一道试题的解法探究
- 格式:doc
- 大小:26.00 KB
- 文档页数:4
一道联赛试题的解法探讨由于没有具体题目,本篇文章将以一道例题为例进行解析。
例题:在10个人中选出3人,分别在数字1-10中抽取数,求其中至少有1个人得到两个相同数的概率。
解法一:使用概率的公式 $P(A) = \dfrac{|A|}{|S|}$,其中 $|A|$ 表示事件 $A$ 的样本点个数,$|S|$ 表示样本空间的样本点个数。
首先需要求出出三个人后,每人抽到两个不同的数,在此时至少有一人得到两个相同的数的概率,即为事件$A$。
对于第一个人,从$10$个数中任选一个,有$10$种情况。
对于第二个人,不能与第一个人抽到的数相同,则从其余$9$个数中任选一个,有$9$种情况。
对于第三个人,同样不能与前两个人抽到的数相同,则从其余$8$个数中任选一个,有$8$种情况。
而三个人抽出的数必须两两不同,则总共的样本点个数为:$|S| = {10 \choose 3} = \dfrac{10 \times 9 \times 8}{3\times 2 \times 1}=120$。
因此,事件$A$的样本点个数为:$|A| = 10 \times 9 \times 8 - 10 \times 9 \times 8 \times \dfrac{7}{10}\times \dfrac{6}{9} \times \dfrac{5}{8} = 300$。
其中,$10 \times 9 \times 8$ 表示三个人抽出的三个数两两不同的情况数,$10 \times 9 \times 8 \times \dfrac{7}{10}\times\dfrac{6}{9} \times \dfrac{5}{8}$ 表示三个人抽出的三个数两两不同但没有任何一个人得到两个相同数的情况数。
因此,事件$A$的概率为:$P(A) = \dfrac{|A|}{|S|} = \dfrac{300}{120} = 2.5$。
显然,这个答案不符合概率的定义,因此解法一是错误的。
利用二级结论 优解椭圆小题——2023年高考数学甲卷理科第12题解法探究ʏ甘肃省张掖市实验中学 王新宏圆锥曲线试题是高考数学的必考试题,是重点也是难点㊂大部分同学对其有畏惧心理,找不到解决的突破口㊂2023年高考数学甲卷理科第12题是一道椭圆压轴小题,它以椭圆焦点三角形为背景,考查椭圆的定义㊁余弦定理㊁焦点三角形等知识,题干简洁,设问直接,内涵丰富㊂本题入手比较容易,方法比较多,考查同学们理性思维与数学探究能力,体现了逻辑推理㊁直观想象㊁数学运算等核心素养㊂解决本题的关键在于数形结合,即可考虑用余弦定理,也可考虑焦半径公式㊁焦点三角形面积公式㊁中线的向量公式㊁中线定理㊁极化恒等式等相关二级结论迅速求解㊂试题凝聚了命题专家的心血与智慧,简约而不简单,为不同能力水平的同学提供了相应的思考空间,是一道独具匠心的好题㊂1.试题呈现2023年高考数学甲卷理科第12题:图1如图1所示,设O 为坐标原点,F 1,F 2为椭圆C :x 29+y26=1的两个焦点,点P 在椭圆C上,c o s øF 1P F 2=35,则|O P |=( )㊂A.135 B .302 C .145 D .3522.解法探究解法1:(挖出两角互补这个隐含条件)由椭圆方程知a 2=9,b 2=6㊂因为c 2=a 2-b 2,所以a =3,c =3,e =c a =33㊂在әP F 1F 2中,由余弦定理得:c o s øF 1P F 2=|P F 1|2+|P F 2|2-|F 1F 2|22|P F 1|㊃|P F 2|㊂则35=|P F 1|2+|P F 2|2-(23)22|P F 1|㊃|P F 2|=(|P F 1|+|P F 2|)2-122|P F 1|㊃|P F 2|-1㊂所以85=36-122|P F 1|㊃|P F 2|=12|P F 1|㊃|P F 2|,解得|P F 1|㊃|P F 2|=152㊂在әP O F 1和әP O F 2中,øP O F 1+øP O F 2=π,由余弦定理得:|P O |2+|O F 1|2-|P F 1|22|P O |㊃|O F 1|=-|P O |2+|O F 2|2-|P F 2|22|P O |㊃|O F 2|㊂解得|P O |2=152,所以|O P |=302㊂点评:解题的关键是发现øP O F 1+øP O F 2=π,c o s øP O F 1=-c o s øP O F 2这样的隐含条件,它往往能帮助整个题目的顺利求解㊂解法2:(借焦半径之力)同解法1,可得|P F 1|㊃|P F 2|=152㊂设P (x P ,y P ),则由焦半径公式得|P F 1|=a +e x P =3+33x P ,|P F 2|=a -e x P =3-33x P ,所以9-13x 2P =152,得x 2P =92㊂将P (x P ,y P )的坐标代入椭圆方程得y 2P =3,所以|O P |=x 2P +y 2P =92+3=302,选B ㊂点评:二级结论之焦半径公式:椭圆x2a2+63 解题篇 创新题追根溯源 高二数学 2024年3月y 2b2=1(a >b >0)的两个焦点为F 1(-c ,0),F 2(c ,0),其上一点P (x 0,y 0),则|P F 1|=a +e x 0,|P F 2|=a -e x 0㊂证明过程:|P F 1|=(x 0+c )2+y 20=(x 0+c )2+b 2-b 2x 2a 2=c 2x 20a2+2c x 0+a2=c x 0a+a2=c x 0a+a =e x 0+a ㊂同理可证|P F 2|=a -e x 0㊂焦点在y 轴上的椭圆的焦半径公式为|P F 1|=a +e y 0,|P F 2|=a -e y 0㊂解法3:(与焦点三角形面积公式结合)设øF 1P F 2=2θ,0<θ<π2,所以S әP F 1F 2=b 2t a nøF 1P F 22=b 2t a n θ㊂由c o s øF 1P F 2=c o s 2θ=c o s 2θ-s i n 2θc o s 2θ+s i n 2θ=1-t a n 2θ1+t a n 2θ=35,解得t a n θ=12或-12(舍去)㊂由椭圆方程可知,a 2=9,b 2=6,c 2=a 2-b 2=3㊂所以,S әP F1F2=12ˑ|F 1F 2|ˑ|y P |=12ˑ23ˑ|y P |=6ˑ12,解得y 2P =3㊂则x 2P =9ˑ1-36=92㊂因此,|O P |=x 2P +y 2P =3+92=302,故选B ㊂点评:二级结论之椭圆焦点三角形面积公式:椭圆x 2a 2+y2b 2=1(a >b >0)的两个焦点为F 1(-c ,0),F 2(c ,0),其上异于左右顶点的一点P (x 0,y 0)(x 0ʂʃa ),则әP F 1F 2的面积S =b 2t a n α2(α=øF 1P F 2)㊂证明过程:如图2所示,设P (x ,y ),由余弦定理得|F 1F 2|2=|P F 1|2+|P F 2|2-2|P F 1|㊃|P F 2|c o s α㊂①由椭圆的定义得:图2|P F 1|+|P F 2|=2a ㊂②则②2-①得:|P F 1|㊃|P F 2|=2b21+c o s α㊂故S әP F 1F 2=12|P F 1|㊃|P F 2|s i n α=12㊃2b 21+c o s αs i n α=b 2t a n α2㊂解法4:(与中线的向量公式结合)由题意知|P F 1|2+|P F 2|2-2|P F 1|㊃|P F 2|c o s øF 1P F 2=|F 1F 2|2,即|P F 1|2+|P F 2|2-65|P F 1||P F 2|=12㊂①并且|P F 1|+|P F 2|=6㊂②解得|P F 1||P F 2|=152,|P F 1|2+|P F 2|2=21㊂而P O ң=12P F 1ң+P F 2ң ,所以|O P |=|P O ң|=12|P F 1ң+P F 2ң|㊂则|P O ң|=12|P F 1ң+P F 2ң|=12|P F 1ң|2+2P F 1ң㊃P F 2ң+|P F 2ң|2=1221+2ˑ35ˑ152=302,故选B ㊂图3点评:如图3所示,若A D 为әA B C 边B C 的中线,则A D ң=12(A B ң+A C ң),中线的向量公式在高考中也备受青睐㊂解法5:(与中线定理结合)由题意知|P F 1|+|P F 2|=2a =6㊂①|P F 1|2+|P F 2|2-2|P F 1||P F 2|㊃c o s øF 1P F 2=|F 1F 2|2,即|P F 1|2+|P F 2|2-65|P F 1||P F 2|=12㊂②联立①②,解得|P F 1|2+|P F 2|2=21㊂73解题篇 创新题追根溯源 高二数学 2024年3月由中线定理可知,|O P |2=2(|P F 1|2+|P F 2|2)-|F 1F 2|24㊂易知|F 1F 2|=23,解得|O P |=302㊂故选B ㊂点评:(1)二级结论之中线定理:如图4所示,若平行四边形A B C D 的对角线交于点O ,则|A O ң|2=2(|A B ң|2+|A C ң|2)-|C B ң|24㊂图4证明过程:A B ң+A C ң=2A O ң,①A B ң-A Cң=C B ң㊂②①2+②2得2(|A B ң|2+|A C ң|2)=(2|A O ң|)2+|C B ң|2,则|A Oң|2=2(|A B ң|2+|A C ң|2)-|C B ң|24,得证㊂中线定理在计算有关中线长度与相邻两边长度关系时,化繁为简,从而事半功倍㊂(2)中线定理的一个有用推论:平行四边形对角线的平方和等于其相邻两边平方和的两倍,即在图4中,|B D ң|2+|A C ң|2=2(|A B ң|2+|A D ң|2)㊂解法6:(与极化恒等式结合)由题意知|P F 1|+|P F 2|=2a =6㊂①|P F 1|2+|P F 2|2-2|P F 1||P F 2|㊃c o s øF 1P F 2=|F 1F 2|2,即|P F 1|2+|P F 2|2-65|P F 1||P F 2|=12㊂②联立①②,解得|P F 1||P F 2|=152,|P F 1|2+|P F 2|2=21㊂由极化恒等式得P F 1ң㊃P F 2ң=|P F 1ң|㊃|P F 2ң|c o s øF 1P F 2=|O P ң|2-|O F 1ң|2=92,解得|O P |=302㊂故选B ㊂点评:二级结论之极化恒等式:如图4所示,若平行四边形A B C D 的对角线交于点O ,则A B ң㊃A D ң=|A O ң|2-|B O ң|2㊂证明过程:A B ң+A C ң=2A O ң,①A B ң-A D ң=D B ң㊂②①2-②2,得A B ң㊃A C ң=14[(2|A O ң|)2-(2|B O ң|)2]=|A O ң|2-|B O ң|2,得证㊂极化恒等式在处理与中线有关的数量积时,往往会出奇制胜,事半功倍㊂3.巩固练习(1)(2019年高考浙江卷理科第15题)已知椭圆x 29+y25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段P F 的中点在以原点O 为圆心,|O F |为半径的圆上,则直线P F 的斜率是㊂(2)(2019年全国Ⅰ卷文科第12题)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与椭圆C 交于A ,B 两点,如果|A F 2|=2|F 2B |,|A B |=|B F 1|,则椭圆C 的方程为( )㊂A.x 22+y 2=1 B .x 23+y 22=1C .x 24+y 23=1 D .x 25+y24=1答案:(1)15 (2)B 4.小结与启示从以上内容可以看出,对于解析几何小题,一般不直接考虑设点的坐标运算,而是先画草图,接着充分考虑图形的几何性质特征与圆锥曲线定义,以及相关的二级结论,这样往往更能帮助同学们看清图形元素间内在的联系,挖掘问题本质,简化解题过程,减少运算量,提高解题的效率,快速准确解题㊂对高考真题进行适当的研究,不但可以明确高考重难点,把握高考方向,避免学习的随意性㊁盲目性,而且可以有效训练同学们的思维能力,培养创新意识,提高学习数学的兴趣㊂(责任编辑 徐利杰)83 解题篇 创新题追根溯源 高二数学 2024年3月。
一道试题的解法探究与教学反思广西南宁市第三十六中学(530001) 庞 毅[摘 要]通过对一道高三摸底试题进行考情分析、解法探究和问题拓展,揭示试题的本质,并从注重解题经验积累培养数学运算素养、注重信息技术应用培养学生数字素养两个方面提出教学反思。
[关键词]解法探究;教学反思;圆锥曲线;信息技术[中图分类号] G 633.6 [文献标识码] A [文章编号] 1674-6058(2024)05-0025-03解析几何是高考加强“综合性”考查的重要载体。
广西南宁市2024届高中毕业班摸底测试第21题将直线与椭圆的位置关系以及长度计算相结合,问题设计紧扣高考评价体系的“基础性、综合性、应用性、创新性”考查要求,既基础又开放,对高三数学复习备考具有重要的参考意义。
一、试题呈现与考情分析(一)试题呈现已知平面上动点E 到点A (1,0)与到圆B :x 2+y 2+2x -15=0的圆心B 的距离之和等于该圆半径。
记Ε的轨迹为曲线Γ。
(1)说明Γ是什么曲线,并求Γ的方程;(2)设C 、D 是Γ上关于x 轴对称的不同两点,点M 在Γ上,且M 异于C 、D 两点,O 为原点,直线CM 交x 轴于点P ,直线DM 交x 轴于点Q ,试问||OP ·||OQ 是否为定值?若为定值,求出这个定值;若不是定值,请说明理由。
评析:本题主要考查椭圆的定义、标准方程、几何性质和直线方程等主干知识,考查通过代数运算结果判断几何性质的坐标法和函数与方程、转化与化归以及数形结合等数学思想,考查逻辑推理、数学运算等核心素养。
第(2)问是开放性问题,重点考查学生的创新能力和探索精神。
(二)考情分析本题的考试情况如表1所示。
表1 考情分析题目第21题实考人数54110满分12平均分1.15标准差1.77难度0.15区分度0.21满分率0.16零分率29.52从统计的结果来看,本题总体平均分1.15,难度0.15,这个结果出乎命题组的预料。
一道试题的解法探究
题目(2015届湖北省部分重点中学高三起点考试理科第13题)已知函数f(x)=12x2-bx+1(b∈R),若方程f(x)=x在区间(-1,1)上有解,求实数b的取值范围.
点评本题的处理方法一般是利用实根分布的知识解决二次方程在区间上有解的方法,但若只是顾及问题的表面,解完之后缺乏反思,就没有有效挖掘本题所蕴含的一系列数学思想方法,应该说就错失了一次绝佳锻炼思维的机会.为说明问题,下面给出几种思路,供参考:
解法一(分类讨论的思想)由方程f(x)=x12x2-(b+1)x+1=0,记函数h(x)=12x2-(b+1)x+1,考虑h(0)=1>0,对称轴x=b+1的不确定,于是b+1与定义域区间(-1,1)的位置关系生成讨论的标准:①若-1≤b+1≤1即-2≤b≤0时,此时上述方程中Δ=(b+1)2-21即b>0时,要函数h (x)在(-1,1)上有零点,则只须h(1)12;③若b+112.
评析一般的在涉及二次函数在区间上有零点或最值的问题上,通常研究的方法都是利用其对称轴与定义域区间的位置关系生成分类讨论的标准,然后再逐步依据题目的要求将问题予以解决.此种做法易想能做,但解题过程繁杂,能否找到有效回避分类讨论的处理方法呢?
解法二:(正繁则反补集法)考虑到h(0)=1>0,问题的对立面为方程f(x)=x在区间(-1,1)上无解,也即是函数h(x)=12x2-(b+1)x+1在区间(-1,1)上无零点,则只须h(1)≥0
h(-1)≥0-52≤b≤12,则原题有解b的范围为b12.
评析一个数学问题通常都具有两面性,当一方较为繁琐的时候,往往其对立面一般就会稍显简单,上述处理正是有效利用这一点,使解题过程得到了简化.以上两种做法都绕不开利用二次方程在区间上有实根的相关知识来解题的,那么本题能否另辟蹊径呢?
解法三:(等价转换的思想)由方程f(x)=x在(-1,1)上有解,可得bx=12x2-x+1.若x=0时,上述方程显然不成立,即方程的解一定不为0,于是可得b=x2+1x-1(x≠0),也即对x∈(-1,0)∪(0,1)时总存在唯一实数b让方程成立,于是参数b可看作是以x为自变量的函数,即求b的范围等价于求右侧函数的值域了.易求上述函数的值域为(-∞,-52)∪(12,+∞),也即为b的取值范围.
评析将方程有解问题转化为求函数值域问题,为常规的解题寻找到全新的视角,凸显了等价转换思想的重要意途.然而纵观上述三种处理无一例外都是从代数层面来进行求解的,那么本题是否可以从“形”的一面来介入呢?
解法四:(数形结合的思想)由解法三知方程
bx=12x2-x+1在(-1,1)上有解,从“形”的角度可看作是直线y=bx与二次函数y=12x2-x+1的图象在x∈(-1,1)上有交点,考虑到参数b的几何意义为直线的斜率,分别作出两者的图象,易求斜率b的取值范围为b12.
评析上述解法化代数的抽象为几何的直观,通过挖掘参数的几何意义,用直线的倾斜程度清晰呈现了方程的解即为两图象有交点,此时斜率b的取值范围也一目了然,解题过程得到了大大简化.
数学讲思想,登高好望远,任何一个数学问题的给出,通常都对应着一种较为自然的常规处理,然而当将一般的做法处理完毕,特别是常规的处理较为繁琐时,是否能够在其基础之上,循着数学思想方法的引领,做多样性的有益尝试,这样不断坚持,数学解题的能力才会不断得到提高.使这些错题能够成为今后数学学习的镜鉴,让一次错误酿造出十分收获,并在此过程中增加学生思维的深刻性与严密性.如上面所讲,在教学实践中,能够发现出现错误的原因主要是由于知识体系的不够完善,为了填补知识上的漏洞,督促学生整理错题无疑是最佳选择途径.为了达到监督学生正确记录错题的目标,可以按照下述过程进行教学.首先是指导学生进行错题分类,依错题的种类(如填空、选择、计算等;依数形结合、化归思想应用等)或者依错误出现的原因(如技巧不足、计算失误、概念应用不当等),把错题进行分门别
类的收纳整理.这样处理错题可以使学生对于易错点的查找更加方便,给接下来的复习带来方便.其次是给学生提供科学的记录手段.事实证明,最恰当的记录手段不是直接记录正确解法,而是记录错误解法,并用不同颜色的笔在出现错误的位置标记出来,只标记位置,但是不记录原因,等到一段时间之后(如一个星期)再根据错误记录给出正确答案,这样才是追求数学意识与数学真理的好办法.第三是要注意对错题记录的补充.教师要督促学生对于典型例题的时常回顾,查找有关资料,找到与该题类似的问题,并作出独立解答,防止一次错误的再次出现.
在高中数学课堂教学中纠错环节,教师应当掌握科学的方法,善于把错题变成教学的法宝,用正确的态度看待学生已经出现、可能出现的各类错误,并采取有效的办法利用好错误资源.当然,本文中提到的错题解决策略展开方法并非可以应用到所有教学场景,教师也并非能够全程带领学生处理所有错题,最终还是要由学生独立根据自身情况进行错题整理,从而达到减少错误、提高效率的目标.。