第五章补充_单自由度系统的振动讲解
- 格式:ppt
- 大小:1.42 MB
- 文档页数:55
单自由度振动系统m质量,k刚度,c阻尼,有时有p激振力单自由度振动系统,指用一个独立参量便可确定系统位置的振动系统。
只要以它的平衡位置取为坐标原点,任一瞬时的质点坐标x(线位移)或 (角位移)就可以决定振动质点的瞬时位置。
根据牛顿定律:mx+cx+kx=F1.单自由度系统无阻尼自由振动mx+kx=0;x+kmx=0;令w m2=k/m,求微分方程的解,得x=c1e iw n t+c2e−iw n t=c1+c2cosw n t+i c1−c2sinw n t=b1cosw n t+b2sinw n t将其合成一个简谐振动,并代入初始条件:t=0时,x=x0,x=x0x=Asin(w n t+φ); A=x2+x02w n2; φ=tg−1x0w nx01.1固有频率系统的圆频率和频率只与系统本身的物理性质(弹性和惯性)有关,因此当振动系统的结构确定后,系统的振动频率就固定不变,而不管运动的初始条件如何,也和振幅的大小无关,因此成为固有圆频率和固有频率。
w n=km ;f n=12πkm1.2固有频率计算方法1)公式法。
根据公式w n=km计算2)静变形法。
根据质量块所处平衡位置的弹簧变形计算。
3)能量法。
根据能量守恒定律,由于无阻尼,无能量损失,12mx2+12kx2=E,将x的方程代入上式,系统的最大动能等于系统的最大弹性势能,计算求出。
4)瑞利法。
考虑到系统弹簧质量的计算方法,如假设系统的静态变形曲线作为假定的振动形式,根据推倒,得出系统的固有频率为w n=km+ρl3,式中加入的部分为“弹簧等效质量”不同振动系统的等效质量不同,只需先算出弹性元件的动能,根据T s =12m s x 2,计算即可。
1.3扭转振动根据扭转运动的牛顿定律 M =I θ,M 为施加到转动物体上的力矩,I 转动物体对于转动轴的转动惯量,θ角加速度。
圆盘转动惯量为I ,轴的转动刚度为kθ。
系统受到干扰后做扭转自由振动,振动时圆盘上受到一个由圆轴作用的与θ方向相反的弹性恢复力矩-K θθ。
y sy(t)机械振动分析------单自由度无阻尼系统的自由振动机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。
可分为自由振动、受迫振动。
又可分为无阻尼振动与阻尼振动。
常见的简谐运动有弹簧振子模型、单摆模型等。
振动在机械中的应用非常普遍,例如在振动筛分行业中基本原理系借电机轴上下端所安装的重锤(不平衡重锤),将电机的旋转运动转变为水平、垂直、倾斜的三次元运动,再把这个运动传达给筛面。
若改变上下部的重锤的相位角可改变原料的行进方向。
物体受到初干扰后,仅在系统的恢复力作用下在其平衡位置附近的振动称为无阻尼自由振动。
其中仅需用一个独立坐标就可确定振体位置的系统为单自由度系统。
单自由度系统的振动理论是振动理论的基础。
研究单自由度系统的振动有着非常普遍的实际意义,因为工程上有许多问题通过简化,用单自由度系统的振动理论就能得到满意的结果。
而同时对多自由度系统和连续系统的振动,在特殊坐标系中考察时,显示出与单自由度系统类似的性态。
因此,揭示单自由度振动系统的规律、特点,为进一步研究复杂振动系统奠定了基础。
影响振动作用的因素是振动频率、加速度和振幅。
现在我们就此方面展开对单自由度无阻尼振动的讨论。
主要包括两部分:单自由度无阻尼系统的自由振动和单自由度无阻尼系统的受迫振动。
一、单自由度无阻尼系统的自由振动如下图,设此梁上的集中质量为m ,其重量为W mg ,梁由于质量的重力引起的质量处的静力位移用s y 表示,与s y 相应的质量位置称为质量的静力平衡位置。
若此质量受到扰动离开了静力平衡位置,当扰动除去后,则体系将发生振动,这样的振动称为体系的自由振动。
由于振动的方向与梁轴垂直,故称为横向振动。
在此,只讨论微小振幅的振动,由振动引起的内力限于材料的弹性极限以内,用以表示质量运动的方程将为线性微分方程。
1、建立运动方程建立运动方程常用的基本原理是达朗伯原理(亦称惯性力法或动静法)。