使{}+n a t 是等比数列(II)由(I)得()11=44n n a --⋅- ()=14nn a ∴--{1+4, 41==n n n n n n b a -∴为奇数,为偶数()()()()()123420132013122013=++=1+4+41+1+4+41++1+4S b b b ∴--1232013=4+4+4++4+1 201420144441=+1=143--- 40.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)已知等比数列13212{}1,6,,8n a q a a a a a >=-的公比且成等差数列.(1)求数列{a n }的通项公式;(2)设(1),: 1.n n nn n b b a +=≤求证 【答案】41.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)已知N n *∈,数列{}n d 满足2)1(3nn d -+=,数列{}n a 满足1232n n a d d d d =+++⋅⋅⋅+;数列{}n b 为公比大于1的等比数列,且42,b b 为方程064202=+-x x 的两个不相等的实根.(Ⅰ)求数列{}n a 和数列{}n b 的通项公式;(Ⅱ)将数列{}n b 中的第.1a 项,第.2a 项,第.3a 项,,第.n a 项,删去后剩余的项按从小到大的顺序排成新数列{}n c ,求数列{}n c 的前2013项和.【答案】解:(Ⅰ)2)1(3n n d -+= ,∴1232n n a d d d d =+++⋅⋅⋅+3232nn ⨯== 因为42,b b 为方程064202=+-x x 的两个不相等的实数根. 所以2042=+b b ,6442=⋅b b 解得:42=b ,164=b ,所以:n n b 2=(Ⅱ)由题知将数列{}n b 中的第3项、第6项、第9项删去后构成的新数列{}n c 中的奇数列与偶数列仍成等比数列,首项分别是12b =,24b =公比均是,8201313520132462012()()T c c c c c c c c =+++⋅⋅⋅+++++⋅⋅⋅+ 1007100610062(18)4(18)208618187⨯-⨯-⨯-=+=-- 42.(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值; (Ⅱ)设122111n n n nT S S S ++=++⋅⋅⋅+,求n T.【答案】解:(Ⅰ){}n b 为等差数列,设公差为155,1,15,51015,1d b S S d d ==∴=+== 1(1)1.n b n n ∴=+-⨯=设从第3行起,每行的公比都是q ,且0q >,2294,416,2,a b q q q === 1.+2+3++9=45,故50a 是数阵中第10行第5个数, 而445010102160.a b q ==⨯= (Ⅱ)12n S =++ (1),2n n n ++=1211n n n T S S ++∴=++21nS +22(1)(2)(2)(3)n n n n =++++++22(21)n n ++11112(1223n n n n =-+-+++++11)221n n +-+ 1122().121(1)(21)n n n n n =-=++++43.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)等差数列}{n a 中,9,155432==++a a a a . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设213+=n a n b ,求数列},21{n n b a +的前n 项和n S 【答案】解:(Ⅰ)设数列{}由题意得首项的公差为,1a d a n且⎩⎨⎧=+=+⎩⎨⎧==++941563915115432d a d a a a a a 即 解得⎩⎨⎧==211d a所以数列{}12-=n a a n n 的通项公式为 (Ⅱ)由(Ⅰ)可得n n n a b 3231==+ 所以n n n n b a 3..21=+ 所以+++=323.33.23.11n S 13.+n n两式相减得++++-=433333(22n S 13.)3+++n n n 10 分43).12(323..1233.31313111+++-+=-+=+---=n n n n n n S n n n 即)()(44.(【解析】山东省潍坊市2013届高三第二次模拟考试文科数学)某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第一年的维护费用是4万元,从第二年到第七年,每年的维护费用均比上年增加2万元,从第八年开始,每年的维护费用比上年增加25%(I)设第n 年该生产线的维护费用为n a ,求n a 的表达式; (Ⅱ)设该生产线前n 年维护费为n S ,求n S .【答案】45.(山东省威海市2013届高三上学期期末考试文科数学)已知数列{}n a ,15a =-,22a =-,记()A n =12n a a a +++ ,23()B n a a =+1n a +++ ,()C n =342+n a a a +++ (*N n ∈),若对于任意*N n ∈,()A n ,()B n ,()C n 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ) 求数列{}||n a 的前n 项和.【答案】解:(Ⅰ)根据题意()A n ,()B n ,()C n 成等差数列∴()+()2()A n C n B n =整理得2121253n n a a a a ++-=-=-+= ∴数列{}n a 是首项为5-,公差为3的等差数列 ∴53(1)38n a n n =-+-=- (Ⅱ)38,2||38,3n n n a n n -+≤⎧=⎨-≥⎩记数列{}||n a 的前n 项和为n S .当2n ≤时,2(583)313222n n n n S n +-==-+ 当3n ≥时,2(2)(138)313714222n n n n S n -+-=+=-+综上,2231322231314322n n n n S n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩ 46.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)已知{}n a 是公比大于1的等经数列,13,a a 是函数9()10f x x x=+-的两个零点(1)求数列{}n a 的通项公式;(2)若数列{}n a 满足312312,80n n b og n b b b b =+++++≥ 且,求n 的最小值.【答案】47.(【解析】山东省济南市2013届高三3月高考模拟文科数学)正项等比数列}{n a 的前n 项和为n S ,164=a ,且32,a a 的等差中项为2S . (1)求数列}{n a 的通项公式; (2)设12-=n n a n b ,求数列}{n b 的前n 项和n T .【答案】解:(1)设等比数列}{n a 的公比为)0(>q q ,由题意,得⎪⎩⎪⎨⎧+=+=)(2161121131q a a q a q a q a ,解得⎩⎨⎧==221q a所以n n a 2= (2)因为12122--==n n n n a n b ,所以12753224232221-+++++=n n nT , 121275322123222141+-+-++++=n n n nn T , 所以12127532212121212143+--+++++=n n n n T122411)411(21+---=n n n 12233432+⋅+-=n n故2181612992n n nT ++=-⋅ 48.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)等比数列....{}n c 满足(){}1*1104,n n n n c c n N a -++=⋅∈数列的前n 项和为n S ,且2log .n n a c =(I)求,n n a S ;(II)数列{}{}1,41n n n n n b b T b S =-满足为数列的前n 项和,是否存在正整数m,()1m >,使得16,,m m T T T 成等比数列?若存在,求出所有m 的值;若不存在,请说明理由.【答案】解: (Ⅰ)40,103221=+=+c c c c ,所以公比4=q10411=+c c 得21=c121242--=⋅=n n n c所以212log 221n n a n -==-21()[1(21)]22n n n a a n n S n ++-=== (Ⅱ)由(Ⅰ)知211114122121n b n n n ⎛⎫==- ⎪--+⎝⎭于是11111112335212121n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦假设存在正整数()1m m >,使得16,,m m T T T 成等比数列,则216213121m m m m ⎛⎫=⨯ ⎪++⎝⎭, 整理得24720m m --=, 解得14m =-或 2m = 由,1m N m *∈>,得2m =, 因此,存在正整数2m =,使得16,,m m T T T 成等比数列49.(【解析】山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知等比数列{n a }的首项为l,公比q≠1,n S 为其前n 项和,a l ,a 2,a 3分别为某等差数列的第一、第二、第四项.(I)求n a 和n S ;(Ⅱ)设21n n b log a +=,数列{21n n b b +}的前n 项和为T n ,求证:34n T <.【答案】50.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)在等差数列{}n a 中,a 1 =3,其前n项和为S n ,等比数列{b n }的各项均为正数,b 1 =1,公比为q,且b 2 +S 2 =12, q=22S b . (1)求a n 与b n ; (2)设数列{C n }满足c n =1nS ,求{n c }的前n 项和T n . 【答案】51.(【解析】山东省青岛一中2013届高三1月调研考试文科数学)已知等差数列{}n a 的首项1a =1,公差d>0,且第2项、第5项、第14项分别为等比数列{}n b 的第2项、第3项、第4项. (1)求数列{}n a 与{}n b 的通项公式; (2)设数列{n c }对n ∈N +均有11c b +22c b ++nnc b =1n a +成立,求1c +2c 3c ++2012c . 【答案】.解答:(1)由已知得2a =1+d, 5a =1+4d, 14a =1+13d,∴2(14)d +=(1+d)(1+13d), ∴d=2, n a =2n-1又2b =2a =3,3b = 5a =9 ∴数列{n b }的公比为3,n b =3⋅23n -=13n -(2)由11c b +22c b ++nnc b =1n a + (1) 当n=1时,11c b =2a =3, ∴1c =3当n>1时,11c b +22c b ++11n n c b --= n a (2) (1)-(2)得nnc b =1n a +-n a =2 ∴n c =2n b =2⋅13n - 对1c 不适用∴n c =131232n n n -=⎧⎨∙≥⎩∴123c c c +++2012c =3+2⋅3+2⋅23++2⋅20113=1+2⋅1+2⋅3+2⋅23++2⋅20113=1+2⋅20121313--=2012352.(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)设等比数列{}n a 的前n 项和为,415349,,,n S a a a a a =-成等差数列.(I)求数列{}n a 的通项公式;(II)证明:对任意21,,,k k k R N S S S +++∈成等差数列.【答案】。
广东省2014届高三理科数学一轮复习考试试题精选(1)分类汇编1:集合一、选择题1 .(广东省佛山市南海区2014届普通高中高三8月质量检测理科数学试题 )设集合{}{}>1,|(2)0A x x B x x x ==-<,则B A 等于 ( ) A .{|01}x x << B .{}21<<x x C .{}20<<x x D .{|2}x x > 【答案】B2 .(广东省深圳市宝安区2014届高三上学期调研测试数学理试卷)已知集合{1,2,3,4,5,6},U =集合{1,2,3,4},{3,4,5},P Q ==则()U P C Q = ( )A .{1,2,3,4,6,}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}【答案】D3 .(广东省湛江市第二中学2014届高三理科数学8月考试题 )已知集合{}9|7|<-=x x M ,{}2|9N x y x ==-,且N M 、都是全集U 的子集,则下图韦恩图中阴影部分表示的集合( )A .{}23-≤-<x xB .}{23-≤≤-x xC .}{16≥x xD .}{16>x x【答案】B4 .(广东省南雄市黄坑中学2014届高三上学期第一次月考测试数学(理)试题)设集合},02|{},,02|{22R x x x x N R x x x x M ∈=-=∈=+=,则=⋃N M ( )A .}0{B .}2,0{C .}0,2{-D .}2,0,2{-【答案】D5 .(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)(2013广东)设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A .{}0B .{}0,2C .{}2,0-D .{}2,0,2-【答案】D6 .(广东省广州市仲元中学2014届高三数学(理科)10月月考试题)己知集合[0,)M =+∞,集合{2N x x =>或}1x <-,U R =,则集合UM C N ⋂=( )A .{}|02x x <≤B .{}|02x x ≤<C .{}|02x x ≤≤D .{}|02x x <<【答案】C7 .(广东省广州市执信、广雅、六中2014届高三9月三校联考数学(理)试题)已知全集U R =,集合{}Z x x x A ∈≤=,1|, {}02|2=-=x x x B ,则图中的阴影部分表示的集合为( )A .{}1-B .{}2C .{}2,1D .{}2,0【答案】B8 .(广东省珠海一中等六校2014届高三上学期第二次联考数学(理)试题)设2{0,2},{|320}A B x x x ==-+=,则A B = ( )A .{0,2,4}--B .{0,2,4}-C .{0,2,4}D .{0,1,2}【答案】D9 .(2013-2014学年广东省(宝安中学等)六校第一次理科数学联考试题)设U=R ,集合2{|2,},{|40}xA y y x RB x Z x==∈=∈-≤,则下列结论正确的是 ( )A .(0,)AB =+∞ B .(](),0UCA B =-∞C .(){2,1,0}UCA B =--D .(){1,2}UCA B =【答案】C10.(广东省惠州市2014届高三第一次调研考试数学(理)试题)已知集合{}{}1,2,3,14M N x Z x ==∈<<,则 ( )A .N M ⊆B .N M =C .}3,2{=N MD .)4,1(=N M 【答案】{}{}3,241=<<∈=x Z x N ,故}3,2{=N M ,故选 C .11.(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)已知集合(){,A x y =∣,x y 为实数,且}221x y +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为 ( )A .0B .1C .2D .3【答案】C12.(广东省南雄市黄坑中学2014届高三上学期第二次月考测试数学(理)试题)已知集合2{|10},{|0},A x xB x x x =+>=-<则=B A( )A .{|1}x x >-B .{|11}x x -<<C .{|01}x x <<D .{|10}x x -<<【答案】C13.(广东省珠海市2014届高三9月开学摸底考试数学理试题)已知集合{1}A x x =>,2{20}B x x x =-<,则A B ⋃= ( )A .{0}x x >B .{1}x x >C .{12}x x <<D .{02}x x <<【答案】A14.(广东省韶关市2014届高三摸底考试数学理试题)若集合}1|{2<=x x M ,1{|}N x y x==,则N M = ( )A .NB .MC .φD .{|01}x x <<【答案】解析:D .M ={|x —1〈x<1}, N={|x 0x >}NM ={|01}x x <<15.(广东省兴宁市沐彬中学2014届上期高三质检试题 数学(理科))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )A .{2}-B .{2}C .{2,2}-D .∅【答案】A16.(广东省南雄市黄坑中学2014届高三上学期第一次月考测试数学(理)试题)已知集合}2,1,0{},1,0,1{=-=N M ,则如图所示韦恩图中的阴影部分所表示的集合为( )A .}1,0{B .}1,0,1{-C .}2,1{-D .}2,1,0,1{-【答案】C17.(广东省汕头市金山中学2014届高三上学期期中考试数学(理)试题)设集合2{103A x x x =+-≥0},{1B x m =+≤x ≤21}m -,如果有AB B =,则实数m 的取值范围是 ( )A .(,3]-∞B .[3,3]-C .[2,3]D .[2,5]【答案】A18.(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)若集合{}|21A x x =-<<,{}|02B x x =<<,则集合A B = ( ) A .{}|11x x -<< B .{}|21x x -<<C .{}|22x x -<<D .{}|01x x <<【答案】D19.(广东省汕头市金山中学2014届高三上学期开学摸底考试数学(理)试题)设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的S b a ∈,,对于有序元素对()b a ,,在S 中有唯一确定的元素b a *与之对应),若对任意的S b a ∈,,有b a b a =**)(,则对任意的S b a ∈,,下列等式中不.恒成立的是 ( )A .[]()a b a a b a =****)(B .b b b b =**)(C .a a b a =**)(D .[]b b a b b a =****)()(【答案】C20.(广东省惠州市2014届高三第一次调研考试数学(理)试题)对于任意两个正整数,m n ,定义某种运算“※”如下:当,m n 都为正偶数或正奇数时,m ※n =m n +;当,m n 中一个为正偶数,另一个为正奇数时,m ※n =mn 。
山东省实验中学2023-2024学年高二下学期期中考试数学试题(考试时间:120分钟 试卷满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.展开式中 的系数为( )A. B. C. 30D. 902. 若是区间上的单调函数,则实数的取值范围是( )A. B. C. 或 D.3. 2020年是脱贫攻坚年,为顺利完成“两不愁,三保障”,即农村贫困人口不愁吃、不愁穿,农村贫困人口义务教育、基本医疗、住房安全有保障,某市拟派出6人组成三个帮扶队,每队两人,对脱贫任务较重的甲、乙、丙三县进行帮扶,则不同的派出方法种数共有A. 15 B. 60 C. 90 D. 5404. 若,则( )A. B. C. D. 5. 在5个大小相同的球中有2个红球和3个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率是( )A.B.C.D.6. 随机变量ξ的分布列如下:其中,则等于( )A.B.()()6231x x --3x 90-30-()32112132f x x x x =-+++()1,4m m -+m 5m ≤-3m ≥5m ≤-3m ≥53m -≤≤2022220220122022(32)x a a x a x a x -=++++ 2022a a =2022220221()220222(320223()2110142512ξ1-01Pabc2b a c =+(1)P ξ=1314C.D.7. 蜂房绝大部分是一个正六棱柱的侧面,但它的底部却是由三个菱形构成的三面角. 18世纪初,法国学者马拉尔奇曾经专门测量过大量蜂巢的尺寸. 令人惊讶的是,这些蜂巢组成底盘的菱形的所有钝角都是,所有的锐角都是. 后来经过法国数学家克尼格和苏格兰数学家马克洛林从理论上的计算,如果要消耗最少的材料,制成最大的菱形容器正是这个角度. 从这个意义上说,蜜蜂称得上是“天才的数学家兼设计师”. 如图所示是一个蜂巢和部分蜂巢截面. 图中竖直线段和斜线都表示通道,并且在交点处相遇.现在有一只蜜蜂从入口向下(只能向下,不能向上)运动,蜜蜂在每个交点处向左到达下一层或者向右到达下一层的可能性是相同的.蜜蜂到达第层(有条竖直线段)第通道(从左向右计)的不同路径数为. 例如:,. 则不等式的解集为()A. B. C. D. 8. 已知函数,若恰有四个不同的零点,则a 取值范围为()A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知A ,B ,C 为随机事件,则下列表述中不正确的是( )A B. C. D. 10. 对于函数,下列说法中正确是( )A. 存在有极大值也有最大值.的122310928'︒7032'︒n n m (),A n m ()3,11A =()4,23A =()10,81A m ≤{}1,2,3,7,8,9{}1,2,3,8,9,10{}1,2,3,9,10,11{}4,5,6,7,8()xf x x e =()()()21g x fx af x =-+()2,∞+1,e e⎛⎫++∞ ⎪⎝⎭12,e e ⎛⎫+⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭()()()P AB P A P B =()()()P B C A P B A P C A ⋃=+()1P A A =()()P A B P AB ≥()222272exx x f x +-=()f xB. 有三个零点C. 当时,恒成立D. 当时,有3个不相等的实数根11. 在信道内传输信号,信号的传输相互独立,发送某一信号时,收到的信号字母不变的概率为,收到其他两个信号的概率均为.若输入四个相同的信号的概率分别为,且.记事件分别表示“输入”“输入”“输入”,事件表示“依次输出”,则( )A. 若输入信号,则输出信号只有两个的概率为B.C.D. 三、填空题:本题共3小题,每小题5分,共15分.12. 若,则实数a 取值范围为________13. 编号为A 、B 、C 、D 、E 的5种蔬菜种在如图所示的五块实验田里,每块只能种一种蔬菜,要求A 品种不能种在1,2试验田里,B 品种必须与A 种在相邻的两块田里,则不同的种植方法种数为________14. 设为随机变量,从边长为1的正方体12条棱中任取两条,当两条棱相交时,;当两条棱异面时,;当两条棱平行时,的值为两条棱之间的距离,则数学期望=________.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.的的()f x x ⎫∈+∞⎪⎪⎭()0f x >450,2e a ⎛⎫∈ ⎪⎝⎭()f x a =,,M N P ()01αα<<12α-,,MMMM NNNN PPPP 123,,p p p 1231p p p ++=111,,M N P MMMM NNNN PPPP D MNPM MMMM M ()221αα-()22112P D M αα-⎛⎫= ⎪⎝⎭()3112P D P αα-⎛⎫= ⎪⎝⎭()()1112311p P M D p ααα=-+-e ln()x ax x ax -≥-+ξ0ξ=1ξ=ξE ξ15. 在二项式的展开式中,已知第2项与第8项的二项式系数相等.(1)求展开式中各项系数之和;(2)求展开式中二项式系数最大的项;(3)求展开式中的有理项.16. 学生甲想加入校篮球队,篮球教练对其进行投篮测试.测试规则如下:①投篮分为两轮,每轮均有两次机会,第一轮在罚球线处,第二轮在三分线处;②若他在罚球线处投进第一球,则直接进入下一轮,若第一次没投进可以进行第二次投篮,投进则进入下一轮,否则不预录取;③若他在三分线处投进第一球,则直接录取,若第一次没投进可以进行第二次投篮,投进则录取,否则不予录取.已知学生甲在罚球线处投篮命中率为,在三分线处投篮命中率为.假设学生甲每次投进与否互不影响.(1)求学生甲被录取的概率;(2)在这次测试中,记学生甲投篮的次数为,求的分布列.17. 已知函数在点处切线与直线垂直.(1)求的值;(2)求的单调区间和极值.18. 人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.19. 已知函数,.的1n⎫⎪⎭3423X X ()21ex x af x -+=()()1,1f 420240x y ++=a ()f x 12()23ln f x a x ⎛⎫=+⎪⎝⎭R a ∈(1)若的定义域为,值域为,求的值;(2)若,且对任意的,当,时,总满足,求的取值范围.(附加题)20. 帕德近似是法国数学家亨利.帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m ,n ,函数在处的阶帕德近似定义为:,且满足:,,,…,.(注:,,,,…;为的导数)已知在处的阶帕德近似为.(1)求实数a ,b 的值;(2)比较与的大小;(3)若在上存在极值,求的取值范围.()f x {|0,R}x x x ≠∈R a 0a >1,13c ⎡⎤∈⎢⎥⎣⎦1x 2x ∈()()12ln2f x f x -≤a ()f x 0x =[,]m n 011()1mm nn a a x a x R x b x b x+++=+++ (0)(0)f R =(0)(0)f R ''=(0)(0)f R ''''=()()(0)(0)m n m n f R ++=[]()()f x f x '='''[]()()f x f x ''''''=[](4)()()f x f x ''''=(5)(4)()()f x f x '⎡⎤=⎣⎦()()n f x (1)()n f x -()ln(1)f x x =+0x =[]1,1()1ax R x bx=+()f x ()R x ()1()()()2f x h x m f x R x ⎛⎫=-- ⎪⎝⎭(0,)+∞m山东省实验中学2023-2024学年高二下学期期中考试数学试题简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】B【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AB【10题答案】【答案】CD【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】30【14题答案】四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)0(2)(3)有理项为,,【16题答案】【答案】(1)(2)分布列略【17题答案】【答案】(1)(2)单调递减区间为和,单调递增区间为,的极大值为,极小值为.【18题答案】【答案】(1) (2)①;②方案二中取到红球的概率更大.【19题答案】【答案】(1) (2)(附加题)【20题答案】【答案】(1),; (]0,e 4370x -228x -156x --1563a =-(),1-∞-()3,+∞()1,3-()f x ()263e f =()212e f -=-1120190a =45,7∞⎡⎫+⎪⎢⎣⎭1a =12b =(2)答案略;(3).10,2⎛⎫ ⎪⎝⎭。
必修5 第二章 数列1.【荆门市2013-2014学年度下学期期末质量检测】如图,一个质点从原点出发,在与x 轴、y 轴平行的方向按(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→(2,1)→(2,2)→(1,2)…的规律向前移动,且每秒钟移动一个单位长度,那么到第2014秒时,这个质点所处位置的坐标是A .(10,44)B .(11,44)C .(44,10)D .(44,11)2.【福建省莆田第八中学2013-2014学年高一下学期第二次月考数学试题】数列1,-3,5,-7,9,…的一个通项公式为 ( )A . B. C. =n a ())121n --n ( D . 3.【福建省莆田第八中学2013-2014学年高一下学期第二次月考数学试题】已知是等比数列,,则公比=( ) A .B .C .2D . 4.【福建省莆田第八中学2013-2014学年高一下学期第二次月考数学试题】设数列是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .D .45.【福建省莆田第八中学2013-2014学年高一下学期第二次月考数学试题】在各项均为正数的等比数列}{n b 中,若387=⋅b b ,则1432313log log log b b b +⋅⋅⋅⋅⋅⋅++等于()A 5B 6 C7 D 8 6.【福建省莆田第八中学2013-2014学年高一下学期第二次月考数学试题】在数列中,, ,则( ) A . B . C . D .7.【福建省莆田第八中学2013-2014学年高一下学期第二次月考数学试题】等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且,则 ( ) 12-=n a n )21()1(n a n n --=)12()1(+-=n a nn {}n a 41252==a a ,q 21-2-21}{n a 2±{}n a 12a =11ln(1)n n a a n+=++n a =2ln n +2(1)ln n n +-2ln n n +1ln n n ++132+=n n T S n n 55b aA B C D 8.【福建省莆田第八中学2013-2014学年高一下学期第二次月考数学试题】已知为公比q >1的等比数列,若是方程的两根,则的值是( )A 18B 19C 20D 219.【福建省莆田第八中学2013-2014学年高一下学期第二次月考数学试题】已知数列中,前项和为,且点在直线上,则=( ) A. B. C. D. 10.【安微省黄山市屯溪一中2013—2014学年第二学期高一期中考试】设等差数列{}n a 的前n 项和记为n S ,若58215a a a -=+,则9S 等于( )A 、60B 、45C 、36D 、1811.【安微省黄山市屯溪一中2013—2014学年第二学期高一期中考试】各项不为零的等差数列{}n a 中,02211273=+-a a a ,数列{}n b 是等比数列,且77a b =,则=86b b ( ) A 、2 B 、4 C 、8 D 、1612.【安微省黄山市屯溪一中2013—2014学年第二学期高一期中考试】设等比数列{}n a 的前n 项和记为n S ,若2:1:510=S S ,则=515:S S ( )A 、3:4B 、2:3C 、1:2D 、1:313.【安微省黄山市屯溪一中2013—2014学年第二学期高一期中考试】设{}()*N n a n ∈是各项为正数的等比数列,q 是其公比,n K 是其前n 项的积,且87665K K K K K >=<,,则下列结论错误的是( )A 、10<<qB 、17=aC 、59K K >D 、6K 与7K 均为n K 的最大值14.【福建省晋江市季延中学2013-2014学年高一年下学期期末考试数学试卷】在正项等比32149312097{}n a 20052006a a 和24830x x -+=20072008a a +{}n a 11,a =n n S *1(,)()n n P a a n N +∈10x y -+=1231111n S S S S ++++(1)2n n +2(1)n n +21n n +2(1)n n +数列{}n a 中,569a a =,则3132310log log log a a a +++= ( ) A 、12 B 、10 C 、8 D 、32log 5+15.【福建省晋江市季延中学2013-2014学年高一年下学期期末考试数学试卷】在等差数列{}n a 中,7916a a +=,41a =,则12a 的值是( )A .15B .30C .31D .6416.【河北省承德市联校2013-2014学年高一下学期期末考试数学试题】在等差数列{n a }中,已知16102=+a a ,则=+84a a ( )A . 12B . 16C . 20D .2417.【河北省承德市联校2013-2014学年高一下学期期末考试数学试题】数列{n a }中,()n a n n 1-=,则=++1021a a a ( ).A . 10B .﹣10C . 5D .﹣518.【河南省安阳一中2013—2014学年高一下学期期末考试】等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( )A .81B .120C .168D .19219.【河南省安阳一中2013—2014学年高一下学期期末考试】在等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( )A .297B .144C .99D . 6620.【河南省安阳一中2013—2014学年高一下学期期末考试】设各项均为正数的等差数列n a n 的前}{项和为,1,>m S n 若0211=-++-m m m a a a 且m S m 则,3812=-等于 ( )A .38B .20C .10D .921.【福建省泉州市泉港区第一中学2013-2014学年高一下学期期末考试数学试题】.已知数列}{n a 中,21=a ,*11()2n n a a n N +=+∈,则99a 的值为( ) A .48 B .49 C .50 D .51 22.【福建省泉州市泉港区第一中学2013-2014学年高一下学期期末考试数学试题】设S n =21+61+121+ … +)1(1+n n ,且431=⋅+n n S S ,则n 的值为( )A .9B .8C .7D .623.【辽宁省沈阳市东北育才双语学校2013-2014学年高一下学期期中考试数学试题】 已知等差数列的前项和,若,则( )A.72B. 68C. 54D. 9024.【辽宁省沈阳市东北育才双语学校2013-2014学年高一下学期期中考试数学试题】等比数列中,若、是方程的两根,则的值为( )A.2B.D.25.【辽宁省沈阳市东北育才双语学校2013-2014学年高一下学期期中考试数学试题】等差数列的前项和,满足,则下列结论中正确的是( )A .是中的最大值B .是中的最小值C .300S =D .600S =26.【辽宁省沈阳市东北育才双语学校2013-2014学年高一下学期期中考试数学试题】若数列满足为常数,则称数列为“调和数列”,若正项数列为“调和数列”,且12990b b b +++=,则46b b ×的最大值是( ) A .10 B .100 C .200 D .40027.【辽宁省沈阳市东北育才双语学校2013-2014学年高一下学期期中考试数学试题】已知成等差数列、成等比数列,则的最小的值是( )A .0B .1C .2D .428.【上海市金山中学2013—2014学年度第二学期高一年级数学学科期末考试卷】设)(21312111)(*N n nn n n n f ∈+++++++= ,那么=-+)()1(n f n f ( ) A .121+n B .221121+-+n n C .221+n D .221121+++n n 29.【上海市金山中学2013—2014学年度第二学期高一年级数学学科期末考试卷】无穷等差数列的各项均为整数,首项为、公差为,是其前项和,3、21、15是其中的三项,给出下列命题:{}n a n n S 4518a a =-8S ={}n a 2a 6a 221180x x ++=4a 2±2-{}n a n n S 2040S S =30S n S 30S n S {}n a *111(,n nd n N d a a +-=?){}n a 1{}nb 0,0,x y x a b y >>、、、xcd y 、、、2()a b cd+}{n a 1a d n S n①对任意满足条件的,存在,使得99一定是数列中的一项;②对任意满足条件的,存在,使得30一定是数列中的一项;③存在满足条件的数列,使得对任意的*N n ∈,n n S S 42=成立。
第⼆学期⾼⼀数学期中试卷试题 有时间的我们要多做数学的题⽬,可能做多了就会了,今天⼩编就给⼤家分享⼀下⾼⼀数学吗,⼤家来多多参考哦 第⼆学期⾼⼀数学期中试题 1.在中,若 ,则⼀定为( ) 直⾓三⾓形等腰三⾓形等边三⾓形锐⾓三⾓形 2.某⼚去年年底的产值为,今年前两个⽉产值总体下降了36%,要想后两个⽉产值恢复到原来⽔平,则这两个⽉⽉平均增长( ) 18% 25% 28% 以上都不对 3.若,是两条不同的直线,,是两个不同的平⾯,则下列说法不正确的是( ) 若∥,,则 若∥,,则 若∥,,则 若 = ,且与,所成⾓相等,则 4.设点 ,若直线与线段没有交点,则的取值范围是( ) 5.三棱椎的三视图为如图所⽰的三个直⾓三⾓形,则三棱锥的表 ⾯积为( ) 6.如图为正四⾯体,⾯于点,点 , , 均在平⾯外,且在⾯的同⼀侧,线段的中点为 ,则直线与平⾯所成⾓的正弦值为( ) 7. 数列的⾸项为,为等差数列 .若,,则 ( ) 8.实数对满⾜不等式组,若⽬标函数 在时取最⼤值,则的取值范围是( ) 9. 已知等⽐数列满⾜则当时, ( ) 10.三棱锥中,顶点在底⾯内的射影为,若 (1)三条侧棱与底⾯所成的⾓相等, (2)三条侧棱两两垂直, (3)三个侧⾯与底⾯所成的⾓相等; 则点依次为垂⼼、内⼼、外⼼的条件分别是( ) (1)(2)(3) (3)(2)(1) (2)(1)(3) (2)(3)(1) 填空题(每⼩题5分,5⼩题,共25分) 11.有⼀块多边形的菜地,它的⽔平放置的平⾯图形的斜⼆测直观图是直⾓梯形(如图所⽰), ,则这块菜地的⾯积为__________. 12.在三⾓形中, ,则的⾯积为 . 13.边长为1的正⽅体,它的内切球的半径为 ,与正⽅体各棱都相切的球的半径为 ,正⽅体的外接球的半径为,则 , , 依次为 . 14.在平⾯直⾓坐标系中,过点的直线与轴和轴的正半轴围成的三⾓形的⾯积的最⼩值为 . 15. (填“ ”或者“ ”). 解答题(6⼩题,共75分) 16.(12分)在中,求的⾯积的最⼤值. 17.(12分)已知满⾜, (1)求⼆次函数的解析式; (2)若不等式在上恒成⽴,求实数的取值范围. 18.(12分)在四棱锥中,四边形是平⾏四边形,分别是的中点, 求证:平⾯ ; 若且,求证平⾯平⾯ . 19.(13分)已知数列的前项和满⾜: , 设,证明数列为等⽐数列,并求数列的通项公式; 求数列的前项和 . 20.(13分)已知三个不同的平⾯两两相交,得三条不同的交线,求证:三条交线交于⼀点或彼此平⾏. 21.(13分)设数列的前项和为,,点在直线上, (1)求数列的通项公式; (2)设,求证: . ⾼⼀年级数学试卷参考答案 ⼀、单项选择题(每⼩题5分,10⼩题,共50分) 1—10 ⼆、填空题(每⼩题5分,5⼩题,共25分) 11. 12. 或 13. 14.4 15. 三、解答题(6⼩题,共75分) 16.(12分) 解:∵在中, 由余弦定理及基本不等式得 ∴∴ . 17.(12分) 解:(1)设 由得,由得 化简解得, ∴ . (2)由题在上恒成⽴, 即,则∴ . 18.(12分) (1)证明:取线段的中点为 ,连接 ,∵分别是的中点,则 , ∴四边形为平⾏四边形∴ , ⾯,⾯∴⾯ . (2)证明:设 , 交于∵四边形为平⾏四边形, ∴为,中点,, ,∴,∴⾯,⼜⾯∴⾯⾯ . 19.(13分) (1)由题时,①② ①-②得 即,,数列为公⽐为的等⽐数列; 当时, , ; (2)由(1)得, ③ ④ ③-④化简得 . 20.(13分) 已知:,,, 求证:或 . 证明:,,或 若,则,, ⼜ 若,且,⼜且 . 21.(13分) (1)由题意,∴数列为公差是1的等差数列∴∴ 时,∴,也适合, ∴, ; (2) ,⼜为增函数, ∴的最⼩值为 ∴ . ⾼⼀数学下学期期中试题阅读 1.已知数列,则5是这个数列的( )A.第12项B.第13项C.第14项D.第25项 2.不等式的解集为( )A.[-1,0]B.C.D. 3.已知,则下列不等式⼀定成⽴的是( ) A. B. C. D. 4.在中,⾓所对的边分别为,若,则⾓为( )A. 或B. 或C. 或D. 或 5.设实数满⾜约束条件,则的最⼩值为( ) A. B.1 C. 3 D0 6.若的三个内⾓满⾜,则的形状为( )A.⼀定是锐⾓三⾓形B.⼀定是直⾓三⾓形 C⼀定是钝⾓三⾓形. D.形状不定 7.已知等差数列的公差且成等⽐数列,则 ( ) A. B. C. D. 8.若的三个顶点是,则的⾯积为( ) A. B.31 C.23 D.46 9.等⽐数列的各项均为正数,若,则A.12B.10C.8 D 10.设为等差数列的前项和,若,,则下列说法错误的是( ) A. B. C. D. 和均为的最⼤值 ⼆、填空题(共5题,每题5分) 11.设等差数列的前项和为,若,则 12.已知数列的前项和为,那么 13.如图,某⼈在电视塔CD的⼀侧A处测得塔顶的仰⾓为,向前⾛了⽶到达处测得塔顶的仰⾓为,则此塔的⾼度为__________⽶ 14.设点在函数的图像上运动,则的最⼩值为____________ 15.有以下五种说法: (1)设数列满⾜,则数列的通项公式为 (2)若分别是的三个内⾓所对的边长,,则⼀定是钝⾓三⾓形 (3)若是三⾓形的两个内⾓,且 ,则 (4)若关于的不等式的解集为,则关于的不等式的解集为 (5)函数的最⼩值为4 其中正确的说法为_________(所有正确的都选上) 解答题(共75分) 16.已知⼆次函数,不等式的解集是 (1)求实数和的值; (2)解不等式 17.已知数列的前项的和为 (1)求证:数列为等差数列; (2)求 18.已知是的三边长,且 (1)求⾓ (2)若,求⾓的⼤⼩。
辽宁省实验中学2023—2024学年度上学期12月阶段测试高一数学试卷一.选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是考试时间:120分钟试题满分:150分符合题目要求的。
1.已知集合(){}2{14,},,,A x x x B x y y x x A =<<∈==∈Z ,则A B = ( )A .{}2B .{}2,3C .{}4,9D .∅2.已知函数()()2231mm f x m m x −−=+−是幂函数,且()0,x ∈+∞时,()f x 单调递增,则m 的值为( )A .1B .1−C .2−D .2−或13.若,a b 是方程230x x +−=的两个实数根,则22a a b ++=( ) A .1B .2C .3D .44.一种药在病人血液中的量保持在500mg 以上时才有疗效,而低于100mg 时病人就有危险.现给某病人的静脉注射了这种药2500mg ,如果药在血液中以每小时20%的比例衰减,以保证疗效,那么下次给病人注射这种药的时间最迟大约是(参考数据:lg20.3010≈)( ) A .5小时后B .7小时后C .9小时后D .11小时后5.已知31log 2833log 3,log 4,3a b c−===,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .a c b >>D .c b a >>6.设函数()y f x =存在反函数()1y f x −=,且函数()2y x f x =−的图象过点()2,3,则函数()1yf x −=−的图象一定过点( )A .()1,1−B .()3,2C .()1,0D .()2,17.函数()f x 和()g x 的定义域均为R ,已知()13yf x =+为偶函数,()11yg x =++为奇函数,对于x ∀∈R ,均有()()23f x g x x +=+,则()()44f g =( ) A .66B .70C .124D .1448.已知函数()24,0e 1,0xx x x f x x − −+≥= −< ,若关于x 的不等式()()22[]0f x mf x n −−<恰有两个整数解,则实数m 的最小值是( )A .21−B .14−C .7−D .6−二.选择题:本题共4小题,每小题5分,共20分。
广东实验中学2013—2014学年(下)高一级模块考试数 学本试卷分基础检测与能力检测两部分,共4页.满分为150分。
考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷上,并用2B 铅笔填涂学号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.第一部分 基础检测(共100分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知1cos ,(370,520),2ααα=∈︒︒则等于 ( ) A .390︒ B .420︒ C .450︒ D .480︒2. 直线xtan057=-y π的倾斜角是 ( ) A .52π B .-52π C .57π D .53π3. 在平行四边形ABCD 中,BC CD BA -+等于 ( )A .BCB .DAC .ABD .AC 4. 已知向量,,则 ( )A .B .C .D .5. cos15︒的值是( )A 6. 已知||5,||3,12,a b a b ==⋅=-且则向量a 在向量b 上的投影等于( )A .4-B .4C .125-D .1257. 把函数()sin(2)3f x x π=-+的图像向右平移3π个单位可以得到函数()g x 的图像,则()4g π等于( )A . C .1- D .1 8. 在四边形 ABCD 中,AB → =DC → ,且AC → ·BD →= 0,则四边形 ABCD 是( )A 矩形B 菱形C 直角梯形D 等腰梯形9. 已知函数()()212fx x x cos cos=-⋅,x ∈R ,则()f x 是( )A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数C .最小正周期为2π的偶函数 D .最小正周期为π的偶函数10. 已知函数14sin()929y A x x x ππωφ=+==在同一个周期内当时取最大值,当时取最小值12-,则该函数的解析式为() A .2sin()36x y π=- B .1sin(3)26y x π=+ C .1sin(3)26y x π=- D .1sin()236x y π=--二、填空题:本大题共4小题,每小题5分,共20分.已知一个扇形周长为4,面积为1,则其中心角等于 (弧度)11. 已知向量a ,b 夹角为60°,且||a =1,|2|a b -=||b =__________. 12. 已知sin cos sin()2sin(),2sin cos πααπαααα+-=-+=-则13. 已知向量,a b 满足||1,||2a b ==,()a b a -⊥, 向量a 与b 的夹角为________.三、解答题:本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤. 14. (本小题满分10分) 已知函数()2sin f x =63x ππ⎛⎫+⎪⎝⎭(05)x ≤≤,点A 、B 分别是函数()y f x =图像上的最高点和最低点. (1)求点A 、B 的坐标以及OA ·OB 的值;(2)没点A 、B 分别在角α、β的终边上,求tan (2αβ-)的值.15. (本小题满分10分)已知点),0,0(O (2,3),(5,4),(7,10),()A B C AP AB AC R λλ=+∈若 1) 是否存在λ,使得点P 在第一、三象限的角平分线上? 2) 是否存在λ,使得四边形OBPA 为平行四边形? (若存在,则求出λ的值,若不存在,请说明理由。
)16. (本小题满分10分)已知sin()sin 0,32ππαααα++=-<<求cos 的值。
·········第二部分 能力检测(共50分)四、填空题:本大题共2小题,每小题5分,共10分.17. 已知平行四边形ABCD ,则AB CD AC DB AD BC ⋅+⋅+⋅=18. 已知2sin 2sin 1,sin cos 0,R x y y x m x y +=+-≥∈且对任意的恒成立,则m 的取值范围是五、解答题:本大题共3小题,共40分.解答应写出文字说明、证明过程或演算步骤. 19. (本小题满分13分)已知(53cos ,cos ),(sin ,2cos )a x x b x x ==,函数2()||f x a b b =⋅+. (1)求函数()y f x =的周期和对称轴方程; (2)求函数()y f x =的单调递减区间.20. (本小题满分13分)已知点(,)P x y 是直线40kx y ++=(0)k >上一动点,,PA PB 是圆C :2220x y y +-=的两条切线,A 、B 是切点,若四边形PACB 的最小面积是2,则k 的值为?21. (本小题满分14分)已知奇函数 f (x ) 在 (-∞,0)∪(0,+∞) 上有意义,且在 (0,+∞) 上是增函数,f (1) = 0,又函数 g (θ) = sin 2θ + m cos θ-2m ,若集合M = {m | g (θ) < 0},集合 N = {m |f [g (θ)] < 0},求M ∩N .广东实验中学2013—2014学年(下)高一级模块四考试数学参考答案第一部分 基础检测(共100分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.B A AC C AD B C B二、填空题:本大题共4小题,每小题5分,共20分. 11.2 12.4 13.13 14.4π 三、解答题:本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤. 15. (本小题满分10分) 已知函数()2sin f x =63x ππ⎛⎫+⎪⎝⎭(05)x ≤≤,点A 、B 分别是函数()y f x =图像上的最高点和最低点. (1)求点A 、B 的坐标以及OA ·OB 的值;(2)没点A 、B 分别在角α、β的终边上,求tan (2αβ-)的值.解:(1)50≤≤x , ππ7π3636x π∴≤+≤, ……………………………1分 ∴1ππsin()1263x -≤+≤. ……………………………………………………………2分当πππ632x +=,即1=x 时,ππsin()163x +=,)(x f 取得最大值2; 当ππ7π636x +=,即5=x 时,ππ1sin()632x +=-,)(x f 取得最小值1-.因此,点A 、B 的坐标分别是(1,2)A 、(5,1)B -. ……………………………4分152(1)3OA OB ∴⋅=⨯+⨯-=. ……………………………………………………5分(2)点)2,1(A 、)1,5(-B 分别在角α、β的终边上,tan 2α∴=,51tan -=β, …………………………………………7分212()55tan 21121()5β⨯-==---, ………………………………………………8分 ∴52()2912tan(2)5212()12αβ---==+⋅-. ………………………………………………10分16.(本小题满分10分)已知点(2,3),(5,4),(7,10),()A B C AP AB AC R λλ=+∈若 1) 是否存在λ,使得点P 在第一、三象限的角平分线上? 2) 是否存在λ,使得四边形OBPA 为平行四边形? 解:1)存在。
设(,)P x y ,则(2,3)AP x y =--,(3,1),(5,7),AB AC ==…………………3分AP AB AC λ=+由得23555,31747x x y y λλλλ-=+=+⎧⎧⇒⎨⎨-=+=+⎩⎩……………………………………5分若点P 在第一、三象限的角平分线上,则x y =,即5547λλ+=+,12λ=。
……………………………………6分2)不存在。
若四边形OBPA 为平行四边形,则OP OA OB =+…………………………………8分(7,7)OA OB +=,所以557477x y λλ=+=⎧⎨=+=⎩,无解。
………………………………10分17.(本小题满分10分)已知sin()sin 0,32ππαααα++=-<<求cos 的值。
解:sin()sin 3παα++=得1sin cos sin 2a αα⋅++=3sin cos 2αα⋅+=2分3144sin cos sin cos sin()22565a παααα⋅+=⇒⋅=-⇒+=-……………………………………5分366a πππ-<+<, ……………………………………6分 3cos()65a π∴+==……………………………………7分cos cos[()]cos()cos sin()sin 666666a a a a ππππππ∴=+-=+++…………9分=341()552+-⋅=10分 另解:sin()sin 3παα++=得1sin cos sin 2a αα⋅++=38sin cos sin cos 25αααα⋅+=⇒+=-………………………2分228sin cos 5sin cos 1a a αα⎧=-⎪⎨⎪+=⎩………………………4分 由8sin cos 5αα+=-得sina =代入得22cos 1a ⇒+= ………………………6分2100cos 80cos 110a a ⇒+-= ………………………7分解得:cos a =, ………………………9分cos [1,1]a ∈-,cos a ∴=………………………10分 第二部分 能力检测(共50分)四、填空题:本大题共2小题,每小题5分,共10分. 18.0 19.0m ≤ 20.(本小题满分13分)已知(53cos ,cos ),(sin ,2cos )a x x b x x ==,函数2()||f x a b b =⋅+. (1)求函数()y f x =的周期和对称轴方程; (2)求函数()y f x =的单调递减区间.解:1)222253cos sin 2cos ,||sin 4cos a b x x x b x x ⋅=+=+……………………2分22222()sin 2cos sin 4cos sin 6cos sin f x x x x x x x x x x =+++=++……………………………………3分1cos 25cos 272512222x x x x +=++=++ ……………………5分1775(sin 2cos 2)5sin(2)2262x x x π=⋅+=++ ……………………6分 所以,22T ππ==; …………………………………………7分 由262x k πππ+=+,得,26k x k Z ππ=+∈,为对称轴方程; …………………… 9分 2)由3222262k x k πππππ+≤+≤+,得:2,63k x k k Z ππππ+≤≤+∈………12分 所以函数的单调递减区间为2[,],63k k k Z ππππ++∈ ……………………13分21.(本小题满分13分)已知点(,)P x y 是直线40kx y ++=(0)k >上一动点,,PA PB 是圆C :2220x y y +-=的两条切线,A 、B 是切点,若四边形PACB 的最小面积是2,则k 的值为?解:C:222220(1)1x y y x y +-=⇒+-=,圆心C (0,1),半径为1;……………2分 如图,1,,,22P A C BP A P B C BP B C A P A S P A C A P A=⊥⊥∴=⋅⋅⋅=…………………4分2,2PACD S PA ≥∴≥ ……………………6分 222221,5PC PA CA PA PC =+=+∴≥即点C …………………8分所以d ==11分解得:2k =±(负舍)……………………12分所以2k =……………………13分 22.(本小题满分14分) 已知奇函数 f (x ) 在 (-∞,0)∪(0,+∞) 上有意义,且在 (0,+∞) 上是增函数,f (1) = 0,又函数 g (θ) = sin 2θ + m cos θ-2m ,若集合M = {m | g (θ) < 0},集合 N = {m | f [g (θ)] < 0},求M ∩N .解:依题意,f (-1) = -f (1) = 0,又f (x ) 在 (0,+∞) 上是增函数,∴ f (x ) 在 (-∞,0) 上也是增函数, …………………………………………1分 ∴ 由 f (x ) < 0得x < -1或0 < x < 1 …………………………………………2分 ∴ N = {m | f [g (θ)] < 0} = {m | g (θ) < -1或0 < g (θ) < 1},……………………3分M ∩N = {m | g (θ) < -1} ……………………4分由g (θ) < -1得 sin 2θ + m cos θ-2m < -1 ……………………5分即 m (2-cos θ) > 2-cos 2θ ……………………6分 ∴ m > 2-cos 2θ2-cos θ = 4-(2-cos θ + 22-cos θ ) ……………………7分设t = 2-cos θ,h (t ) = 2-cos θ + 22-cos θ = t + 2t ……………………9分∵ cos θ∈[-1,1] ⇒ t ∈[1,3], ……………………10分 ∴ h (t )-2 2 = t + 2t -2 2 = t - 2 + 2-2t t = (t -2)2t≥0……………11分且 h ( 2 )-2 2 = 2 +22-2 2 = 0 ……………………12分∴ h (t )min = 2 2 ⇒ 4-h (t ) 的最大值为 4-2 2 ……………………13分 ∴ m > 4-2 2 ⇒ M ∩N = {m | m > 4-2 2 } ……………………14分另解:本题也可用下面解法: 1. 用单调性定义证明单调性∵ 对任意 1 < t 1 < t 2≤ 2 ,t 1-t 2 < 0,t 1 t 2-2 < 0∴ h (t 1)-h (t 2) = t 1 + 2t 1 -(t 2 + 2t 2 ) = (t 1-t 2) (t 1 t 2-2)t 1 t 2> 0 ⇒ h (t 1) > h (t 2)即 h (t ) 在 [1, 2 ] 上为减函数同理 h (t ) 在 [ 2 ,3] 上为增函数,得h (t )min = h ( 2 ) = 2 2 ……………………5分 ∴ m > 4-h (t )min = 4-2 2 ⇒ M ∩N = {m | m > 4-2 2 } 2. 二次函数最值讨论解:依题意,f (-1) = -f (1) = 0,又f (x ) 在 (0,+∞) 上是增函数, ∴ f (x ) 在 (-∞,0) 上也是增函数, ∴ 由 f (x ) < 0得x < -1或0 < x < 1∴ N = {m | f [g (θ)] < 0} = {m | g (θ) < -1或0 < g (θ) < 1},M ∩N = {m | g (θ) < -1} ……………………4分由g (θ) < -1得 sin 2θ + m cos θ-2m < -1 ⇒ cos 2θ-m cos θ + 2m -2 > 0 恒成立⇒ (cos 2θ-m cos θ + 2m -2)min > 0 …………………5分 设t = cos θ,h (t ) = cos 2θ-m cos θ + 2m -2 = t 2-mt + 2m -2 = (t -m2 ) 2-m 24 + 2m-2……………………6分 ∵ cos θ∈[-1,1] ⇒ t ∈[-1,1],h (t ) 的对称轴为 t = m2 ……………………7分1︒ 当 m2> 1,即 m > 2 时,h (t ) 在 [-1,1] 为减函数∴ h (t )min = h (1) = m -1 > 0 ⇒ m > 1 ⇒ m > 2 ……………………9分 2︒ 当 -1≤m2≤1,即 -2≤m ≤2 时,∴ h (t )min = h ( m 2 ) = -m 24 + 2m -2 > 0 ⇒ 4-2 2 < m < 4 + 2 2 ⇒ 4-2 2 < m≤2……………………11分 3︒ 当 m2< -1,即 m < -2 时,h (t ) 在 [-1,1] 为增函数∴ h (t )min = h (-1) = 3m -1 > 0 ⇒ m > 13 无解 ……………………13分综上,m > 4-2 2 ⇒ M ∩N = {m | m > 4-2 2 } ……………………14分 3. 二次方程根的分布解:依题意,f (-1) = -f (1) = 0,又f (x ) 在 (0,+∞) 上是增函数, ∴ f (x ) 在 (-∞,0) 上也是增函数, ∴ 由 f (x ) < 0得x < -1或0 < x < 1∴ N = {m | f [g (θ)] < 0} = {m | g (θ) < -1或0 < g (θ) < 1}, M ∩N = {m | g (θ) < -1}由g (θ) < -1得 sin 2θ + m cos θ-2m < -1 ⇒ cos 2θ-m cos θ + 2m -2 > 0 恒成立⇒ (cos 2θ-m cos θ + 2m -2)min > 0设t = cos θ,h (t ) = cos 2θ-m cos θ + 2m -2 = t 2-mt + 2m -2 = (t -m 2 ) 2-m 24 + 2m -2∵ cos θ∈[-1,1] ⇒ t ∈[-1,1],h (t ) 的对称轴为 t = m 2,△= m 2-8m + 8 ……………………7分1︒ 当 △< 0,即 4-2 2 < m < 4 + 2 2 时,h (t ) > 0 恒成立。