曾谨言量子力学课后答案
- 格式:pdf
- 大小:666.76 KB
- 文档页数:74
第十章 定态问题的常用近似方法10-1) 设非简谐振子的Hamilton 量表为'0H H H +=222220212x u dx d u H ω+-= 3'x H β=(β为实常数)用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似)。
解:已知)0()0(0n n n E H ψψ=,()x H e N n x n n αψα2)0(22-=,()ω 21)0(+=n E n ,ωαu =()[]11121+-++=n n n n n x x ψψαψ ()()()()()[]22222112121+-++++++=n n n n n n n n n x x ψψψαψ()()()()()()()[]311333321113321221++--++++++++--=n n n n n n n n n n n n n n n x x ψψψψαψ计算一级微扰:n n n H E ψψ')1(=03==n n x ψψβ。
(也可由()⎰+∞∞-⋅==dx x x H En nn n32')1(βψ0=(奇)直接得出)计算二级微扰,只有下列四个矩阵元不为0:()()',33332122n n n n H n n n x --=--=αβψβψ',1331322n n n n H n n x --=⋅=αβψβψ ()',133111322n n n n H n n x ++=++⋅=αβψβψ ()()()',333332122n n n n H n n n x ++=+++⋅=αβψβψ计算2'knH:()()622',3821αβ--=-n n n Hnn6232',19αβn H n n =- 6232',189αβn H nn =+()()()622',38321αβ+++=+n n n Hnn又ω 3)0(3)0(=--n n E E ,ω =--)0(1)0(n n E E , ω -=-+)0(1)0(n n E E ,ω 3)0(3)0(-=-+n n E E ,∑-++=++=∴kk n knnnnnnnn E E HHEEEEE )0()0(2''')0()2()1()0(43222811303021ωβωu n n n ⋅++-⎪⎭⎫ ⎝⎛+=)0()0()0('')0()1()0(k kkn knnnnn E E H ψψψψψ∑-+=+=()()()()()()⎥⎦⎤⎢⎣⎡+++-+--+---=++--)0(3)0(1)0(1)0(33)0(321311133213122n n n n n n n n n n n n n n n ψψψψωαβψ10-2) 考虑耦合振子,'0H H H += 参 书.下册§9.2()2221222221220212x x u x x u H ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=ω 21'x x H λ-=(λ为实常数,刻画耦合强度) (a )求出0H 的本征值及能级简并度。
曾谨言量子力学第五版答案【篇一:量子力学第四版卷一 (曾谨言著)习题答案】量子力学的诞生1m?2x2中运动,用量子化条件求粒子能量e的可能取值。
2p?2m[e?v(x)]v()n?1,2,?,解:能量为e的粒子在谐振子势中的活动范围为 x?a(1)其中a 由下式决定:e?v(x)x?a?由此得a?1m?2a2。
?a 0 a x 22e/m?2 ,(2)x??a即为粒子运动的转折点。
有量子化条件p?得a?2a2?nh代入( enx,y,z轴三个xxx即 px?2a?nxh(2a:一来一回为一个周期)pxnxh/2a,同理可得, py?nyh/2b, pz?nzh/2c,nx,ny,nz?1,2,3,?粒子能量enxnynz1?2?2222?(px?py?pz)?2m2m222??nxnyn?? ?2?z22??abc??nx,ny,nz?1,2,3,?1.3设一个平面转子的转动惯量为i,求能量的可能取值。
提示:利用2?2p?d??nh,n?1,2,?, p?是平面转子的角动量。
转子的能量e?p?/2i。
解:平面转子的转角(角位移)记为?。
它的角动量p??i?(广义动量),p?是运动惯量。
按量子化条件 .2?p?dx?2?p?mh,m1,2,3,因而平面转子的能量p??mh,2em?p?/2i?m2?2/2i,m?1,2,3,?1.4有一带电荷e质量m的粒子在平面内运动,b,求粒子能量允许值.,设圆半径是r,线速度是v,用高斯制单bevc又利用量子化条件,令电荷角动量转角2?pdq??mrvd??2?mrv?nh (2)12be?nmv? 22mc即 mrv?nh(3) 由(1)(2)求得电荷动能=再求运动电荷在磁场中的磁势能,按电磁学通电导体在磁场中的势能 v磁矩*场强电流*线圈面积*场强ev*?r2*b=,v是电荷的旋转频率, v?,代入前式得2?rcccbe?n(符号是正的) 2mcbe?n点电荷的总能量=动能+磁势能=e= ( n?1,2,3)2mc运动电荷的磁势能=1.5,1.6未找到答案1.7(1)试用fermat最小光程原理导出光的折射定律nsin??nsin?112(2)光的波动论的拥护者曾向光的微粒论者提出下述非难:如认为光是粒子,则其运动遵守最小作用量原理射定律0这将导得下述折nsin??nsin?1331媒质到另一种媒质e仍不变,仍有?e是粒子能量,从一种?pdl?0a到定点b的i?n设ai?n1122又ab沿界面的投影c也是常数,因而,?12存在约束条件:atg?1?btg?2?c(2)求(1)的变分,而将,12看作能独立变化的,有以下极值条件in1asec1tg1d1n2bsec2tg2d20 (3)再求(2)的变分asec22bsec1d12d2c0(3)与(4)消去d和d?1222得nsin??nsin?1(5)[乙法]见同一图,取x为变分参数,取0为原点,则有: i?n1a2?x2?n2b2?(c?x2)求此式变分,令之为零,有: ?i?x?x1a?x22(c?x)?x2(cx)22这个式子从图中几何关系得知,就是(5).(2)按前述论点光若看作微粒则粒子速度v应等于光波的群速度 vg光程原理作?,依前题相速vpc2v,而vgc2gvcn,n是折射率,n是波前阵面更引起的,vp,这样最小作用p量原理仍可以化成最小光程原理.ndl?0前一非难是将光子的传播速度v看作相速度vp的误解.1.8对高速运动的粒子(静质量m)(3).计算速度并证明它大于光速.(解)根据(3)式来组成哈氏正则方程式组:qih,本题中iqiv,p?p,因而im2c4?c2p2?v??pc2pmc?cp2422(4)从前式解出p(用v表示)即得到(2).又若将(2)代入(3),就可得到(1)式. 其次求粒子速度v和它的物质波的群速度vg间的关系.运用德氏的假设: p??k于(3)式右方, 又用e于(3)式左方,遍除h:m2c422ck??(k) 2按照波包理论,波包群速度vg是角频率丢波数的一阶导数:vg?k=m2c422ck 2c2kmc22ck224c2pmc?cp2422最后一式按照(4)式等于粒子速度v,因而又按一般的波动理论,波的相速度vgv。
教材P25 ~27:1、2、3、4(1)、7 1.解:(a)证明能量平均值公式()[]()⎰⎰⎰⎰⎰⎰∞∞∞∞∞⋅ψ∇ψ-⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇=⎭⎬⎫⎩⎨⎧ψψ+ψ∇⋅ψ∇-ψ∇ψ⋅∇-=⎭⎬⎫⎩⎨⎧ψψ+ψ∇ψ-=ψ⎪⎪⎭⎫ ⎝⎛+∇-ψ=sd r r m r r V r r r m r d r r V r r r r r m r d r r V r r r m r d r r V m r r d E)()(2)()()()()(2)()()()()()()(2)()()()()(2)()(2)(*2**23***23*2*2322*3粒子在势场中运动的波函数平方可积()0)()(2*2=⋅ψ∇ψ⎰⎰∞s d r r m因此)()()()()()(23**23r w r d r r V r r r m r d E⎰⎰∞∞=⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇= 其中能量密度为)()()()()(2)(**2r r V r r r mr wψψ+ψ∇⋅ψ∇=(b)证明能量守恒公式S tr i t r t r i t r S r H t r r H t r S tr r V r r r V t r r t r r t r r t r r t r m tr r V r V t r t r r r t r m t w⋅-∇=∂ψ∂∂ψ∂-∂ψ∂∂ψ∂+⋅-∇=ψ∂ψ∂+ψ∂ψ∂+⋅-∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂⋅∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧∂ψ∂∇⋅ψ∇+ψ∇⋅∂ψ∂∇=∂∂)()()()()(ˆ)()(ˆ)()()()()()()()()()()()()()()(2)()()()()()()()(2*******22***2****2即0=⋅∇+∂∂S tw这表明能量守恒,其中能流密度为⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-=)()()()(2**2r t r r t r mS2.解:(a)证明概率不守恒{}{}()()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+⋅∇-∇-=+∇-∇⋅∇-=+∇-∇-=-=⎭⎬⎫⎩⎨⎧∂∂+∂∂==τττττττττψψψψψψψψψψψψψψψψψψψψψψψψψψψψρ2*3**2*3**32*3*22*3***3**3*33222222)ˆ(ˆ1)(V r dS d imV r dr d im V r dr d im H H r d i t t r d r d dtdr r d dt dS⎰⎰⎰⎰⎰ψψ+⋅∇-=ψψ+⋅-=τττ2*332*322V r dj r d V r d S d j S⎰=τρ)(3r r d dtd⎰⎰+⋅∇-ττψψ2*332V r dj r d即022*≠ψψ=⋅∇+∂∂V j tρ这表明概率不守恒。