第三章结构动力学单自由度体系详解
- 格式:ppt
- 大小:6.15 MB
- 文档页数:141
第三章单自由度体系自由振动和强迫振动时域分析3.1力学模型•单自由度体系:SDOF(Single-Degree-of-Freedom )System•结构的运动状态仅需要一个几何参数即可以确定•分析单自由度体系的意义:1、单自由度系统包括了结构动力分析中涉及的所有物理量及基本概念。
2、很多实际的动力问题可以直接按单自由度体系进行分析计算。
3、多自由度系统在很多情况下可以转变为单自由度系统进行分析重力的影响1、考虑重力影响时,结构体系的运动方程与无重力影响时的运动方程完全一样,此时u是由动荷载引起的动力反应。
在研究结构的动力反应时,可以完全不考虑重力的影响,建立体系的运动方程,直接求解动力荷载作用下的运动方程,即得到结构体系的动力解。
2、当需要考虑重力影响时,结构的总位移为总位移=静力解+动力解应用叠加原理将结构的动力反应和静力反应相加即得到结构的总体反应。
在结构反应问题中,应用叠加原理可将静力问题(一般是重力问题)和动力问题分开计算。
重力的影响3、注意1:由于应用了叠加原理,上述结论是用于线弹性体系。
4、注意2,在以上推导过程中,假设悬挂的弹簧―质点体系只发生竖向振动,在动荷载作用之前,重力被弹簧的弹性变形所平衡,而施加荷载后,重力始终被弹性变形所平衡。
如果重力的影响没有预先被平衡,则在施加动力荷载产生进一步变形后,可以产生二阶影响问题,例如P―Δ效应。
1.1无阻尼自由振动运动方程的通解为:121212()n n i ti ts ts tu t c e c ec ec eωω−=+=+指数函数与三角函数的关系:cos sin cos sin ixixe x i x ex i x−=+=−运动方程的解:()cos sin n n u t A t B tωω=+A ,B —待定常数,由初始条件确定。
一些重要性质:(1)自振周期只与结构的质量和结构的刚度有关,与外界的干扰因素无关。
(2)自振周期与质量的平方根成正比,质量越大,周期越大(频率越小);自振周期与刚度的平方根成反比,刚度越大,周期越小(频率越大);要改变结构的自振周期,只有从改变结构的质量或刚度着手。
结构动力学Dynamics of Structures 第三章单自由度体系Chapter 3 Single-Degree-of-Freedom SystemsPart 1华南理工大学土木工程系马海涛/陈太聪本章主要目的及内容目的:z 通过单自由度体系介绍动力学的基本概念z 若干实际问题的解内容:(1)无阻尼自由振动(2)有阻尼自由振动(3)对简谐荷载的反应(4)对周期荷载的反应(5)对任意荷载的反应(6)体系的阻尼和振动过程中的能量(7)隔振(震)原理(8)结构地震反应分析的反应谱法自由振动free vibration强迫振动forced vibration第三章单自由度体系SDOF Systems自由振动:结构受到扰动离开平衡位置以后,不再受任何外力影响的振动过程。
0mucu ku ++= 无阻尼自由振动单自由度系统的运动方程()mucu ku P t ++=00c muku =⇒+= 自由振动运动方程单自由度系统无阻尼自由振动的运动方程0muku += 初始扰动:00(0)(0)t t u u uu ==== 初始位移初始速度二阶齐次常微分方程Homogeneous second orderordinary differential equation无阻尼自由振动的数学模型000;(0),(0)t t muku u u uu ==+=== 初始条件Initial conditions2()0stC ms k e +=设解有以下形式()stu t Ce=代入方程得 C 和s 为待定常数。
因此,方程通解为:121212()n n i ti ts t s tu t C e C eC eC eωω−=+=+或模型求解0muku += 2ms k ⇒+=1,2n ks i mω⇒=±=±()cos sin n n u t A t B tωω=+三角函数形式通解()sin cos n n n n ut A t B t ωωωω=−+00(0)(0)t n t u A u uB u ω====== (0)()(0)cos sin n n nuu t u t tωωω=+(0)(0),nuA uB ω⇒==利用初始条件,我们有单自由度系统无阻尼自由振动问题的解其中n kmω=无阻尼自由振动为简谐运动Simple harmonic motion ωn 称为圆频率或角速度Angular frequency / velocity ()cos sin n n u t A t B tωω=+三角函数形式通解()sin cos n n n n ut A t B t ωωωω=−+振幅无阻尼自由振动问题解的图示(1)振幅–Amplitude of motion[]220(0)(0)n u u u ω⎡⎤=+⎢⎥⎣⎦基本参数(2)固有周期–Natural period of vibration2n nT πω=(3)固有频率–Natural frequency of vibration1n nf T =Hz (赫兹)固有频率s (秒)固有周期rad/s (弧度/秒)固有圆频率单位定义物理量名称2n nT πω=1n nf T =n k m ω=单自由度系统无阻尼自由振动系统参数§3.2 有阻尼自由振动0c uk u m u ++= 运动方程2()0stC ms cs k e ++=设解有以下形式()stu t Ce =代入方程得解为:221,222nc c s m m ω⎛⎞=−±−⎜⎟⎝⎠粘性阻尼模型2ms cs k ++=2c k s s m m++=22n c s s mω++=阻尼系数影响此项的取值进一步决定解的特征Critical damping and damping ration临界阻尼22022n cr n c c m m k c m ωω⎛⎞−=⇒⎜⎟⎝⎠===此时运动方程的解为12ns s ω==−()()n tu t A Bt e ω−=+0mucu ku ++= 验证—分别将两个解代入方程()n tu t Aeω−=()n tu t Bteω−=()22220n t nnnAem m m ωωωω−=−+=()2n t nnAem c k ωωω−−+左端=()()221n t nnnBem t c t kt ωωωω−⎡⎤−++−+⎣⎦左端=()2220n tnnnBec m t m k ωωωω−⎡⎤=−+−+=⎣⎦Critical damping and damping ration运动方程的解为()()n tu t A Bt e ω−=+()()(0)(1)(0)n tn u t u t ut e ωω−=++ (0)(0)n u AuA B ω==−+ 因此,解为根据初始条件,有()()n tn u t A Bt B eωω−=−++⎡⎤⎣⎦ 对应的速度表达式为(0)(0)(0)n A u B u uω==+ 或者(0)()(0)1(0)n t n uu t u t e u ωω−⎡⎤⎛⎞=++⎢⎥⎜⎟⎝⎠⎣⎦(0)()(0)1(0)n t n uu t u t e u ωω−⎡⎤⎛⎞=++⎢⎥⎜⎟⎝⎠⎣⎦ 解的特征由此项控制当阻尼大于临界阻尼时,0mucu ku ++= 220n n uu u ζωω++= 2n crc cm c ζω==其中,阻尼比1221120()s ts ts s u t C e C e<<=+临界阻尼可定义为:体系自由振动反应中不出现往复振动所需的最小阻尼值。
单自由体系名词解释
单自由度系统(Single Degree of Freedom System)是指工程动力学和振动学中常用的一个概念,用来描述一个仅有一个自由度运动的系统。
这个自由度通常是指系统的一个独立运动参数,如质点在一维空间内的位移或者转角。
在单自由度系统中,该自由度的运动可以完全描述整个系统的动态特性。
单自由度系统的经典例子是弹簧质点振子系统,也就是简谐振动系统。
这种系统由一个质点 (质量为m)通过一根弹簧 (弹性系数为k)与一个固定支点相连构成。
该质点在弹簧的作用下可以在水平方向上作简谐振动。
单自由度系统的重要特征包括:
- 自由度: 单自由度系统中仅有一个运动自由度。
- 动力学方程: 可以使用牛顿运动定律和哈克定律等原理来建立该系统的运动方程,描述质点运动的规律。
- 简谐振动: 如果系统的回复力服从胡克定律,并且没有阻尼和外力的作用,系统将表现出理想的简谐振动。
- 阻尼和非线性: 通常情况下,单自由度系统可能会有阻尼和非线性因素的存在,这会使得其振动特性发生变化。
单自由度系统的研究对于理解振动学原理、分析结构动力学响应、设计工程结构等方面都具有重要意义。
它为工程师和研究人员提供了一种简化模型来分析和预测结构或系统的振动行为,对于许多工程应用和设计过程都具有指导意义。
1/ 1。