振动力学第8章第3、4、5节
- 格式:ppt
- 大小:921.50 KB
- 文档页数:54
第四章多自由度系统的振动4.1多自由度系统运动方程的建立4.2 耦合与坐标变换4.3 固有频率和主振型4.4振型矩阵、主坐标和正则坐标4.5 固有频率相等的情况4.6 固有频率为零的情况4.7 无阻尼系统对初始条件的响应4.8 无阻尼系统对任意激励的响应4.9 多自由度系统的阻尼4.10 有阻尼系统的响应4.11 一般粘性阻尼系统的响应一般粘性阻尼系统的响应i nj nj j j i j j i nj j j i ==•=••111i n j n j j j i j j i n j j j i Q q k q c q m =++∑∑∑==•=••111•••[][]{}[]{}{}Q q k q c q m =++⎭⎬⎫⎩⎨⎧•••nn n n n n 212222111211212222111211nn n n n n 212222111211212222111211nn n n n n 212222111211212222111211••••••n 11•••n 11n 11n 11inj nj j j i j j i nj j j i ==•=••111i n j n j j j i j j i n j j j i P x k x c x m =++∑∑∑==•=••111•••[][]{}[]{}{}P x k x c x m =++⎭⎬⎫⎩⎨⎧•••n 2121•i ••i1m 12m 23m 3ii •i i Q q Dq T =∂∂+∂∂•1m 12m 23m 32222)2221k +2222•2221⎟⎠⎞+•x c jjj j q W δδ11x δ11P 111x P δ1x δ22P 33P 2⎟⎠⎞21221212212111••••122121221211123323212332321222•••••2332321233232122233323332333••••33323332333•••••••••321333322221321321321333322221321321000000003213213333222213213213333222210•1•1θv ••2θv •1•=1θ•2•=2θ22θ−+mg l 22θl +k Oθ222yk+=•••[][]{}[]{}{}P x k x c x m =++⎭⎬⎫⎩⎨⎧•••••••••n n i j j i i 1111•••nn i j j i i 1111in n i j j i i 1111i j刚度影响系数k i j 若系统各自由度的广义速度和广义加速度为零,除j i i j i 。
动contents •简谐振动•阻尼振动与受迫振动•振动的合成与分解•振动在介质中的传播•多自由度系统的振动•非线性振动与混沌目录01简谐振动简谐振动的定义与特点定义简谐振动是最基本、最简单的振动形式,指物体在跟偏离平衡位置的位移成正比,并且总是指向平衡位置的回复力的作用下的振动。
特点简谐振动的物体所受的回复力F与物体偏离平衡位置的位移x成正比,且方向始终指向平衡位置;振动过程中,系统的机械能守恒。
动力学方程根据牛顿第二定律,简谐振动的动力学方程可以表示为F=-kx,其中F为回复力,k为比例系数,x为物体偏离平衡位置的位移。
运动学方程简谐振动的运动学方程可以表示为x=Acos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相。
势能与动能在简谐振动过程中,系统的势能Ep和动能Ek都在不断变化,但它们的总和保持不变,即机械能守恒。
能量转换在振动过程中,势能和动能之间不断相互转换。
当物体向平衡位置运动时,势能减小、动能增加;当物体远离平衡位置时,势能增加、动能减小。
同方向同频率简谐振动的合成当两个同方向、同频率的简谐振动同时作用于同一物体时,它们的合振动仍然是一个简谐振动,其振幅等于两个分振动振幅的矢量和,其初相等于两个分振动初相的差。
同方向不同频率简谐振动的合成当两个同方向、不同频率的简谐振动同时作用于同一物体时,它们的合振动一般不再是简谐振动,而是比较复杂的周期性振动。
在某些特定条件下(如两个分振动的频率成简单整数比),合振动可能会呈现出一定的规律性。
相互垂直的简谐振动的合成当两个相互垂直的简谐振动同时作用于同一物体时,它们的合振动轨迹一般是一条复杂的曲线。
在某些特定条件下(如两个分振动的频率相同、相位差为90度),合振动轨迹可能会呈现出一定的规律性,如圆形、椭圆形等。
02阻尼振动与受迫振动阻尼振动的定义与分类定义阻尼振动是指振动系统在振动过程中,由于系统内部摩擦或外部介质阻力的存在,使振动幅度逐渐减小,能量逐渐耗散的振动。