一道向量高考题的拓展探究
- 格式:pptx
- 大小:985.16 KB
- 文档页数:24
试题研究2024年1月上半月㊀㊀㊀四点共面,链接教材,变式拓展以一道高考题为例◉江苏省张家港市沙洲中学㊀陶㊀贤㊀㊀空间中的四点共面的判断与证明是空间向量与立体几何部分的一个基本知识点,也是一大难点,历年高考数学试题中较少涉及,没有引起大家的高度重视.而在2020年高考数学全国卷Ⅲ的文科和理科试题中,都出现了空间四点共面的证明问题,也充分说明了该部分知识的基础性与重要性.借助空间中四点共面的判断与证明,很好地考查考生的数形结合思想㊁空间想象能力与推理论证能力,以及直观想象㊁逻辑推理等数学核心素养.1真题呈现图1高考真题㊀(2020年高考数学全国卷Ⅲ理科第19题)如图1,在长方体A B C D GA 1B 1C 1D 1中,点E ,F 分别在棱D D 1,B B 1上,且2D E =E D 1,B F =2F B 1.(1)证明:点C 1在平面A E F 内.(2)若A B =2,A D =1,A A 1=3,求二面角A GE F GA 1的正弦值.此题以长方体为问题背景,通过相应线段的长度关系,证明点在平面内(其实就是证明四点共面)以及求解二面角的平面角的正弦值,改变以往传统的证明直线与平面之间的平行或垂直关系,令人耳目一新.图22问题破解(Ⅰ)第(1)问的证法如下:证法1:几何法.如图2,在棱C C 1上取点G ,使得C 1G =12C G ,连接D G ,F G ,C 1E ,C 1F .在长方体A B C D GA 1B 1C 1D 1中,A D ʊBC 且AD =B C ,B B 1ʊC C 1且B B 1=C C 1.由C 1G =12C G ,B F =2F B 1,可得C G =23C C 1=23B B 1=B F ,所以四边形B C G F 为平行四边形,则G F ʊB C 且G F =B C .又B C ʊA D 且B C =A D ,所以A D ʊG F 且A D =G F ,即四边形A F D G 是平行四边形,则A F ʊD G 且A F =D G .同理可证,四边形D E C 1G 为平行四边形,则C 1E ʊD G 且C 1E =D G .所以C 1E ʊA F 且C 1E =A F ,则四边形A E C 1F为平行四边形.因此,点C 1在平面A E F 内.证法2:基底法1共面向量定理.在长方体A B C D GA 1B 1C 1D 1中,B B 1ʊC C 1ʊD D 1且B B 1=C C 1=D D 1,结合2DE =E D 1,BF =2F B 1,可得E D 1=B F .由A C 1ң=A C ң+C C 1ң=A B ң+A D ң+D E ң+E D 1ң=A B ң+A D ң+D E ң+B F ң=(A B ң+B F ң)+(A D ң+D E ң)=A F ң+A E ң,知A ,E ,F ,C 1四点共面,所以点C 1在平面A E F 内.证法3:基底法2共面向量定理的推论.设D 1A 1ң=a ,D 1C 1ң=b ,D 1D ң=c ,则D 1A ң=a +c ,D 1E ң=23c ,可得c =32D 1E ң,于是a =D 1A ң-32D 1E ң.由D 1F ң=D 1A 1ң+A 1B 1ң+B 1F ң=D 1A 1ң+D 1C 1ң+13B 1B ң=D 1A 1ң+D 1C 1ң+13D 1D ң=a +b +13c =(D 1A ң-32D 1E ң)+D 1C 1ң+13ˑ32D 1E ң=D 1A ң+D 1C 1ң-D 1E ң(其中1+1-1=1),知A ,E ,F ,C 1四点共面,所以点C 1在平面A E F 内.图3证法4:坐标法.设A B =a ,A D =b ,A A 1=c ,如图3所示,以C 1为坐标原点,C 1D 1ң的方向为x 轴正方向,建立空间直角坐标系C 1Gx yz .连接C 1F ,则C 1(0,0,0),A (a ,b ,c ),E (a ,0,23c ),F (0,b ,13c ),于862024年1月上半月㊀试题研究㊀㊀㊀㊀是E A ң=(0,b ,13c ),C 1F ң=(0,b ,13c ),可得E A ң=C 1F ң,因此E A ʊC 1F ,即A ,E ,F ,C 1四点共面,所以点C 1在平面A E F 内.点评:证明空间中的四点共面问题,常见的证明方法就是以上三大类 (1)利用空间几何图形的特征,借助几何法的推理与论证,通过空间问题平面化来证明;(2)利用共面向量定理或推论,借助空间向量的基底法,通过向量的线性运算与转化来证明;(3)利用空间直角坐标系的建立,借助坐标法的运算,通过向量的平行判断与转化来证明等.特别地,对于共面向量定理及其推论,是立体几何中的一个重要的定理,可以用来处理一些与之相关的问题,往往可以使问题处理得更加简捷㊁巧妙.(Ⅱ)第(2)问的解法如下:解:以C 1为坐标原点,C 1D 1ң的方向为x 轴正方向,建立空间直角坐标系C 1Gx yz ,则由已知可得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0),则A E ң=(0,-1,-1),A F ң=(-2,0,-2),A 1E ң=(0,-1,2),A 1F ң=(-2,0,1).设平面A E F 的法向量为m =(x 1,y 1,z 1).由m A E ң=0,m A F ң=0,{得-y 1-z 1=0,-2x 1-2z 1=0,{取z 1=-1,得x 1=y 1=1,则m =(1,1,-1).设平面A 1E F 的法向量为n =(x 2,y 2,z 2).由n A 1E ң=0,n A 1F ң=0,{得-y 2+2z 2=0,-2x 2+z 2=0,{取z 2=2,得x 2=1,y 2=4,则n =(1,4,2).所以c o s ‹m ,n ›=m n |m ||n |=1+4-23ˑ21=77.设二面角A GE F GA 1的平面角为θ,则|c o s θ|=77,可得s i n θ=1-c o s 2θ=427.因此,二面角A GE F GA 1的正弦值为427.点评:坐标法是求解二面角的平面角的三角函数值问题中一个比较常见的方法,借助空间直角坐标系的建立,以及对应的点㊁向量的坐标的表示,结合相应两半平面的法向量的设置与确定,结合向量的数量积公式的转化与应用来确定相应的二面角的平面角问题.坐标法实现了用代数方法处理立体几何问题中的四点共面㊁线面位置关系㊁空间角㊁距离等几何推理与求解问题.3链接教材以上基于向量的四点共面的判断,其对应的共面向量定理及其推论是数学教材中的一个基本知识点,来源于教材,又服务于证明,可以很好地证明或求解与四点共面有关的数学问题.普通高中课程标准实验教科书«数学 选修2-1»(人教A 版)第87页:结论1:共面向量定理.空间一点P 位于平面A B C 内的充要条件是存在有序实数对(x ,y ),使A P ң=xA B ң+y A C ң.普通高中课程标准实验教科书«数学 选修2-1»(人教A 版)第88页思考 :结论2:共面向量定理的推论.空间任意一点O 和不共线的三点A ,B ,C 满足向量关系式O P ң=xO A ң+y O B ң+zO C ң(x +y +z =1)的点P 与点A ,B ,C 共面.共面向量定理是共线向量定理在空间中的推广与拓展,共线向量定理用来证明三点共线,共面向量定理用来证明四点共面.4变式拓展图4高考真题㊀(2020年高考数学全国卷Ⅲ文科第19题)如图4,在长方体A B C D GA 1B 1C 1D 1中,点E ,F分别在棱D D 1,B B 1上,且2D E =E D 1,BF =2F B 1.证明:(1)当A B =B C 时,E F ʅA C ;(2)点C 1在平面A E F 内.证明:(1)连接B D ,B 1D 1.因为A B =B C ,所以四边形A B C D 为正方形,故A C ʅB D .又因为B B 1ʅ平面A B C D ,于是B B 1ʅA C ,而B D ,B B 1Ì平面B B 1D 1D ,所以A C ʅ平面B B 1D 1D .因为E F ÌB B 1D 1D ,所以E F ʅA C .(2)可以参照上述理科真题第(1)问的证明方法.5解后反思新一轮课程改革的核心就是培育学生的核心素养,发展学生的综合能力.承载着 立德树人㊁服务选才和引导教学 功能的数学高考,应借助试题 情境 的变革,夯实基础,以教材为本并超越教材,着眼于基础知识㊁基本技能㊁基本方法的考查,特别重视对数学思想方法㊁关键能力和学科素养的考查.因而在平时的数学教学与复习中,教师应在拓展延伸中紧扣课本,链接教材,注重归类迁移能力培养,聚焦思维品质,培养关键能力,从而有效实现学生数学素养的渐进式提升.Z96。
如何利用向量解决高考数学中的几何问题几何问题在高考数学中占据了相当大的比重,许多同学在几何方面的理解和解题能力都尤为薄弱。
针对这一问题,目前解决的方法有很多,其中较为有效的一种方法是借助向量知识来解决几何问题。
一、向量的基本概念向量可以简单地理解为“有方向的线段”,用字母块表示,如$\vec{a}$、$\vec{b}$等。
向量有两个基本属性,即大小和方向。
向量的大小表示为模,用$|\vec{a}|$表示,表示一个向量的长度,方向表示向量的朝向。
二、向量的加减向量的加法是指将两个向量相加得到一个新向量的过程。
加法满足向量的交换律、结合律和分配律。
具体来说,设$\vec{a}$、$\vec{b}$、$\vec{c}$是三个向量,则:(i)$\vec{a}+\vec{b}=\vec{b}+\vec{a}$(向量加法的交换律)(ii)$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$(向量加法的结合律)(iii)$k(\vec{a}+\vec{b})=k\vec{a}+k\vec{b}$(向量加法的分配律)同样,向量的减法是指将两个向量相减得到一个新向量的过程。
三、向量的数量积和向量积向量的数量积是指将两个向量的模长相乘再乘以它们的夹角余弦值,用$\vec{a}\cdot\vec{b}$或$\langle\vec{a},\vec{b}\rangle$表示,其中$|\vec{a}||\vec{b}|\cos\alpha$表示$\vec{a}$和$\vec{b}$的夹角余弦值,$\alpha$是$\vec{a}$和$\vec{b}$的夹角。
向量的数量积有如下性质:(i)${\vec{a}}\cdot{\vec{b}}={\vec{b}}\cdot{\vec{a}}$(交换律)(ii)${\vec{a}}\cdot({\vec{b}}+{\vec{c}})={\vec{a}}\cdot{\vec{b}}+{\v ec{a}}\cdot{\vec{c}}$(分配律)(iii)${k}\cdot({\vec{a}}\cdot{\vec{b}})=({k}\cdot{\vec{a}})\cdot{\vec{b }}={\vec{a}}\cdot({k}\cdot{\vec{b}})$(数乘结合律)向量积又叫叉乘,用$\vec{a}\times\vec{b}$或$[\vec{a},\vec{b}]$表示,表示一个新的向量,其模长等于$\vec{a}$和$\vec{b}$所组成的平行四边形的面积,方向垂直于$\vec{a}$、$\vec{b}$构成的平面,其方向顺序由右手定则决定。
高考数学难点突破_难点03__运用向量法解题运用向量法解题是高考数学中的一个难点,需要掌握向量的性质和运算规则,并能够灵活运用向量的概念和方法解决问题。
下面将结合具体例题,深入探讨如何突破这一难点。
例题一:已知点A(2,1),B(4,5),C(6,3),求点D使得ABCD为平行四边形。
解析:首先,我们可以使用向量的方法来解决这一问题。
设向量AB 为a,向量AD为b,则向量AC为a+b。
根据平行四边形的性质,向量BD 与向量AC平行且等长,即向量BD与向量AC共线且大小相等。
由向量的定义可知,向量BD=向量AC=(6-2,3-1)=(4,2)。
所以点D的坐标为B的坐标加上向量BD的坐标,即D(4,5)+(4,2)=(8,7)。
通常情况下,解这类问题时可以设A、B、C三点的坐标分别为(x1,y1),(x2,y2),(x3,y3),向量AB为a=(x2-x1,y2-y1),向量AC为a+b。
然后,我们可以用(x1,y1)+b=(x4,y4)代表点D的坐标。
再将向量BD与AC进行运算,找到满足平行四边形的点D坐标。
例题二:已知直线l的方程为x-2y+3=0,点A(1,2),求点P使得AP 垂直于直线l。
解析:根据题意,点P在直线l上,假设点P的坐标为(x,y)。
则向量AP=(-1,2)+(x-1,y-2)=(x-2,y)。
由垂直向量的性质可知,向量AP与直线l的法向量垂直。
直线l的法向量为(1,-2)。
因此,AP与(1,-2)的点乘为0,即(x-2,y)•(1,-2)=0。
将点乘展开计算,得到x-2y=2、由此可得到点P的坐标为(x,y)=(2,-1)。
综上所述,使用向量法解题可以使解题过程更加简洁明了。
但是在运用向量法解题时,需要掌握向量的性质,并能够运用垂直、平行、共线和点乘等相关概念来解决不同类型的问题。
同时,我们还需要注意合理地选取坐标系和使用向量的运算规则。
合理地选取坐标系可以简化计算,使问题更具可行性。
例析高考试题中平面向量的四大运算策略及教学反思高考数学试题中,平面向量是一个重要的考点。
平面向量的四大运算,包括加法、减法、数量乘法和点乘,是解决向量题目的基础。
本文将通过分析高考试题的形式与内容,探讨四大运算策略的应用,并对教学过程进行反思,以提升学生的理解与应用能力。
一、加法运算策略在高考试题中,平面向量的加法运算常常需要进行分解和合成等处理方式。
在解题过程中,可以遵循以下策略:1. 分析向量所在的直角坐标系,确定其坐标分量。
2. 利用三角函数关系,将向量转化为分解形式。
3. 根据分解的形式进行运算,确定最终的结果向量。
例如,某高考试题如下:已知向量a = (-3, 2)、向量b = (4, -1),求向量a + b。
解答过程如下:1. 分析向量坐标分量:对向量a,横坐标为-3,纵坐标为2;对向量b,横坐标为4,纵坐标为-1。
2. 进行分解运算:向量a + b = (-3 + 4, 2 - 1) = (1, 1)。
3. 得出最终结果向量:向量a + 向量b = (1, 1)。
通过以上步骤,我们成功地完成了向量的加法运算。
二、减法运算策略平面向量的减法运算是解决向量题目中常见且重要的一种运算。
在减法运算中,我们可以采用以下策略:1. 利用加法的逆运算,将减法转化为加法运算。
2. 根据向量的坐标分量进行相减操作,得到最终结果。
例如,某高考试题如下:已知向量a = (2, 3)、向量b = (-1, 4),求向量a - b。
解答过程如下:1. 利用加法的逆运算:向量a - 向量b = 向量a + (-1) ×向量b。
2. 进行相减操作:向量a + (-1) ×向量b = (2, 3) + (-1) × (-1, 4)。
= (2, 3) + (1, -4)。
= (3, -1)。
3. 得出最终结果向量:向量a - 向量b = (3, -1)。
通过以上步骤,我们成功地完成了向量的减法运算。
一道高考向量题的多种解法探究
尹杰杰
【期刊名称】《中学数学研究》
【年(卷),期】2015(000)012
【摘要】题目(2008年浙江理9)已知a^→,b^→是平面内的两个互相垂直的单位向量,若c^→满足(a^→-c^→)·(b^→-c^→)=0,则|c^→|的最大值是().
【总页数】3页(P45-47)
【作者】尹杰杰
【作者单位】广东省仁化中学,512300
【正文语种】中文
【相关文献】
1.一道向量题的多种解法探究 [J], 陈武
2.一道高考向量模长题的多种解法 [J], 何春良
3.一道高考题与一道竞赛题的解法探究 [J], 曾宪安;沈家书
4.一道高考向量题多种解法的思维切入点 [J], 张兴锋
5.转换视角巧妙突破——一道高考平面向量题的多种解法 [J], 何小淳
因版权原因,仅展示原文概要,查看原文内容请购买。
08高考数学运用向量法解题平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场(★★★★★)三角形ABC 中,A (5,-1)、B (-1,7)、C (1,2),求:(1)BC 边上的中线 AM 的长;(2)∠CAB 的平分线AD 的长;(3)cos ABC 的值.●案例探究[例1]如图,已知平行六面体ABCD —A1B 1C 1D 1ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD .(1)求证:C 1C ⊥BD .(2)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.命题意图:本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用a ⊥b ⇔a ·b =0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设=a , =b ,1CC =c ,依题意,|a |=|b |,、1CC 中两两所成夹角为θ,于是-==a -b ,CC ⋅1=c (a -b )=c ·a -c ·b =|c |·|a |cos θ-|c |·|b |cos θ=0,∴C 1C ⊥BD .(2)解:若使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1,由)()(1111CC CD AA CA D C CA -⋅+=⋅=(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c |2=|a |2-|c |2+|b |·|a |cos θ-|b |·|c |·cos θ=0,得 当|a |=|c |时,A 1C ⊥DC 1,同理可证当|a |=|c |时,A 1C ⊥BD , ∴1CC CD=1时,A 1C ⊥平面C 1BD .[例2]如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求的长;(2)求cos<11,CB BA >的值;(3)求证:A 1B ⊥C 1M .命题意图:本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题.属 ★★★★级题目.知识依托:解答本题的闪光点是建立恰当的空间直角坐标系O -xyz ,进而找到点的坐标和求出向量的坐标.错解分析:本题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy 内的A 、B 、C 点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1)解:如图,以C 为原点建立空间直角坐标系O -xyz . 依题意得:B (0,1,0),N (1,0,1)∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得:A 1(1,0,2),C (0,0,0),B 1(0,1,2). ∴1BA =1),2,1,1(CB -=(0,1,2)11CB BA ⋅=1×0+(-1)×1+2×2=3|1BA |=6)02()10()01(222=-+-+-5)02()01()00(||2221=-+-+-=CB .1030563||||,cos 111111=⋅=⋅<∴CB BC CB BA (3)证明:依题意得:C 1(0,0,2),M (2,21,21))2,1,1(),0,21,21(11--==A C∴,,00)2(21121)1(1111C A C A ⊥∴=⨯-+⨯+⨯-=⋅∴A 1B ⊥C 1M . ●锦囊妙计1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.3.用空间向量解决立体几何问题一般可按以下过程进行思考: (1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论?●歼灭难点训练 一、选择题1.(★★★★)设A 、B 、C 、D 四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD 为( )A.正方形B.矩形C.菱形D.平行四边形2.(★★★★)已知△ABC=a ,=b ,a ·b <0,S△ABC =415,|a |=3,|b |=5,则a 与b 的夹角是( )A.30°B.-150°C.150°D.30°或150° 二、填空题3.(★★★★★)将二次函数y =x 2的图象按向量a 平移后得到的图象与一次函数y =2x -5的图象只有一个公共点(3,1),则向量a =_________.4.(★★★★)等腰△ABC 和等腰Rt △ABD 有公共的底边AB ,它们所在的平面成60°角,若AB =16 cm,AC =17 cm,则CD =_________.三、解答题5.(★★★★★)如图,在△ABC 中,设=a , =b , =c ,=λa ,(0<λ<1), =μb (0<μ<1),试用向量a ,b 表示c .6.(★★★★)正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a .(1)建立适当的坐标系,并写出A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角.7.(★★★★★)已知两点M (-1,0),N (1,0),且点P 使NM PM ⋅⋅⋅,,成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),Q 为PM 与的夹角,求tan θ.8.(★★★★★)已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的.(1)用向量法证明E 、F 、G 、H 四点共面; (2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有)(41+++=.参考答案难点磁场解:(1)点M 的坐标为x M =)29,0(,29227;0211M y M ∴=+==+- .2221)291()05(||22=--+-=∴AM5)21()15(||,10)71()15(||)2(2222=--+-==--++=D 点分的比为2. ∴x D =31121227,3121121=+⨯+==+⨯+-D y.2314)3111()315(||22=--+-=(3)∠ABC 是与的夹角,而=(6,8),=(2,-5).1452629291052)5(2)8(6)5()8(26||||cos 2222==-+⋅-+-⨯-+⨯=⋅=∴BC BA BC BA ABC 歼灭难点训练一、1.解析: =(1,2), =(1,2),∴=,∴∥,又线段AB 与线段DC 无公共点,∴AB ∥DC 且|AB |=|DC |,∴ABCD 是平行四边形,又||=5, =(5,3),||=34,∴||≠|},ABCD 不是菱形,更不是正方形;又=(4,1),∴1·4+2·1=6≠0,∴不垂直于,∴ABCD 也不是矩形,故选D. 答案:D2.解析:∵21415=·3·5sin α得sin α=21,则α=30°或α=150°.又∵a ·b <0,∴α=150°. 答案:C二、3.(2,0) 4.13 cm三、5.解:∵与共线,∴=m =m (-)=m (μb -a ), ∴=+=a +m (μb -a )=(1-m )a +m μb①又与共线,∴=n =n (-)=n (λa -b ), ∴=+=b +n (λa -b )=n λa +(1-n )b②由①②,得(1-m )a +μm b =λn a +(1-n )b .∵a 与b 不共线,∴⎩⎨⎧=-+=-+⎩⎨⎧-==-010111m n m n n m a m μλμλ即③解方程组③得:m =λμμλμλ--=--11,11n 代入①式得c =(1-m )a +m μb =πμ-11[λ(1-μ)a +μ(1-λ)b ].6.解:(1)以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系.由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-,2,23aa 2a ). (2)取A 1B 1的中点M ,于是有M (0,2,2aa ),连AM ,MC 1,有1MC =(-23a ,0,0), 且=(0,a ,0),1AA =(0,02a )由于1MC ·=0,1MC ·1AA =0,所以M C 1⊥面ABB 1A 1,∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.∵1AC =),2,2,0(),2,2,23(a aAM a a a =-a a a AC 49240221=++=⋅∴a a a a a a a AC 2324||,324143||22221=+==++=而 2323349,cos 21=⨯>=<∴aa aAM AC所以AM AC 与1所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.7.解:(1)设P (x ,y ),由M (-1,0),N (1,0)得, =-=(-1-x ,-y ),-= =(1-x ,-y ), =-NM =(2,0),∴·=2(1+x ), PM ·=x 2+y 2-1,⋅ =2(1-x ).于是,NM PM ⋅⋅⋅,,是公差小于零的等差数列,等价于⎩⎨⎧>=+⎪⎩⎪⎨⎧<+---++=-+03 0)1(2)1(2)]1(2)1(2[211222x y x x x x x y x 即 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆. (2)点P 的坐标为(x 0,y 0),30,1cos 21,3041||cos 42)24)(24()1()1(||||,210220002020*******πθθθ<≤≤<∴≤<-=⋅=∴-=-+=+-⋅++=⋅=-+=⋅x x PNPM x x x y x y x PM y x PM||3cos sin tan ,411cos 1sin 02022y x x =-==∴--=-=∴θθθθθ 8.证明:(1)连结BG ,则+=++=++=+=)(21 由共面向量定理的推论知:E 、F 、G 、H 四点共面,(其中21=EH ) (2)因为21)(212121=-=-=-=. 所以EH ∥BD ,又EH ⊂面EFGH ,BD ⊄面EFGH 所以BD ∥平面EFGH .(3)连OM ,OA ,OB ,OC ,OD ,OE ,OG由(2)知21=,同理21=,所以=,EH FG ,所以EG 、FH 交于一点M 且被M 平分,所以).(41)](21[21)](21[212121)(21OD OC OB OA OG OE OG OE OM +++=+++=+=+=.。