《原子物理与量子力学》第十,十一章部分习题解答
- 格式:ppt
- 大小:306.50 KB
- 文档页数:12
第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
大学物理知识总结习题答案(第十章)量子物理基础第十章量子物理基础第十章量子物理基础本章提要1.光的量子性质物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。
在任何温度下,它都能完全吸收照射在其表面的各种波长的光(电磁波),因此这个物体被称为绝对黑体,简称黑体。
单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率,称为辐射出射度。
2.维恩位移定律在不同的热力学温度t下,单色辐射本领的实验曲线存在一个峰值波长λm,维恩从热力学理论导出t和λm满足如下关系λmt=b其中b是维恩常量。
3.斯特凡·波尔兹曼定律斯忒藩―玻尔兹曼定律表明黑体的辐射出射度m与温t的关系Mt4其中s为斯忒藩―玻尔兹曼常量。
对于一般的物体Mt4e称发射率。
4.黑体辐射黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率?成正比,这种能量分立的现象被称为能量的量子化,每一份最小能量e=hv被称为一个量子。
黑体辐射的能量为e=nhv,其中n=1,2,3,…,等正整数,h为普朗克常数。
普朗克黑体辐射公式简称普朗克公式2πhc21ml(t)=λ5ehc/λKT-1第10章量子物理基础光是以光速运动的粒子流,这些粒子称为光量子,简称光子。
一个光子具有的能量为e?h?。
5.颗粒挥发性德布罗意认为实物粒子也具有波粒二象性,它的能量e、动量p跟和它相联系的波的频率?、波长?满足以下关系Emc2?Hhλ这两个公式称为德布罗意公式或德布罗意假设。
与实物粒子相联系的波称为P=Mu=材料波或德布罗意波。
dxdpxh或者dedth这一关系叫做不确定关系。
其中为位置不确定量、动量不确定量、能量不确定量、时间不确定量。
物质波是代表空间中粒子概率分布的概率波。
6.薛定谔方程及其应用微粒子的运动状态需要用波函数来描述,波函数通常用y来表示。
一般来说,y是空间和时间的函数,即y=y(x,y,Z,t)。
原子物理与量子力学习题参考答案目录原子物理学(褚圣麟编) (1)第一章原子的基本状况 (1)7.α粒子散射问题(P21) (1)第二章原子的能级和辐射 (1)5.能量比较(P76) (1)7.电子偶素(P76) (1)8.对应原理(P77) (1)9.类氢体系能级公式应用(P77) (1)11.Stern-Gerlach实验(P77) (2)第三章量子力学初步 (2)3.de Broglie公式(P113) (2)第四章碱金属原子 (2)2.Na原子光谱公式(P143) (2)4.Li原子的能级跃迁(P143) (2)7.Na原子的精细结构(P144) (2)8.精细结构应用(P144) (3)第五章多电子原子 (3)2.角动量合成法则(P168) (3)3.LS耦合(P168) (3)7.Landé间隔定则(P169) (4)第六章磁场中的原子 (4)2.磁场中的跃迁(P197) (4)3.Zeeman效应(P197) (4)7.磁场中的原子能级(P197) (5)8.Stern-Gerlach实验与原子状态(P197) (5)10.顺磁共振(P198) (5)第七章原子的壳层结构 (6)3.原子结构(P218) (6)第八章X射线 (6)2.反射式光栅衍射(P249) (6)3.光栅衍射(P249) (6)量子力学教程(周世勋编) (7)第一章绪论 (7)1.1 黑体辐射(P15) (7)1.4 量子化通则(P16) (7)第二章波函数和Schrödinger方程 (8)2.3 一维无限深势阱(P52) (8)2.6 对称性(P52) (8)2.7 有限深势阱(P52) (9)第三章力学量 (10)3.5 转子的运动(P101) (10)3.7 一维粒子动量的取值分布(P101) (10)3.8 无限深势阱中粒子能量的取值分布(P101) (11)3.12 测不准关系(P102) (11)第四章态和力学量的表象 (12)4.2 力学量的矩阵表示(P130) (12)4.5 久期方程与本征值方程的应用(P130) (13)第五章微扰理论 (16)5.3 非简并定态微扰公式的运用(P172) (16)5.5 含时微扰理论的应用(P173) (16)第七章自旋与全同粒子 (17)7.1 Pauli算符的对易关系(P241) (17)7.2 自旋算符的性质(P241) (17)7.3 自旋算符x、y分量的本征态(P241) (17)7.4 任意方向自旋算符的特点(P241) (17)7.5 任意态中轨道角动量和自旋角动量的取值(P241) (18)7.6 Bose子系的态函数(P241) (19)原子物理与量子力学习题 (20)一、波函数几率解释的应用 (20)二、态叠加原理的应用 (20)三、态叠加原理与力学量的取值 (20)四、对易关系 (21)五、角动量特性 (22)1原子物理学(褚圣麟编)第一章 原子的基本状况7.α粒子散射问题(P21)J 106.1105.3221962-⨯⨯⨯⨯==E M υ232323030m )2/3(109.1071002.61060sin 1060sin 10----⊥-⨯⨯⨯⨯=⨯⨯=⋅⨯=A N t A N Nt s ρρ C 1060.119-⨯=e ,11120m AsV 1085.8---⨯=ε,61029-⨯=n dn32521017.412.0100.6--⨯=⨯==ΩL dS d , 20=θ 2.48)4(sin 202422=⋅Ω⋅⋅=Nt d n dn eM Z πευθ第二章 原子的能级和辐射5.能量比较(P76)Li Li Li Li v hcR hcR E E hv E )427()211(32212=-⋅=-==H e H e H e H e hcR hcR E E 4)1/2(0221=⋅=-=++∞ +∞>H e v E E ,可以使He +的电子电离。
第十章 原子核10.1 n H 1011和的质量分别是1.0078252和1.0086654质量单位,算出C 126中每个核子的平均结合能(1原子量单位=2/5.931c MeV ).解:原子核的结合能为:MeV m Nm ZE E A H 5.931)(⨯-+= 核子的平均结合能为:AE E =0 MeV MeV m Nm ZE AE A n H 680.75.931)(1=⨯-+=∴ 10.2 从下列各粒子的质量数据中选用需要的数值,算出Si 3014中每个核子的平均结合能:007825.1,973786.29008665.1,014102.2,000548.01130141021→→→→→H Si n H e解:MeV MeV m Nm Zm AA E E ASi n H 520.85.931)(110110=⨯-+==10.3Th 23290放射α射线成为αR 22888.从含有1克Th 23290的一片薄膜测得每秒放射4100粒α粒子,试计算出Th 23290的半衰期为10104.1⨯年.解:根据放射性衰变规律:t e N Nλ-=0如果在短时间dt 内有dN 个核衰变,则衰变率dt dN /必定与当时存在的总原子核数目N 成正比,即:t e N N dtdNλλλ-==-0 此式可写成: 0N dtdN e t-=-λλ……(1) 其中2023023''0102612321002.6,232,1002.6,1;1,4100⨯=⨯⨯==⨯=⨯===--=-N A N AN N t dt dN N dt dNe t 故克克秒λλ将各已知量代入(1)式,得:182010264110264100⨯=⨯=-λλe……(2) 因为Th 23290的半衰期为10104.1⨯年,所以可视λ为很小,因此可以将λ+e 展成级数,取前两项即有:λλ+≈+1e这样(2)式变为:181026411⨯=+λλ 由此得:年秒秒101818104.110438.02ln /1058.1⨯=⨯==⨯=-λλT所以,Th 23290的半衰期为10104.1⨯年.10.4 在考古工作中,可以从古生物遗骸中C 14的含量推算古生物到现在的时间t .设ρ是古生物遗骸中C 14和C 12存量之比,0ρ是空气中C 14和C 12存量之比,是推导出下列公式:2ln )/ln(0ρρTt =式中T 为C 14的半衰期.推证:设古生物中C 12的含量为)(12C N ;刚死时的古生物中C 14的含量为)(140C N ;现在古生物遗骸中C 14的含量为)(14C N ;根据衰变规律,有:t e C N C N λ-=)()(14014由题意知: )()(1214C N C N =ρ;古生物刚死时C 14的含量与C 12的含量之比与空气二者之比相等, )()(121400C N C N =ρ 所以:t e λρρ=0因此得:2ln )/ln(ln 1ln000ρρρρλρρλTt t ==∴=10.5 核力在原子核大小的距离内有很强的吸引力,它克服了质子间的(元素氢除外,那里只有一粒质子)库仑推斥力的作用而使原子核结合着,足见在原子核中核力的作用超过质子间的库仑推斥力作用;从质子间推斥力的大小可以忽略地了解到核力大小的低限。