控制系统的设计和校正
- 格式:ppt
- 大小:3.94 MB
- 文档页数:72
控制系统校正方案一、引言在现代工业生产中,控制系统的准确性和稳定性对于提高生产效率和质量具有至关重要的作用。
为了确保控制系统能够正常运行并达到预期的性能指标,进行校正是必不可少的步骤。
本文将介绍一个控制系统校正的方案,以确保系统的精度和稳定性。
二、校正目标和方法1. 校正目标控制系统的校正目标包括但不限于以下几点:- 确保系统输出与预期值的一致性;- 提高响应速度和稳定性;- 降低系统误差;- 优化系统的控制参数。
2. 校正方法为了达到以上校正目标,可以采用以下几种校正方法:- PID控制器校正:通过调节比例、积分和微分参数,优化系统的响应速度和稳定性。
- 系统参数标定:通过系统辨识和参数优化,准确计算系统的传递函数,从而实现准确的校正。
- 信号处理和滤波:对采集到的信号进行滤波处理,去除噪声和干扰,提高测量的准确性。
三、校正步骤1. 系统准备在进行校正之前,首先需要进行系统准备工作,包括:- 检查设备的状态和连接;- 清理传感器和执行器,确保其正常运作;- 确定校正所需的参考信号和标准值。
2. 传感器校正对于涉及传感器的控制系统,传感器的准确性对于系统的稳定性和精度至关重要。
传感器校正的步骤包括:- 确定传感器的输出量程和灵敏度;- 对传感器进行零点和量程校准;- 验证传感器输出与标准值的一致性。
3. 控制器校正控制器是控制系统中的核心部件,其参数的准确性和合理性对系统的性能起着决定性的影响。
控制器校正的步骤包括:- 选择适当的校正方法,如基于频率响应的校正方法或基于试验的校正方法;- 根据校正方法的要求,进行相应的实验和数据采集;- 通过数据分析和参数优化,获得合适的控制器参数。
4. 系统整体校正在完成传感器和控制器的校正后,需要进行系统整体校正,以验证系统的性能和稳定性。
系统整体校正的步骤包括:- 提供合适的输入信号,验证系统输出与预期值的一致性;- 分析系统的响应速度、稳定性和误差;- 对系统进行参数调整和优化,以实现满足要求的控制效果。
实验4 控制系统的校正1、主要内容 控制系统的校正及设计上机实验2、目的与要求熟悉应用 MATLAB 软件设计系统的基本方法熟悉应用 SISO Design Tool 进行系统设计的基本方法通过学习自行设计完成一个二阶系统串联校正设计任务3、重点与难点:自行设计完成一个二阶系统串联校正设计任务自行设计完成一个二阶系统并联校正设计任务一、实验目的1、掌握串联校正环节对系统稳定性的影响;2、了解使用 SISO 系统设计工具(SISO Design Tool )进行系统设计。
二、设计任务串联校正是指校正元件与系统的原来部分串联,如图 1 所示。
图 中 ,()c G s 表 示 校 正 部 分 的 传 递 函 数 , 0()G s 表 示 系 统 原 来 前 向 通 道 的 传 递 函 数 。
当 1()(1)1c aTs G s a Ts+=>+时,为串联超前校正;当1()(1)1c aTs G s a Ts+=<+时,为串联迟后校正。
我们可以使用 SISO 系统设计串联校正环节的参数,SISO 系统设计工具(SISO Design Tool )是用于单输入单输出反馈控制系统补偿器设计的图形设计环境。
通过该工具,用户可以快速完成以下工作:利用根轨迹方法计算系统的闭环特性、针对开环系统 Bode 图的系统设计、添加补偿器的零极点、设计超前/滞后网络和滤波器、分析闭环系统响应、调整系统幅值或相位裕度等。
(1)打开 SISO 系统设计工具在 MA TLAB 命令窗口中输入 sisotool 命令,可以打开一个空的 SISO Design Tool ,也可以在 sisotool 命令的输入参数中指定 SISO Design Tool 启动时缺省打开的模型。
注意先在 MATLAB 的当前工作空间中定义好该模型。
如图 2 为一个 DC 电机的设计环境。
(2)将模型载入 SISO 设计工具通过 file/import 命令,可以将所要研究的模型载入 SISO 设计工具中。
控制系统的校正(一)一、校正方式1、串联校正;2、反馈校正;3、对输入的前置校正;4、对干扰的前置校正。
二、校正设计的方法3.等效结构与等效传递函数方法主要是应用开环Bode 图。
基本做法是利用校正装置的Bode ,配合开环增益的调整,修改原系统的Bode 图,使得校正后的Bode 图符合性能指标的要求。
1.频率法2.根轨迹法利用校正装置的零、极点,使校正后的系统,根据闭环主导极点估算的时域性能指标满足要求。
将给定的结构(或传递函数)等效为已知的典型结构或典型的一、二阶系统,并进行对比分析,得出校正网络的参数。
三、串联校正1.超前校正(相位超前校正)2.滞后校正(相位滞后校正()111)(>++=a Ts aTss G c 超前校正装置的传递函数为L (ω)aT m 1=ω20lg G c (jωm )=10lg a 其中:11=tg ()()aT tg T ()−−−ϕωωω11sin 1m a a −−=+ϕ四、超前校正频率法超前校正频率法设计思路:利用超前校正装置提供的正相移,增大校正后系统的相稳定裕度。
因此,通常将校正后系统的截止频率取为:c m=ωω此时,超前装置提供的相移量为:11()sin 1m a a −−=+ϕω新的截止频率位于校正装置两个转折频率的几何中心,即:20lg ()10lg 0m G j a +=a T m 1=ω例1:单位负反馈系统的开环传递函数为)2()(+=s s Ks G 设计校正装置,使得系统的速度误差系数等于20,相稳定裕度。
45≥γ202)()(lim 0==⋅=→K s H s G s K s v 解K=40)15.0(20)(+=ωωωj j j G (1) 确定K 值调整增益后的开环频率特性为srad c /2.61=ω01004518)2.65.0(90180<=⨯−−=−tg γ11sin 1+−=−a a m ϕ(2) 计算原系统相稳定裕度14)(40211=+c c ωω截止频率满足1c ω计算相稳定裕度γ(3) 计算参数{ }a ()111)(>++=a Ts aTss G ca=3.26db 1.526.3lg 10=2020log() 5.12mm ωω=−⨯s rad m /5.8=ω5.81==a T m ω(4) 确定频率mω(5) 计算参数T 00015184511sin +−=+−−a a T =0.065011109.13421.0065.05.090)(−=+−−−=−−−c c c c tg tg tg ωωωωϕ加入校正装置后系统的开环传递函数为)1065.0)(15.0()121.0(20)()(+++=s s s s s G s G c (6) 验证001.45)(180=+=c ωϕγ满足性能指标要求。
控制系统校正的设计原理控制系统校正的设计原理是通过对控制系统进行检测和调整,使其达到预期的性能和稳定性。
校正设计的目标是最大限度地减小系统的误差,并使系统能够在不同的工况下保持稳定和可靠的运行。
以下是控制系统校正设计的一些基本原理。
1. 误差检测与分析:首先需要对控制系统的误差进行检测和分析。
误差可以分为静态误差和动态误差。
静态误差是指系统在稳态下的偏差,动态误差则是指系统在过渡过程中的偏差。
通过对误差的检测和分析,可以确定所需的校正策略和方法。
2. 校正模型建立:校正设计的第一步是建立系统的数学模型。
根据实际情况,可以利用传递函数、状态空间模型或其他数学方法来描述系统的动态特性。
校正模型的建立是校正设计的基础,它可以帮助我们理解系统的行为和性能,并作为校正过程中的参考。
3. 校正方法选择:根据校正设计的目标和要求,选择合适的校正方法。
常见的校正方法包括增益校正、相位校正、时间延迟校正等。
不同的校正方法适用于不同的系统和校正需求,选择恰当的校正方法可以提高系统的性能和稳定性。
4. 校正过程设计:校正过程设计是校正设计中的关键步骤。
根据校正方法的选择,设计出合理的校正过程。
校正过程一般包括系统的输入输出信号获取、信号处理和计算、校正参数的确定等步骤。
设计良好的校正过程可以提高校正的效率和准确性。
5. 校正效果评估:在完成校正过程后,需要对校正效果进行评估。
校正效果评估可以通过比较校正前后的系统性能指标、误差大小等来进行。
如果校正的效果达到了预期的要求,即达到了设计指标,那么校正过程可以结束。
如果校正效果不理想,可以重新调整校正参数,或者尝试其他的校正方法。
6. 长期稳定性考虑:除了短期的校正设计,还需要考虑系统的长期稳定性。
随着时间的推移,系统的参数和性能可能会发生变化,因此需要定期进行校正和调整,以确保系统始终能够保持良好的性能和稳定性。
以上是控制系统校正设计的一些基本原理。
校正设计是控制系统工程中重要的环节,能够帮助提高系统的控制性能和稳定性。
控制系统的校正与调节方法一、引言控制系统的校正与调节方法是现代工程领域中重要的技术问题。
在制造和工业生产过程中,控制系统的准确性和性能稳定性对于提高生产效率和产品质量至关重要。
本文将介绍控制系统的校正与调节方法,以帮助读者更好地理解和应用控制系统技术。
二、控制系统的校正方法1. 传感器校正传感器是控制系统中的关键部件,其准确性和稳定性对整个系统的控制效果有着重要影响。
传感器校正是指通过对传感器进行实验或者理论推导,调整其输出信号以使之达到预期的准确性。
常见的传感器校正方法包括零点校正、放大倍数校正和线性度校正等。
2. 信号处理器的校正信号处理器用于处理从传感器获取的信号,将其转化为系统所需的控制信号。
为确保信号处理器的准确性和可靠性,有必要进行校正。
常见的信号处理器校正方法包括电压校准、频率校准和相位校准等。
三、控制系统的调节方法1. 反馈控制调节反馈控制调节是指根据系统输出信号与期望信号之间的差异,通过控制器对系统进行调节的方法。
该方法在工程领域被广泛应用,可以有效地改善系统的稳定性和动态性能。
常见的反馈控制调节方法包括比例控制、积分控制和微分控制等。
2. 前馈控制调节前馈控制调节是一种预先根据系统模型设计的控制器,通过输入信号的预测值来实现对系统的调节。
与反馈控制调节相比,前馈控制调节更快速、精确,适用于对系统动态特性要求较高的场景。
常见的前馈控制调节方法包括前馈增益调节和前馈补偿调节等。
3. 模糊控制调节模糊控制调节是一种利用模糊逻辑推理来实现对系统的调节的方法。
相较于传统的控制方法,模糊控制调节更适用于复杂、非线性的控制系统,能够提高系统的稳定性和鲁棒性。
常见的模糊控制调节方法包括模糊推理规则的设计和隶属度函数的确定等。
四、结论控制系统的校正与调节方法是实现高效、稳定控制的关键环节。
通过对传感器和信号处理器的校正,可以确保控制系统的准确性和可靠性。
同时,选择合适的调节方法,如反馈控制调节、前馈控制调节和模糊控制调节等,可根据系统需求来提高控制的性能指标。