中考专题-圆的有关性质
- 格式:doc
- 大小:99.50 KB
- 文档页数:4
圆专题一、圆的有关性质1、下列命题中,①直径是弦,但弦不一定是直径;②半圆是弧,但弧不一定是半圆;③半径相等的两个圆是等圆;④一条弦把圆分成两段弧中,至少有一段是优弧;⑤长度相等的两条弧是等弧。
其中正确的有( )A.3个B.2个C.1个D.0个2、下列说法中,正确的是( )A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等,所对的圆心角相等3、如图所示,在⊙O 中,A ,C ,D ,B 是⊙O 上四点,OC ,OD 交AB 于点E ,F ,且AE =FB ,下列结论:①OE =OF ;②AC =CD =DB ;③CD ∥AB ;④AC ︵=BD ︵.其中正确的有( )A .4个B .3个C .2个D .1个4.两个正方形彼此相邻,且大正方形ABCD 的A 、D 两点在半圆O 上,小正方形BEFG 顶点F 在半圆O 上;B 、E 两点在半圆O 的直径上,点G 在大正方形边AB 上,若小正方形的边长为4cm ,求该圆的半径.5.如图,点A 、B 、C 在⊙O 上,∠ABO=32°,∠ACO=38°,则∠BOC 等于( )A .60°B .70°C .120°D .140°6. 如图,⊙O 中,∠CBO=450,∠CAO=150,则∠AOB 的度数是( )A.750B.600C.450D.300ABC O7.如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )A.25°B.35°C.55°D.70°8.如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°9.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水的最大深度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm10、工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为mm.11、如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.12、下列命题中正确的有()①垂直于弦的直径平分这条弦;②与弦垂直的直线必过圆心;③平分一条弧的直线必平分这条弧所对的弦;④平分弦的直径垂直于弦,并且平分这条弦所对的两条弧.A. 1 个B. 2 个C. 3 个D. 4 个13、下列命题中正确的有()①垂直于弦的直径平分这条弦;②与弦垂直的直线必过圆心;③平分一条弧的直线必平分这条弧所对的弦;④平分弦的直径垂直于弦,并且平分这条弦所对的两条弧.A. 1 个B. 2 个C. 3 个D. 4 个14.如图,CD是⊙O的弦,直径AB过CD的中点,若∠BOC=40°,则∠ABD的度数为()A.80°B.70°C.60°D.50°15.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC 的长为()16.在一个圆中,给出下列命题,其中正确的是()A. 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B. 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C. 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D. 若两条弦平行,则这两条弦之间的距离一定小于圆的半径17.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()222A.135°B.122.5°C.115.5°D.112.5°18.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )A.2√5cmB.4√5cmC.2√5cm 或4√5cmD.2√3cm4√3cm19.如图,正方形ABCD 内接于⊙O ,AD=4,弦AE 平分BC 交BC 于P ,连接CE ,则CE 的长为( )A.2B.2√5C.212D.45√520.如图,半圆O 的直径AB=10,弦AC=6cm ,AD 平分∠BAC ,则AD 的长为( )A.4√5cmB.3√5cmC. 5√5cmD.4cm21.如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )二、与圆有关的位置关系A .3B .C .6D .1.若⊙O1和⊙O2的半径分别为3cm 和4cm ,圆心距d=7cm,则这两圆的位置关系是( )A.相交B.内切C.外切D.外离2.已知⊙O1的半径为1cm ,⊙O2的半径为3cm ,两圆的圆心距O1O2为2cm ,则两圆的位置关系是( )A.外离B.外切C.相交D.内切3.如图,已知⊙O1的半径为1cm ,⊙O2的半径为2cm ,将⊙O1,⊙O2放置在直线l 上,如果⊙O1在直线l 上任意滚动,那么圆心距O1O2的长不可能是( )A.6cm B.3cm C.2cmD.0.5cm5.已知⊙O1 与⊙O2相交,它们的半径分别是4、7,则圆心距O1O2可能是( )A. 2B. 3C. 6D. 126.已知⊙O1与⊙O2相切,两圆半径分别为3和5,则圆心距O1O2的值是 .三、圆内接正多边形1.一个正多边形的每个外角都等于36°,那么它是( )A . 正六边形 B.正八边形 C.正十边形 D.正十二边形2.对于以下说法:①各角相等的多边形是正多边形;②各边相等的三角形是正三角形;③各角相等的圆内接多边形是正多边形;④各顶点等分外接圆的多边形是正多边形.你认为正确的命题有( ).A. 1 个B. 2 个C. 3 个D. 4 个3.下列说法中,正确的是( )A. 各边都相等的多边形是正多边形B. 正多边形既是轴对称图形又是中心对称图形C. 正多边形都有内切圆和外接圆,且两圆为同心圆D. 各角相等的圆内接多边形为正多边形4.如果一个四边形的外接圆与内切圆是同心圆,则这个四边形一定是( )A. 矩形B. 菱形C. 正方形D. 等腰梯形如图4,⊙1O 、⊙2O 相交于A 、B 两点,两圆的半径分别为6㎝和8㎝,两圆的连心线12O O 的长为10㎝,则弦AB 的长为 ( ) A. 4.8㎝ B. 9.6㎝ C.5.6㎝ D. 9.4㎝5.圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P ,则∠APB 的度数是( )A .36°B .60°C .72°D .108°6.一个正五边形要绕它的中心至少旋转______度,才能与原来的图形重合.7.正多边形的中心角是036,那么这个正多边形的边数是( ).A .10B .8C .6D .58.有一边长为4的正n 边形,它的一个内角为120°,则其外接圆的半径为( )A .34B .4C .32D .29.如果一个正三角形和一个正六边形面积相等,那么它们边长的比为( )A .6:1B :1C .3:1D :110.同圆的内接正方形和外切正方形的周长之比为( )A 1B .2∶1C .1∶2D .111.同圆的内接正三角形与正六边形的边长之比为( )A .1:2B .1:1C 1D .2:112.正六边形内切圆面积与外接圆面积之比为( ).A B .12 C .14 D .3413.圆外切正方形和内接正方形的相似比似( )A.1:2B.2:1C.√2:1D.1: √214.若正方形的边长为6,则其外接圆半径与内接圆半径的大小分别为( )A. 6, 3√2B. 3√2 ,3C. 6,3D. 6√2 ,3√215.在半径为R 的圆中,它的内接正三角形、内接正方形、内接正六边形的边长之比为() A. 1:√2:√3 B. √3: √2:1 C. 1:2:3 D. 3:2:1四、扇形的弧长及面积的计算1.在半径为3的圆中,150°的圆心角所对的弧长是( ).A .B .C .D .2.如图,以AB 为直径的⊙O 与弦CD 相交于点E ,且AC=2,AE=,CE=1.则弧BD 的长是()A .π93B .π33C .π932D .π332 3.已知弧的长为3πcm ,弧的半径为6cm ,则圆弧的度数为( )A .45°B .90°C .60°D .180°4.如图,把直角△ABC 的斜边AC 放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A 2B 2C 2的位置,设AB=√3,BC=1,则顶点A 运动到点A 2的位置时,点A 所经过的路线为( ) A . B . C . D .5.如图,在边长为a 的正方形ABCD 中,分别以B ,D 分圆心,以a 为半径在正方形内部画弧,形成了叶子形图案(阴影部分),则这个叶片形图案的周长为 .6.如图,OA=OB=6cm ,线段OB 从与OA 重合的位置开始沿逆时针方向旋转120°,在旋转过程中,设AB 的中点为P (当OA 与OB 重合时,记点P 与点A 重合),则点P 运动的路径长为( )A .6cmB .4πcmC .2πcmD .3cm7.如图,三角板ABC 中,∠ACB=90°,∠B=30°,BC=6.三角板绕直角顶点C 逆时针旋转,当点A 的对应点A′落在AB 边的起始位置上时即停止转动,则点B 转过的路径长为 (结果保留π).1.已知扇形的半径为6,圆心角为60︒,则这个扇形的面积为( )A .9πB .6πC .3πD .π2.如果扇形的圆心角为150°,它的面积为240π cm 2,那么扇形的半径为( )A .48cmB .24cmC .12cmD .6cm3.已知扇形的面积为2π,半径为3,则该扇形的弧长为 (结果保留π).4.如图,AB 是半圆O 的直径,CD 是半圆的三等分点,AB=12,则阴影部分的面积是( )A .4πB .6πC .12πD .12π-5.如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE ,BD 的延长线交于点C 。
第十二讲圆专项一圆的相关概念及性质知识清单1.圆的定义及其相关概念圆:如图1,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做______.其固定的端点O叫做______,线段OA叫做______.弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做______,如图1,AC,BC是弦,BC是直径.弧:圆上任意两点间的部分叫做圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.大于半圆的弧叫做______(用三个点表示,如图1中的ABC),小于半圆的弧叫做______(如图1中的AC).圆心角:顶点在______的角叫做圆心角(如图1中的∠AOB是AB所对的圆心角).圆周角:顶点在______上,并且两边都与圆相交的角叫做圆周角(如图1中的∠ACB是AB所对的圆周角).2.圆是轴对称图形,对称轴是_____________,由此可得垂径定理:垂直于弦的直径______弦,并且______弦所对的两条弧.推论:平分弦(不是______)的直径______弦,并且______弦所对的两条弧.3.圆是中心对称图形,对称中心是_____________,由此可得在同圆或等圆中,两个圆心角、两条弧、两条弦中如果有一组量相等,那么它们所对应的其余各组量________.4.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半,即∠BAC=12∠BOC(如图2).推论1:同弧或等弧所对的圆周角相等,即∠BAC=∠BDC(如图2).推论2:半圆(或直径)所对的圆周角是______,即∠BCA=90°(如图2);90°的圆周角所对的弦是直径.推论3:圆内接四边形的对角______.考点例析例1 往水平放置的半径为13 cm的圆柱形容器内装入一些水以后,截面图如图1所示.若水面宽度AB=24 cm,则水的最大深度为()A.5 cm B.8 cm C.10 cm D.12 cm图1分析:如图1,作与弦AB垂直的半径,先利用垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长.归纳:过圆心作弦的垂线可以构造垂径定理基本图形,常结合勾股定理求线段长.在图1所示的AB,OB,OD,CD四个量中,OB=OD+CD,2222ABOD OB⎛⎫+=⎪⎝⎭,利用这两个关系式,知道其中任何两个,其余两个都能求出来.例2 如图2,四边形ABCD是⊙O的内接四边形,∠ADC=150°,弦AC=2,则⊙O的半径等于.图2分析:根据圆内接四边形的性质可得∠ABC的度数,连接OA,OC,由圆周角定理求出∠AOC的度数,判断△OAC的形状后,可求⊙O的半径.例3如图3,已知AB是⊙O的直径,∠ACD是AD所对的圆周角,∠ACD=30°.(1)求∠DAB的度数;(2)过点D作DE⊥AB,垂足为E,DE的延长线交⊙O于点F.若AB=4,求DF的长.图3分析:(1)连接BD,根据同弧所对的圆周角相等可得∠B=∠ACD=30°,再由AB是⊙O的直径,可得∠ADB=90°,进而可求∠DAB的度数;(2)在Rt△ABD中,根据30°角所对的直角边等于斜边的一半可得AD的长,在Rt△ADE中,DE=AD·sin∠DAE,再结合垂径定理可求出DF的长.解:归纳:在圆中经常构造直径所对的圆周角,利用圆周角定理与直角三角形的性质解题.跟踪训练1.如图,AB为⊙O的直径,C,D为⊙O上的两点.若∠ABD=54°,则∠C的度数为()A.34°B.36°C.46°D.54°第1题图2.P是⊙O内一点,过点P的最长弦的长为10 cm,最短弦的长为6 cm,则OP的长为()A.3 cm B.4 cm C.5 cm D.6 cm3.如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为()A.45°B.60°C.72°D.36°第3题图第4题图4.如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B,C在⊙O上,边AB,AC分别交⊙O于D,E 两点,点B是CD的中点,则∠ABE=.5.如图,AB为⊙O的弦,D,C为ACB的三等分点,AC∥BE.(1)求证:∠A=∠E;(2)若BC=3,BE=5,求CE的长.第5题图专项二与圆有关的位置关系知识清单1. 点与圆的位置关系设⊙O的半径为r,点P到圆心O的距离为d,则有点P在圆外⇔d___r;点P在____⇔d____r;点P在圆内⇔d____r.2. 直线与圆的位置关系设⊙O的半径为r,圆心O到直线l的距离为d,则有直线l与⊙O相交⇔d___r;直线l与⊙O相切⇔d___r;直线l与⊙O____⇔d___r.3. 切线的性质定理:圆的切线____于过切点的半径.4.切线的判定(1)和圆只有____个公共点的直线是圆的切线.(2)经过半径的外端并且____于这条半径的直线是圆的切线.(3)如果圆心到一条直线的距离____圆的半径,那么这条直线是圆的切线.5. 切线长定理(选学)切线长:经过圆外一点的圆的切线上,这点和切点之间____叫做这点到圆的切线长.定理:从圆外一点可以引圆的两条切线,它们的切线长____,这一点和圆心的连线____两条切线的夹角.6. 三角形的外接圆与内切圆外接圆内切圆圆心名称三角形的外心三角形的内心圆心位置三角形三条边的垂直平分线的交点三角形三条角平分线的交点性质三角形的外心到三角形三个顶点的距离相等三角形的内心到三角形三边的距离相等考点例析例1 如图1-①,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切),则点A到⊙O上的点的距离的最大值为.①②图1分析:如图1-②,当⊙O平移最靠近点C,即当⊙O与CB,CD相切时,点A到⊙O上的点Q的距离最大,结合切线的性质定理和切线长定理求解.例2 如图2,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若CD=3,DE=52,求⊙O的直径.图2分析:(1)连接OD,根据直角三角形斜边上中线的性质与等腰三角形的性质,可证∠EDO=90°,从而判定DE与⊙O相切;(2)先在Rt△BDC中求出BC,BD的长,再借助相似三角形求出AC的长,即得⊙O的直径.解:归纳:切线的判定方法主要有两种:若直线与圆有交点,则连接过交点的半径,证其与直线垂直(连半径,证垂直);若不能确定直线与圆有交点,则过圆心向直线作垂线段,证圆心到直线的距离等于半径(作垂线,证半径).跟踪训练1.如图,∠BAC=36°,点O在边AB上,⊙O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD的度数为()A.27°B.29°C.35°D.37°第1题图第2题图2.如图,P A,PB是⊙O的切线,A,B是切点.若∠P=70°,则∠ABO等于()A.30°B.35°C.45°D.55°3.如图,F A,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=°.第3题图4.如图①,△ABC内接于⊙O,直线MN与⊙O相切于点D,OD与BC相交于点E,BC∥MN.(1)求证:∠BAC=∠DOC;(2)如图②,若AC是⊙O的直径,E是OD的中点,⊙O的半径为4,求AE的长.①②第4题图5.如图,△ABC内接于⊙O,AB是⊙O的直径,E为AB上一点,BE=BC,延长CE交AD于点D,AD =AC.(1)求证:AD是⊙O的切线;(2)若tan∠ACE=13,OE=3,求BC的长.第5题图专项三弧长与扇形面积的计算知识清单1.弧长公式:在半径为R的圆中,n°的圆心角所对的弧长l =_______.2.扇形面积公式:在半径为R的圆中,圆心角为n°的扇形的面积S=_______;在半径为R的圆中,圆心角所对的弧长为l的扇形的面积S=_______.考点例析例1如图1,传送带的一个转动轮的半径为18 cm,转动轮转n°,传送带上的物品A被传送12π cm,则n =.图1分析:物品A被传送的距离等于转动轮转n°的弧长,根据弧长公式求弧所对的圆心角的度数即为n值.例2 如图2,正六边形ABCDEF的边长为2,以A为圆心,AC的长为半径画弧,得EC,连接AC,AE,则图中阴影部分的面积为()A.2πB.4πC.33πD.233π图2分析:阴影部分是以AC为半径、以∠CAE为圆心角的扇形,借助正六边形的性质,分别求出AC的长与∠CAE的度数,根据扇形的面积公式计算.例3设圆锥的底面圆半径为r,圆锥的母线长为l,满足2r+l=6,这样的圆锥的侧面积()A.有最大值94πB.有最小值94πC.有最大值92πD.有最小值92π分析:根据扇形的面积公式结合关系式2r+l=6,列出圆锥的侧面积与r之间的函数解析式,再通过函数的性质求圆锥的侧面积的最大值或最小值.归纳:对于圆锥,要熟悉立体图形与展开图(平面图形)之间的对应关系:圆锥的侧面展开图为扇形,圆锥的母线长是扇形的半径,圆锥的底面周长是扇形的弧长.跟踪训练1.图①是一把扇形书法纸扇,图②是其完全打开后的示意图,外侧两竹条OA和OB的夹角为150°,OA 的长为30 cm,贴纸部分的宽AC为18cm,则CD的长为()A.5π cm B.10π cm C.20π cm D.25π cm①②第1题图2.如图,一根5 m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是()A.1712π m2B.7712π m2C.254π m2D.176π m2第2题图3.已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为(用含π的代数式表示),圆心角为度.4.如图所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在AD 上,∠BAC=22.5°,则BC的长为.第4题图专项四正多边形与圆知识清单1.正多边形和圆的关系:只要把一个圆分成相等的一些弧,就可以做出这个圆的______,这个圆就是这个正多边形的______.2.与正多边形有关的概念如图,已知正n边形的边长为a,半径为R,则这个正n边形的每个内角为180nn(-2),中心角α=______,边心距r=______,周长l=na,面积S=12 nar.考点例析例1 如图1,面积为18的正方形ABCD内接于⊙O,则AB的长度为()A.9πB.92πC.32πD.94π图1分析:连接OA,OB,则△OAB为等腰直角三角形.由正方形ABCD的面积为18,可求得边长AB,进而可得半径OA,根据弧长公式可求AB的长.例2(2021·河北)如图2,⊙O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为A n(n为1~12的整数),过点A7作⊙O的切线交A1A11的延长线于点P.(1)通过计算比较直径和劣弧711A A的长度哪个更长;(2)连接A7A11,则A7A11和P A1有什么特殊位置关系?请简要说明理由;(3)求切线长P A7的值.图2分析:(1)利用弧长公式求劣弧711A A的长度,与直径比较大小;(2)先直觉观察猜想结论,再利用圆周角定理证明;(3)由切线的性质可得Rt△P A1A7,解此三角形可得P A7的值.解:跟踪训练1.(2021·贵阳)如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是()A.144°B.130°C.129°D.108°第1题图2.(2021·绥化)边长为4 cm的正六边形,它的外接圆与内切圆半径的比值是.3.(2021·湘潭)德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”如图①,点C把线段AB分成两部分,如果512CBAC=≈0.618,那么称点C为线段AB的黄金分割点.第3题图(1)特例感知:在图①中,若AB=100,求AC的长;(结果保留根号)(2)知识探究:如图②,作⊙O的内接正五边形;①作两条相互垂直的直径MN,AI;②作ON的中点P,以P为圆心,P A为半径画弧交OM于点Q;③以点A为圆心,AQ为半径,在⊙O上连续截取等弧,使弦AB=BC=CD=DE=AQ,连接AE;则五边形ABCDE为正五边形.在该正五边形作法中,点Q是否为线段OM的黄金分割点?请说明理由;(3)拓展应用:国旗和国徽上的五角星是革命和光明的象征,是一个非常优美的几何图形,与黄金分割有着密切的联系.延长题(2)中的正五边形ABCDE的每条边,相交可得到五角星,摆正后如图③,点E是线段PD的黄金分割点,请利用题中的条件,求cos72°的值.专项五圆中的数学思想1. 方程思想例1(2021·西宁)如图1,AB是⊙O的直径,弦CD⊥AB于点E,CD=10,BE=2,则⊙O的半径OC =.图1分析:先由垂径定理求得CE的长,再在Rt△OCE中由勾股定理得出关于半径的方程,解方程即可.2. 分类讨论思想例2(2021·朝阳)已知⊙O的半径是7,AB是⊙O的弦,且AB的长为3AB所对的圆周角的度数为.分析:弦AB所对圆周角的顶点可能在优弧上,也可能在劣弧上,所以需要分两种情况讨论.解答时,利用垂径定理构造直角三角形,借助三角函数求弦AB所对的圆心角的度数,再根据圆周角定理及其推论求弦AB 所对的圆周角的度数.3.转化思想例3 (2021·枣庄)如图2,正方形ABCD 的边长为2,O 为对角线的交点,点E ,F 分别为BC ,AD 的中点.以C 为圆心,2为半径作BD ,再分别以E ,F 为圆心,1为半径作圆弧BO ,OD ,则图中阴影部分的面积为( )A .π﹣1B .π﹣3C .π﹣2D .4﹣π图2分析:连接BD ,则OD 与线段OD 围成的图形面积等于OB 与线段OB 围成的图形面积,故阴影部分的面积等于扇形CBD 与直角三角形CBD 的面积之差.归纳:求不规则图形的面积,经常通过割补法或等积法将其转化为规则图形,再利用面积公式进行计算. 跟踪训练1.(2021·兴安盟)如图,两个半径长均为2的直角扇形的圆心分别在对方的圆弧上,扇形CFD 的圆心C 是AB 的中点,且扇形CFD 绕着点C 旋转,半径AE ,CF 交于点G ,半径BE ,CD 交于点H ,则图中阴影部分的面积等于( )A .2π﹣1B .2π﹣2C .π﹣1D .π﹣2第1题图2.(2021·青海)点P 是非圆上一点,若点P 到⊙O 上的点的最小距离是4 cm ,最大距离是9cm ,则⊙O 的半径是 .3.(2021·绥化)一条弧所对的圆心角为135°,弧长等于半径为5 cm 的圆的周长的3倍,则这条弧的半径为 cm .参考答案专项一圆的相关概念及性质例1 B 例2 2例3(1)连接BD.因为∠ACD=30°,所以∠B=∠ACD=30°.因为AB是⊙O的直径,所以∠ADB=90°.所以∠DAB=90°﹣∠B=60°.(2)因为∠ADB=90°,∠B=30°,AB=4,所以AD=12AB=2.因为∠DAB=60°,DE⊥AB,且AB是直径,所以EF=DE=AD·sin60°所以DF=2DE=1.B 2.B 3.B 4.13°5.(1)证明:因为AC∥BE,所以∠E=∠ACD.因为D,C为ACB的三等分点,所以BC CD AD==.所以∠ACD=∠A.所以∠E=∠A.(2)解:由(1)知BC CD AD==,所以∠D=∠CBD=∠A=∠E.所以BE=BD=5,BC=CD=3,△CBD∽△BDE.所以CB BDBD DE=,即355DE=,解得DE=253.所以CE=DE﹣CD=253﹣3=163.专项二与圆有关的位置关系例1 +1例2 (1)证明:连接OD.因为AC是⊙O的直径,所以∠ADC=90°,所以∠BDC=90°.因为E是BC的中点,所以DE=CE=BE,所以∠EDC=∠ECD.又OD =OC ,所以∠ODC =∠OCD .因为∠OCD +∠DCE =∠ACB =90°,所以∠ODC+∠EDC =90°,即∠EDO =90°.所以DE ⊥OD . 又OD 为⊙O 的半径,所以DE 与⊙O 相切.(2)解:由(1),得∠BDC =90°,DE =CE =BE .因为DE =52,所以BC =5.所以BD ==4. 因为∠BCA =∠BDC =90°,∠B =∠B ,所以△BCA ∽△BDC . 所以AC BC CD BD =,即534AC =.解得AC =154.所以⊙O 的直径为154. 1.A 2.B 3.1804.(1)证明:连接OB .因为直线MN 与⊙O 相切于点D ,所以OD ⊥MN .因为BC ∥MN ,所以OD ⊥BC .所以BD CD =.所以∠BOD =∠COD .因为∠BAC =12∠BOC ,所以∠BAC =∠DOC . (2)解:因为E 是OD 的中点,所以OE =DE =2.在Rt △OCE 中,CE =由(1)知OE ⊥BC ,所以BE =CE =又O 是AC 的中点,所以OE 是△ABC 的中位线.所以AB =2OE =4.因为AC 是⊙O 的直径,所以∠ABC =90°.在Rt △ABE 中,AE ==5.(1)证明:因为AB 是⊙O 的直径,所以∠ACB =90°,即∠ACE +∠BCE =90°.因为AD =AC ,BE =BC ,所以∠ACE =∠D ,∠BCE =∠BEC .又∠BEC =∠AED ,所以∠AED +∠D =90°.所以∠DAE =90°,即AD ⊥AE .因为OA 是⊙O 的半径,所以AD 是⊙O 的切线.(2)解:由(1),得tan ∠ACE =tan D =13,设AE =a ,则AD =AC =3a . 因为OE =3,所以OA =a +3,AB =2a +6,BE =BC =a +3+3=a +6.在Rt △ABC 中,由勾股定理,得AB 2=BC 2+AC 2,即(2a +6)2=(a +6)2+(3a )2,解得a 1=0(舍去),a 2=2.所以BC =a +6=8.专项三 弧长与扇形面积的计算例1 120 例2 A 例3 C1.B 2.B 3.12π 216 4.54π 专项四 正多边形与圆例1 C例2 (1)连接OA 7,OA 11.由题意,得∠A 7OA 11=120°,所以711A A 的长为12064180ππ⨯=>12.所以劣弧711A A 的长度更长.(2)P A 1⊥A 7A 11.理由:连接A 7A 11,OA 1.因为A 1A 7是⊙O 的直径,所以∠A 7A 11A 1=90°.所以P A 1⊥A 7A 11.(3)因为P A 7是⊙O 的切线,所以P A 7⊥A 1A 7,所以∠P A 7A 1=90°.因为∠P A 1A 7=60°,A 1A 7=12,所以P A 7=A 1A 7•tan 60°=1.A 23.解:(1)AC 的长为50.(2)点Q 是线段OM 的黄金分割点,理由如下:设⊙O 的半径为r ,则OP =12r ,所以PQ =AP=. 所以OQ =QP ﹣OP﹣12rr ,MQ =OM ﹣OQ =r.所以2MQ OQ =Q 是线段OM 的黄金分割点. (3)如图,作PH ⊥AE 于点H .由题可知,AH =EH .因为正五边形的每个内角都为(5﹣2)×180°÷5=108°,所以∠PEH =180°﹣108°=72°,即cos ∠PEH =cos72°=EH PE. 因为点E 是线段PD 的黄金分割点,所以DE PE=12. 又DE =AE ,HE =AH =12AE ,所以cos72°=111222AE EH AE DE PE PE PE PE==⨯=⨯.第3题图专项五圆中的数学思想例1 294例2 60°或120°例3 C1.D 2.6.5cm或2.5cm 3.40。
圆的有关性质一.选择题(共17小题)1.(2022•包头)如图,AB,CD是⊙O的两条直径,E是劣弧的中点,连接BC,DE.若∠ABC=22°,则∠CDE的度数为()A.22°B.32°C.34°D.44°2.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C =110°,则∠OBD=()A.15°B.20°C.25°D.30°3.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为()A.10cm B.15cm C.20cm D.24cm 4.(2022•台湾)如图,AB为圆O的一弦,且C点在AB上.若AC=6,BC=2,AB的弦心距为3,则OC的长度为何?()A.3B.4C.D.5.(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°6.(2022•广元)如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CAB=65°,则∠ADC的度数为()A.25°B.35°C.45°D.65°7.(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55°B.65°C.75°D.130°8.(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°9.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O 分别交于点D、E,点F是劣弧上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()A.115°B.118°C.120°D.125°10.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A.2B.3C.2D.11.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC 于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为()A.95°B.100°C.105°D.130°12.(2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD=80°,则∠B的大小为()A.32°B.42°C.52°D.62°13.(2022•泸州)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是()A.1B.C.2D.4 14.(2022•安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB=6,则OP=()A.B.4C.D.5 15.(2022•自贡)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,∠ABD =20°,则∠BCD的度数是()A.90°B.100°C.110°D.120°16.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为()A.70°B.65°C.50°D.45°17.(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为()A.B.C.D.二.填空题(共14小题)18.(2022•内江)如图,在⊙O中,∠ABC=50°,则∠AOC等于.19.(2022•吉林)如图,在半径为1的⊙O上顺次取点A,B,C,D,E,连接AB,AE,OB,OC,OD,OE.若∠BAE=65°,∠COD=70°,则与的长度之和为(结果保留π).20.(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE =72°,那么∠BOD的度数为.21.(2022•长沙)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D 为OC的中点,若OA=7,则BC的长为.22.(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC=度.23.(2022•随州)如图,点A,B,C在⊙O上,若∠ABC=60°,则∠AOC的度数为.24.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D=°.25.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为cm(玻璃瓶厚度忽略不计).26.(2022•武威)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.27.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是所对的圆周角,则∠APD 的度数是.28.(2022•黑龙江)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.29.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为厘米.30.(2021•宁夏)如图,四边形ABCD是⊙O的内接四边形,∠ADC=150°,弦AC=2,则⊙O的半径等于.31.(2022•遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28°纬线的长度.小组成员查阅相关资料,得到如下信息:信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;信息二:如图2,赤道半径OA约为6400千米,弦BC∥OA,以BC为直径的圆的周长就是北纬28°纬线的长度;(参考数据:π≈3,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)根据以上信息,北纬28°纬线的长度约为千米.三.解答题(共7小题)32.(2022•宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.(1)直接判断AD与BD的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m).33.(2022•武汉)如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE的延长线交⊙O于点D,连接BD.(1)判断△BDE的形状,并证明你的结论;(2)若AB=10,BE=2,求BC的长.34.(2022•怀化)如图,点A,B,C,D在⊙O上,=.求证:(1)AC=BD;(2)△ABE∽△DCE.35.(2022•娄底)如图,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O.设∠G=θ.(1)求证:无论θ为何值,EF与BC相互平分;并请直接写出使EF⊥BC成立的θ值.(2)当θ=90°时,试给出tan∠ABC的值,使得EF垂直平分AC,请说明理由.36.(2022•威海)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.37.(2022•湖北)如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE 交BD于点F,延长CE交⊙O于点G,连接BG.(1)求证:FB2=FE•FG;(2)若AB=6,求FB和EG的长.38.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB =∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.。
专题23圆的有关性质(30道)一、单选题1.(2023·辽宁鞍山·统考中考真题)如图,,AC BC 为O 的两条弦,D ,G 分别为,AC BC 的中点,O 的半径为2.若45C ∠=︒,则DG 的长为()A .2B .3C .32D .22.(2023·辽宁阜新·统考中考真题)如图,A ,B ,C 是O 上的三点,若9025AOC ACB ∠=︒∠=︒,,则BOC ∠的度数是()A .20︒B .25︒C .40︒D .50︒3.(2023·黑龙江哈尔滨·统考中考真题)如图,AB 是O 的切线,A 为切点,连接OA ﹐点C 在O 上,OC OA ⊥,连接BC 并延长,交O 于点D ,连接OD .若65B ∠=︒,则DOC ∠的度数为()A .45︒B .50︒C .65︒D .75︒4.(2023·陕西·统考中考真题)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图. AB 是O 的一部分,D 是 AB 的中点,连接OD ,与弦AB 交于点C ,连接OA ,OB .已知24AB =cm ,碗深8cm CD =,则O 的半径OA 为()A.13cm B.16cm C 5.(2023·辽宁锦州·统考中考真题)如图,点A 半径为3,则扇形AOC(阴影部分)的面积为(A.23πB.πC6.(2023·湖南娄底·统考中考真题)如图,正六边形线1l、2l的夹角为60︒,则图中的阴影部分的面积为(A.433π-B.4332π-C7.(2023·辽宁沈阳·统考中考真题)如图,四边形的长是()A .πB .23πC .2πD .4π8.(2023·四川雅安·统考中考真题)如图,某小区要绿化一扇形OAB 空地,准备在小扇形OCD 内种花在其余区域内(阴影部分)种草,测得120AOB ∠=︒,15m OA =,10m OC =,则种草区域的面积为()A .225πm 3B .2125πm 3C .2250πm 3D .2125m 39.(2023·山东泰安·统考中考真题)如图,O 是ABC 的外接圆,半径为4,连接OB ,OC ,OA ,若40CAO ∠=︒,70ACB ∠=︒,则阴影部分的面积是()A .4π3B .8π3C .16π3D .32π310.(2023·山东泰安·统考中考真题)如图,AB 是O 的直径,D ,C 是O 上的点,115ADC ∠=︒,则BAC ∠的度数是()A .25︒B .30︒C .35︒D .40︒11.(2023·黑龙江牡丹江·统考中考真题)如图,A ,B ,C 为O 上的三个点,4AOB BOC ∠=∠,若60ACB ∠=︒,则BAC ∠的度数是()A.2πB.4 3π13.(2023·辽宁营口·统考中考真题)如图所示,30BAD∠=︒,则ACB∠的度数是(A.50︒B.40︒14.(2023·湖北鄂州·统考中考真题)如图,在的中点,以O为圆心,OB长为半径作半圆,交A.3533π-B.53-15.(2023·甘肃兰州·统考中考真题)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.言叙述作图方法:已知直线a和直线外一定点径作圆,交直线a于点M,N;(取其中点C,过O,C两点确定直线A .35︒B .30︒C .25︒D .20︒16.(2023·内蒙古赤峰·统考中考真题)如图,圆内接四边形ABCD 中,105BCD ∠=︒,连接OB ,OC ,OD ,BD ,2BOC COD ∠=∠.则CBD ∠的度数是()A .25︒B .30︒C .35︒D .40︒17.(2023·内蒙古·统考中考真题)如图,O 是锐角三角形ABC 的外接圆,,,OD AB OE BC OF AC ⊥⊥⊥,垂足分别为,,D E F ,连接,,DE EF FD .若 6.5,DE DF ABC +=△的周长为21,则EF 的长为()A .8B .4C .3.5D .318.(2023·湖南·统考中考真题)如图,圆锥底面圆的半径为4,则这个圆锥的侧面展开图中 AA '的长为()A .4πB .6πC .8πD .16π19.(2023·吉林·统考中考真题)如图,AB ,AC 是O 的弦,OB ,OC 是O 的半径,点P 为OB 上任意A .70︒20.(2023·内蒙古通辽点C 是半径OB 上一动点,若A .26π+B 二、填空题21.(2023·江苏·统考中考真题)如图,4AC =,则O 的直径22.(2023·江苏南通·统考中考真题)如图,则ACD ∠=度.23.(2023·山东济南·统考中考真题)则阴影部分的面积为(结果保留π).24.(2023·宁夏·统考中考真题)如图,四边形ABCD 内接于O ,延长AD 至点E ,已知140AOC ∠=︒,那么CDE ∠=︒.25.(2023·湖南·统考中考真题)如图,点A ,B ,C 在半径为2的O 上,60ACB ∠=︒,OD AB ⊥,垂足为E ,交O 于点D ,连接OA ,则OE 的长度为.26.(2023·江苏徐州·统考中考真题)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥母线l =6,扇形的圆心角120θ=°,则该圆锥的底面圆的半径r 长为.27.(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为O 的直径,弦AB CD ⊥,垂足为点E ,1CE =寸,10AB =寸,则直径CD 的长度是寸.29.(2023·吉林·统考中考真题)如图是圆心,半径r 为15m 留π)30.(2023·广东深圳·统考中考真题)如图,交于点D ,若20ADC ∠=︒,则BAD ∠=。
中考数学试题专题汇编:圆的有关性质1. 如图1,⊙O 弦AB 若AB =6,则⊙O 的半径为( )A. 2 B.2 2 C.22 D.622. 圆柱形油槽内装有一些油。
截面图,油面宽AB 为6分米,如果再注入一些油 后,油面AB 上升1分米,油面宽变为8分米,圆柱形油槽直径MN 为( )分米(A )6(B )8(C )10(D )123. 一个圆形人工湖如图3,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角45ACB ∠=︒,则这个人工湖的直径AD 为()A.B.C.D.4. 一条排水管的截面如图4.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( ) A.16 B.10 C.8 D.65. 如下图1,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )个单位 A . 12 B. 10 C.4 D. 156. 如图(六),△ABC 的外接圆上,AB 、BC 、CA 三弧的度数比为12:13:11.自弧BC 上取一点D ,过D 分别作直线AC 、直线AB 的并行线,且交弧BC 于E 、F 两点,则∠EDF 的度数为何? ( )A . 55B . 60C . 65D . 707. 如图3,⊙O 过点B 、C ,圆心O 在等腰Rt △ABC 的内部,∠BAC=90°,OA=1,BC=6。
则⊙O 的半径为( )A .6B .13CD .8. 如图4,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD =58°, 则∠BCD =( )(A)116° (B)32° (C)58° (D)64°9. 如图5,⊙O 是△ABC 的外接圆,∠BAC=60°,若⊙O 的半径OC 为2,则弦BC 的长为( )A .1B C .2 D .10. 如右面图1,⊙O 的直径CD =5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,O M :OD =3:5,则AB 的长是( )A .2cm B .3cm C .4cm D .221cm11.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内;(C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内. 12. 如图2,CD 是⊙ O 的弦,直径AB 过CD 的中点M ,若∠ BOC=40°,则∠ ABD=( ) A .40° B .60° C .70° D .80°13. 如上图3,100AOB ∠=,点C 在O 上,且点C 不与A 、B 重合,则ACB ∠的度数为( ) A .50 B .80或50 C .130 D .50 或13014. 如上图4,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( ) A . 115°B . 105°C . 100°D . 95°15. 如上图5, AB 为 ⊙ O 的直径, CD 为弦, AB ⊥ CD ,如果∠ BOC = 700 ,那么∠ A 的度数为( ) A .70︒ B . 35︒ C . 30︒ D . 20︒16.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为( )A. (4 cmB. 9 cmC.D.17.如图2,的直径AB 长为10,弦AC 长为6,∠ACB 的平分线交⊙O 于D ,则CD 的长为( )A 、7B 、 C、 D 、918.如图3,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为( ) A .22 B .2 C .1 D .2 19.如图4,在圆⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为( )A .19 B .16 C .18 D .2020. 已知⊙O 的半径为13cm ,弦AB//CD ,AB=24cm ,CD=10cm ,则AB 、CD 之间的距离为( ) A .17cm B .7 cm C .12 cmD .17 cm 或7 cm(第3题)ABCOOCA B第10题图D CAO二、填空题1. 如下图1,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是 .2. 如上图2,⊙O 的弦CD 与直径AB 相交,若∠B AD=50°,则∠ACD=3. 如下图3,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的一元二次方程是 .4. 如图4,⊙O 的直径AB 与弦CD 相交于点E ,若AE =5,BE =1,CD =则∠AED= .__________.6. 如图上2,点A ,B ,C ,D 都在⊙O上,的度数等于84°,CA 是∠OCD 的平分线,则∠ABD 十∠CAO = °. 7. 如上图3,AB 是⊙ O 的直径,点C ,D 都在⊙ O 上,连结CA ,CB ,DC ,DB .已知∠ D =30°,BC =3,则AB 的长是 .8. 如上图4,OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB=27°,则∠OBD= 度。
圆的有关性质【课标要求】1、理解圆、等圆、等弧等概念及圆的对称性,掌握点和圆的位置关系以及其有关概念。
2、掌握弧、弦、圆心角、弦心距四者之间的关系,会根据具体条件确定这四者之间的关系;3、探索圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征。
灵活运用圆周角的知识进行有关的推理论证及计算。
4、熟练掌握垂径定理的应用及逆定理的应用,尤其是会添加与之相关的辅助线;5、会用圆与三角形和圆内接四边形的知识,尤其是有关外角的知识沟通图形间的关系。
【知识网络】【知识要点】1、 圆:平面上到定点的距离等于定长的所有点组成的图形叫圆。
2、 圆的对称性:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线。
(2)圆是中心对称图形,对称中心为圆心。
3、 垂径定理及其推论:定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
(2)弦的垂直垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
(4)圆的两条平行弦所夹的弧相等。
4、 圆心角、弧、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对的其余各组量都分别相等。
5、 有关圆周角的定理:(1) 一条弧所对的圆周角等于它所对的圆心角的一半。
(2) 在同圆或等圆中,同弧或等弧所对的圆周角相等。
(3) 直径所对的圆周角是直角;90的圆周角所对的弦是直径。
6、弦切角定理:弦切角等于它所夹的弧对的圆周角。
【典型例题选讲】例1.(2006绵阳)如图,AB 是的⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC=CD=DA ,则∠BCD=( )A .1000 B.1100 C.1200 D.1350 析解:∵AB 是的⊙O 的直径ACB ∴度数是1800∵BC=CD=DA ∴BC =CD =DA ∵∠BCD=001(18060)2+=1200 故:填C例2.(2006贵港市)如图,在O 中,弦AD 平行于弦BC ,若80AOC ∠=,则D A B ∠=____度.析解:∵∠B=12∠AOC ,80AOC ∠=∴∠B=400∵AD ∥BC∴DAB ∠=∠B =400 故填:400例3:已知:AB 和CD 为⊙O 的两条平行弦,⊙O 的半径为5cm,AB=8cm,CD=6cm,求AB 、CD 间的距离是7㎝或1㎝。
2024成都中考数学第一轮专题复习圆的有关概念及性质知识精练基础题1. (2023江西)如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A. 3B. 4C. 5D. 6第1题图2. (2023广东省卷)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()第2题图A. 20°B. 40°C. 50°D. 80°3. (2023广元)如图,AB是⊙O的直径,点C,D在⊙O上,连接CD,OD,A C.若∠BOD=124°,则∠ACD的度数是()A. 56°B. 33°C. 28°D. 23°第3题图4. (2023山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC =40°,则∠DBC的度数为()第4题图A. 40°B. 50°C. 60°D. 70°5. (2023安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A. 60°B. 54°C. 48°D. 36°第5题图6. (2023赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC =2∠COD,则∠CBD的度数是()第6题图A. 25°B. 30°C. 35°D. 40°7. [新考法—数学文化](2023岳阳)我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合下图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸,则BC的长是() A. 674寸 B. 25寸C. 24寸D. 7寸第7题图8. (2023杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=()第8题图A. 23°B. 24°C. 25°D. 26°9. (2023广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37 m,拱高约为7 m,则赵州桥主桥拱半径R约为()第9题图A. 20 mB. 28 mC. 35 mD. 40 m10. (2023凉山州)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=23,则OC=()A. 1B. 2C. 2 3D. 4第10题图11. 如图,点A,B,D在⊙O上,CD垂直平分AB于点C.现测得AB=CD=16,则圆形宣传图标的半径为()第11题图A. 12B. 10C. 8D. 612. 如图,在平面直角坐标系中,⊙O的半径为4,弦AB的长为3,过O作OC⊥AB于点C,则OC的长度是________;⊙O内一点D的坐标为(-2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是________.第12题图13. (2023武汉)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BA C.(1)求证:∠AOB=2∠BOC;(2)若AB=4,BC=5,求⊙O的半径.第13题图拔高题14. (2023吉林省卷)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A. 70°B. 105°C. 125°D. 155°第14题图15. 如图,正方形ABCD 内接于⊙O ,点E 为弧AB 的中点,连接DE 与AB 交于点F .若AB=1,记△ADF 的面积为S 1,△AEF 的面积为S 2,则S 1S 2的值为________.第15题图16. 如图,以原点O 为圆心的圆交x 轴于A ,B 两点,交y 轴的正半轴于点C ,且点A 的坐标为(-2,0),D 为第一象限内⊙O 上的一点,若∠OCD =75°,则AD 的长为________.第16题图参考答案与解析1. D 【解析】本题考查了确定圆的条件及圆的有关定义及性质.∵过不在同一直线上的三个点一定能作一个圆,∴要经过题中所给的3个点画圆,除选定直线l 外的点P 外,再在直线l 上的A ,B ,C ,D 四个点中任选其中2个即可画圆.∵从A ,B ,C ,D 四个点中任选其中2个点的方法可以是AB ,AC ,AD ,BC ,BD ,CD ,共6种,∴最多可以画出圆的个数为6.2. B 【解析】∵AB 是⊙O 的直径,∠BAC =50°,∴∠ACB =90°,∠B =180°-50°-90°=40°.∵AC =AC ,∴∠D =∠B =40°.3. C 【解析】∵∠BOD =124°,∴∠AOD =180°-124°=56°,∴∠ACD =12∠AOD =28°. 4. B 【解析】∵BD 经过圆心O ,∴∠BCD =90°.∵∠BDC =∠BAC =40°,∴∠DBC =90°-∠BDC =50°.5. D 【解析】∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°5=108°,∠COD =360°5=72°,∴∠BAE -∠COD =108°-72°=36°. 6. A 【解析】∵∠BCD =105°,∴∠BAD =180°-105°=75°,∴∠BOD =150°.∵∠BOC=2∠COD ,∴∠COD =13 ∠BOD =50°,∴∠CBD =12∠COD =25°. 7. C 【解析】∵BD 是圆的直径,∴∠BCD =90°.∵BD =25,CD =7,∴在Rt △BCD 中,由勾股定理得,BC =252-72 =24(寸).8. D 【解析】如解图,连接OC ,∵∠ABC =19°,∴∠AOC =2∠ABC =38°.∵半径OA ,OB 互相垂直,∴∠AOB =90°,∴∠BOC =90°-38°=52°,∴∠BAC =12∠BOC =26°.第8题解图9. B 【解析】如解图,在Rt △OAB 中,由勾股定理,得AO 2+AB 2=OB 2,即(R -7)2+(372)2=R 2,解得R ≈28(m).第9题解图10. B 【解析】如解图,连接OB ,设OA 交BC 于点E ,∵∠ADB =30°,∴∠AOB =60°.∵OA ⊥BC ,BC =23 ,∴BE =12 BC =3 .在Rt △BOE 中,sin ∠AOB =BE OB,∴sin 60°=3OB =32,∴OB =2,∴OC =2.第10题解图11. B 【解析】如解图,连接OA ,设圆形宣传图标的半径为R ,∵CD 垂直平分AB ,AB=CD =16,∴CD 过点O ,AC =BC =12 AB =12×16=8,∠DCA =90°.∵AO =OD =R ,∴在Rt △AOC 中,由勾股定理,得OC 2+AC 2=OA 2,即(16-R )2+82=R 2,解得R =10,即圆形宣传图标的半径为10.第11题解图 12. 552 ;552 -5 【解析】如解图,连接OB ,∵OC ⊥AB ,∴BC =12 AB =32.由勾股定理,得OC =OB 2-BC 2 =552.当OD ⊥AB 时,点D 到AB 的距离最小,由勾股定理,得OD =22+12 =5 ,∴点D 到AB 的距离的最小值为552 -5 .第12题解图13. (1)证明:由圆周角定理,得∠ACB =12 ∠AOB ,∠BAC =12∠BOC . ∵∠ACB =2∠BAC ,∴∠AOB =2∠BOC ;(2)解:如解图,过点O 作半径OD ⊥AB 于点E ,连接BD .则∠DOB =12∠AOB ,AE =BE . ∵∠AOB =2∠BOC ,∴∠DOB =∠BOC .∴BD =BC .∵AB =4,BC =5 ,∴BE =2,DB =5 .在Rt △BDE 中,∵∠DEB =90°,∴DE =BD 2-BE 2 =1.在Rt △BOE 中,∵∠OEB =90°,∴OB 2=(OB -1)2+22,∴OB =52, 即⊙O 的半径是 52.第13题解图14. D 【解析】如解图,连接BC ,∵∠BAC =70°,∴∠BOC =2∠BAC =140°.∵OB =OC ,∴∠OBC =∠OCB =180°-140°2=20°.∵点P 为OB 上任意一点(点P 不与点B 重合),∴0°<∠OCP <20°.∵∠BPC =∠BOC +∠OCP =140°+∠OCP ,∴140°<∠BPC <160°,故选D.第14题解图15. 2(2 +1) 【解析】如解图,连接OE 交AB 于点G ,连接AC .根据垂径定理的推论,得OE ⊥AB ,AG =BG .由题意可得,AC 为⊙O 的直径,AC =2 ,则圆的半径是22.根据正方形的性质,得∠OAF =45°,∴OG =12 ,EG =2-12.∵OE ∥AD ,∴△ADF ∽△GEF ,∴FE FD =EG DA =2-12 .∵△ADF 与△AEF 等高,∴S 1S 2 =S △ADF S △AEF=DF EF =2(2 +1).第15题解图16. 23 【解析】如解图,连接OD ,BD .∵A (-2,0),∴OA =OB =2,∴AB =4.∵OC =OD ,∴∠OCD =∠ODC =75°,∴∠DOC =180°-2×75°=30°,∴∠DOB =90°-30°=60°,∴∠DAB =12∠DOB =30°.∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD =AB ·cos 30°=23 .第16题解图。
人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。
【重点难点提示】
重点:圆的有关概念,垂径定理及其推论;圆心角,圆周角、弦切角的概念与性质,圆内接四边形的性质及其应用.
难点:综合性较强,给解题造成一定的困难是难点.
考点:垂径定理及其推论和与圆有关的角的性质的综合运用.这部分知识约占考量的2.5%~8%.
【经典范例引路】
例1 (2001年陕西省中考题)已知△ABC内接于⊙O.
(1)当点O与AB有怎样的位置关系时,∠ACB是直角;
(2)有满足(1)的条件下,过点C作直线交AB于D,当CD与AB有什么样的关系时,△ABC∽△CBD∽△ACD;
(3)画出符合(1)(2)题意的两种图形,使图形中的CD=2cm.
解:(1)当点O在AB上时,∠ACB是直角;
(2)∵∠ACB是直角,∴当CD⊥AB时,△ABC∽△CBD∽△ACD.
(3)符合条件(1),(2)的两种图形分别如图(1),(2)所示.
【解题技巧点拨】
综合运用直角三角形被斜边上的高所分得的两个直角三角形与原三角形相似的性质,和与圆有关的角的性质是解答本题的关键.例2 如图,点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC外接圆于点E.
(1)求证:IE=BE;
(2)若IE=4,AE=8,求DE的长.(2001年陕西省中考题)
(1)证明:连结BI。
∵∠BIE=∠BAI+∠ABI=2
1
(∠BAC+∠ABC),
∠IBE=∠IBC+∠EBC=2
1
∠ABC+2
1
∠BAC=2
1
(∠ABC+∠BAC),∴∠BIE=∠IBE,∴IE =BE.
(2)易证△ABE∽△BDE,∴BE
AE
=DE
BE
,∴BE2=AE·DE,∴DE=AE
IE2
=8
42
=2.
【解题技巧点拨】
(1)中必须注意综合运用圆周角的性质和等腰三角形的判定;(2)中必须对基本图形关注,由此得到△ABE∽△BDE而求解.
【综合能力训练】
一、填空题
1.如图,已知AB 是⊙O 的直径,∠BAC=40°,D 是⌒
AC 上的任意一点,那么∠D 的度数是 .
2.圆内接四边形ABCD 中,∠A∶∠B∶∠C=2∶5∶4,则∠A= ,∠D
= 。
3.若a 是半径为1的圆内接四边形的最短边,则a 的变化范围是 . 4.如图,若AB 是⊙O 的直径,且AB=10cm ,OD =4cm ,则过点D 的弦中,最长的弦等于
cm ,最短的弦等于 cm .
5.已知⊙O 的直径AB =22cm ,过点 A 有两条弦AC =2cm ,AD=2cm ,那么劣弧⌒
CD 的度数为。
6.顶角A 等于40°的等腰△ABC 内接于⊙O,D 是圆周上一点,则∠ADB=。
7.⊙O 的半径为5cm ,弦AB∥CD,AB=6cm ,CD=8cm ,则AB 、CD 的距离是。
8.若一个梯形内接于圆,有如下四个结论:①它是等腰梯形;②它是直角梯形;③它的对角线互相垂直;④它的对角互补请写出正确结论的序号 。
(2001年天津市中考题)
二、选择题
9.下列命题中,正确的是( )
A .三点确定一个圆
B .等弦对等弧
C .垂直于弦的直线平分这条弦
D .平分弦(非直径)的直径垂直于这条弦
10.如图,⊙O 的直径 AB =10cm ,弦CD=6cm ,那么A 、B 两点到CD 的距离的和是( ) A .8cm
B .4cm
C .10cm
D .6cm
11.如图,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 的度数是( ) A .80°
B .100°
C .120°
D .13O°
12.(2001年江西中考题)如图,⊙A、⊙B、⊙两两不相交,且半径都是0.5cm ,则图中的三个扇形(即三个阴影部分)的面积之和为( )
A. 12π
cm 2
B. 8π
cm
2
C. 6π
cm 2
D. 4π
cm 2
13.(广西2001年中考题)如图,圆内接四边形ABCD 中,∠A=105°,那么∠DCE 等于( ) A .75°
B .105°
C .80°
D .150°
14.(2001年四川中考题)如图,ABCD 是⊙0的内接四边形,延长BC 到E ,已知∠BCD∶∠ECD=3∶2,那么∠B OD 等于( )
A .120°
B .136°
C .144°
D .150°
三、解答下列各题:
15.(2001年河南省中考题)如图,△ABC中,∠A的平分线交BC于D,⊙O过点A 且与BC相切于点D,与AB、AC分别相交于E、F,AD与EF相交于G,求证:AF·FC =GF·DG.
16.(2001年河南省中考题)如图,⊙O的两条割线AB、AC分别交⊙O于D、B、E、C,弦DF∥AC交BC于G。
(1)求证:AC·FG=BC·CG;
(2)若CF=AE,求证:△ABC为等腰三角形.
17.(2001年甘肃省中考题)如图⊙O与⊙A相交于C、D两点,A点在⊙O上,过A 点的直线与CD、⊙A、⊙O分别交于F、E、B.求证:AE2=AF·AB.
18.(2001年大连市中考题)如图AD、BC是⊙O的两条弦,AD=BC.求证:AB= CD.
19.(2001年四川省中考题)已知,如图AB为⊙O的直径,AC为弦,CD⊥AB于D,若AE=AC,BE交⊙O于点F,连结CF、DE.
求证:(1)AE2=AD·AB;(2)∠ACF=∠AED。
20.(2001年南昌市中考题)如图,AB是⊙O的直径,CD切⊙O于E,AC⊥CD于C,BD⊥CD于D,交⊙O于F,连结AE、EF。
(1)求证:AE是∠BAC的平分线;
(2)若∠ABD=60°,问AB与EF是否平行?
【创新思维训练】
21.(2001年扬州市中考题)如图在⊙O中,圆心角∠AOB=120°,弦AB=23cm.(1)求⊙O半径r;
(2)求劣弧
⌒
AB的长.(结果保留π。
)
22.如图,已知AB是⊙O的直径,AC是弦,AB=2,AC=2,在图中画出弦AD,使AD=1,并求出∠CAD的度数.
23.(2001年南通市中考题)如图,已知△ABC内接于⊙O,点E在
⌒
BC上,AE交BC 于D,EB2=ED·EA,经过B、C两点的圆弧交AE于点I。
(1)求证:△ABE~△BDE;
(2)如果BI平分∠ABC,求证:BD
AB
=EI
AE
;
(3)设⊙O的半径为5,BC=8,∠BDE=45°,求AD的长.
参考答案
【综合能力训练】
一、1.130° 2.60°,30° 3.0<a≤2 4.10cm,6cm 5.30°或150° 6.110°或70° 7.7cm或1cm 8. ①④二、9.D 10.A 11.D 12.B 13.B 14.C
三、15.连结DF,证△AFG∽△DCF 16.连结CF,证△ABC∽△CFG (2)连DE。
17.证△ACF∽△ABC连AD、AC、BC 18.证
⌒
ADB=
⌒
CBD 19.(1)连BC,证△CAB∽△DAC (2)由△EAB∽△DAE即得。
20.(1)连BE (2)AB∥EF
21.2cm,3
4
πcm 22.105°或15° 23.(1)略(2)先证EB=EI同时用(1)结论(3)32。