量子力学(第十一章)
- 格式:ppt
- 大小:1.43 MB
- 文档页数:79
第11章多体理论§11.1 多体理论概述§11.1.1少体问题与多体问题众所周知,宏观世界是由许多微观客体构成的,量子理论是处理微观客体的有效工具。
在一定的层次之下,按着微观粒子数目的多少可以把体系分为少体体系和多体体系。
一般情况下,界定两种体系的粒子数并无十分明确的规定,通常把粒子数少于5个的体系称为为少体体系,否则为多体体系或者多粒子体系。
对少体问题的研究可以提供粒子之间相互作用的信息,它是研究多体问题的基础和出发点。
在前面几章中,所处理的基本上属于单体问题,即使原本是二体问题的氢原子也被化成了单体问题来处理,它们都属于少体问题的范畴。
真实的物理世界是由许多相互作用着的微观粒子构成的,多体理论就是研究如何处理这种多个相互作用着的粒子体系的理论。
多体理511512论在原子、分子、等离子体及原子核物理学中都得到了广泛的应用。
按着所研究对象的属性及能量大小分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧非相对论相对论费米子非相对论相对论玻色子全同粒子非全同粒子正如前面提到的,本书只涉及非相对论的内容。
§11.1.2 多体理论的基本问题1、多体体系的哈密顿算符设体系由N 个粒子组成,若只顾及二体相互作用,则体系的哈密顿算符为()()∑∑=>=+=Nj i N i j i v i t H 11,ˆˆˆ (11.1.1) 其中,()i t ˆ是第i 个粒子的动能算符,()j i v,ˆ是第i 个粒子与第j 个粒子的相互作用能。
第i 个粒子的动能算符可以具体写出为()222ˆi im i t ∇-= (11.1.2)二体相互作用也可以写成(11.1.3)513二体相互作用应该满足如下条件:粒子无自身相互作用,即不存在()i i v,ˆ的项;当第i 个粒子与第j 个粒子的相互作用被计入后,不再顾及第j 个粒子与第i 个粒子的相互作用。
N 个粒子体系的双粒子相互作用有()121-N N 项。
第11章量子跃迁11.1 荷电q的离子在平衡位置附近作小振动(简谐振动),受到光照射而发生跃迁,设照射光的能量密度为ρ(w),波长较长.求:(a)跃迁选择定则;(b)设离子原来处于基态,求每秒跃迁到第一激发态的概率.解:(a)具有电荷为q的离子,在波长较长的光的照射下,从n→n'的跃迁速率为而根据谐振子波函数的递推关系(见习题2.7)可知跃迁选择定则为(b)设初态为谐振子基态(n=0),利用可求出而每秒钟跃迁到第一激发态的概率为11.2 氢原子处于基态,受到脉冲电场的作用.试用微扰论计算它跃迁到各激发态的概率以及仍然处于基态的概率(取E0沿z轴方向来计算).【解答与分析见《量子力学习题精选与剖析》[上],10.2题,l0.3题】10.2 氢原子处于基态,受到脉冲电场作用,为常数.试用微扰论计算电子跃迁到各激发态的概率以及仍停留在基态的概率.解:自由氢原子的Hamilton量记为H0,能级记为E n,能量本征态记为代表nlm 三个量子数),满足本征方程如以电场方向作为Z轴,微扰作用势可以表示成在电场作用过程中,波函数满足Schr6dinger方程初始条件为令初始条件(5)亦即以式(6)代入式(4),但微扰项(这是微扰论的实质性要点!)即得以左乘上式两端,并对全空间积分,即得再对t积分,由即得因此t>0时(即脉冲电场作用后)电子已经跃迁到态的概率为根据选择定则终态量子数必须是即电子只跃迁到各np态(z=1),而且磁量子数m=0.跃迁到各激发态的概率总和为其中a o为Bohr半径.代入式(9)即得电场作用后电子仍留在基态的概率为10.3 氢原子处于基态,受到脉冲电场作用,为常数.求作用后(t >0)发现氢原子仍处于基态的概率(精确解).解:基态是球对称的,所求概率显然和电场方向无关,也和自旋无关.以方向作z 轴,电场对原子的作用能可以表示成以H0表示自由氢原子的Hamilton量,则电场作用过程中总Hamilton量为电子的波函数满足Schr6dinger方程初始条件为为了便于用初等方法求解式(3),我们采取的下列表示形式:的图形如下图所示.注意图11-1式(5)显然也给出同样的结果.利用式(5).,可以将式(1)等价地表示成下面将在相互作用表象中求解方程(3),即令代入式(3),并用算符左乘之,得到其中一般来说,H'和H0不对易,但因H'仅在因此一H',代入式(8)即得再利用式(1'),即得初始条件(4)等价于方程(11)满足初始条件的解显然是代入式(7),即得这是方程(3)的精确解.t>0时(电场作用以后)发现电子仍处于基态的概率为计算中利用了公式利用基态波函数的具体形式容易算出a o为Bohr半径.将上式代入式(15),即得所求概率为这正是上题用微扰论求得的结果,为跃迁到各激发态的概率总和.11.3 考虑一个二能级体系,Hamilton量H0表示为(能量表象)设t=0时刻体系处于基态,后受到微扰H'作用(α,β,γ为实数)求t时刻体系跃迁到激发态的概率.【解答与分析见《量子力学习题精选与剖析》[上],10.4题】10.4 有一个二能级体系,Hamilton量记为H0,能级和能量本征态记为E1,。
目录第一章量子力学的起源——量子力学的产生背景 (1)1.1经典物理学的辉煌 11.1.1经典力学 (1)1.1.2热学 (1)1.1.3电磁场理论 (2)1.2 辐射的粒子性 31.3 玻尔的原子模型 101.4 粒子的波动性 15第二章量子力学的基本观念——量子力学的哲学 (25)2.1双缝干涉实验 252.2微观粒子双缝干涉实验的分析 302.3量子力学的基本观念 342.4关于测不准原理 372.5结语 46第三章量子力学的基本原理——量子力学的诸定律 (49)3.1量子力学的立论方式 493.2波函数 503.3波函数的演化 553.3.1物质波 (56)3.3.2薛定谔方程的引入 (58)3.3.3关于薛定谔方程的讨论 (62)3.4动量的测量 653.5物理量用算符表示 683.6物理量测量的可能值 813.7小结——波动力学的基本原理 88第四章简单量子体系——能量本征值问题 (93)4.1 关于薛定谔方程的求解 934.2 一维无限深势阱——束缚态之一 964.3 一维简谐振子——束缚态之二 984.4 一维本征值问题的一般讨论 1054.5*其它势场的本征值问题 1144.6 散射态 1214.7 三维简单势场问题 1344.8 周期性边界条件 136第五章角动量——角动量本征值问题 (143)5.1 算符的对易关系 1435.2 角动量算符 1545.3 角动量的本征值问题 156第六章中心势场中的粒子——三维中心势场的能量本征值问题 (175)6.1中心势场的能量本征值问题 1756.2三维自由粒子 1796.3三维方势阱 1816.4氢原子 184第七章电磁场中的带电粒子——电磁场中的能量本征值问题 (197)7.1 分析力学回顾 1977.2与经典力学的相似性 2017.2.1 Ehrenfest定理 (201)7.2.2两种力学的相似性 (202)7.2.3量子化方法 (204)7.3电磁场中的Hamilton算符 2057.4均匀磁场中的带电粒子 2087.5均匀电场中的带电粒子 2147.6规范不变性 2167.6.1规范变换下波函数的改变 (216)7.6.2 Aharanov-Bohm效应 (217)第八章自旋角动量——粒子的内禀性质 (223)8.1角动量的实验测量 2238.2粒子的自旋 2278.2.1角动量本征值问题的一般解 (227)8.2.2自旋 (233)8.2.3自旋的矩阵表示 (234)8.2.4自旋1/2 (239)8.2.5实验的量子理论解释 (243)第九章近似方法I——定态S方程的近似解 (245)chrodinger9.1 问题概述 2459.2非简并能级的微扰理论 2459.3简并情况下的定态微扰论2499.4 变分方法 253第十章近似方法II——含时S方程的近似解 (259)chrodinger10.1含时微扰问题 25910.2含时微扰理论 26010.3常微扰 26310.3.1跃迁概率 (263)10.3.2黄金规则 (266)10.4周期微扰 26810.5原子与辐射的相互作用 27210.6电偶极跃迁的选择定则 281第十一章(定态)散射理论——三维非束缚态问题 (287)11.1问题概述 28711.2散射截面 28811.3散射振幅 29311.3.1处理散射的定态方法 (294)11.3.2散射截面的计算 (295)11.4玻恩近似 29611.5分波法 303第十二章多粒子体系——一个说不完的话题 (309)12.1量子多粒子体系 30912.2 二体问题 31112.3无相互作用多粒子体系 31312.4 全同多粒子体系 31612.5 例——两个电子的原子 32712.6 多电子原子(in preparation)12.7 分子(in preparation)12.8 原子核体系(in preparation)附录A 耦合质点组的振动 (331)A.1两个质点的耦合质点组的振动 331NA.2个质点的耦合质点组的振动 337A.3连续型耦合质点组的振动与Fourier级数 342A.4无界连续型耦合质点组的振动与Fourier积分 348A.5简正模与简谐波 351附录B 波包 (353)B.1色散关系和群速 353B.2波包的运动 357索引 (369)。
第一章 量子力学的诞生[1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明: ( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅;( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率;( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m 2时的窗子所衍射.[2] 用h,e,c,m (电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计: ( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 )经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂[3]导出、估计、猜测或背出下列数值,精确到一个数量级范围内,( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命.[4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由.( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz 实验;( 4 ) Davisson -Ger - mer 实验;( 5 ) Compton 散射.[5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释. ( 1 ) A 缝开启,B 缝关闭; ( 2 ) B 缝开启,A 缝关闭; ( 3 )两缝均开启. [6]验算三个系数数值:(1)h 2e m ;(2)h 2nm ;(3)hc第二章 波函数与Schr ödinger 方程[1] 试用量子化条件,求谐振子的能量[谐振子势能2221)(x m x V ω=] [2] 一维运动的粒子处在⎩⎨⎧<≥=-0,00,)(x x Axe x x 当当λψ的状态,其中0>λ,求:(1)粒子动量的几率分布函数;(2)粒子动量的平均值。