振动力学与结构动力学第一章详解演示文稿
- 格式:ppt
- 大小:1.73 MB
- 文档页数:34
第1章概述研究结构在动荷载作用下的相应规律的学科称为结构动力学结构动力学着重研究结构关于动荷载的响应(如,位移、内力、速度、加速度等的时刻历程)以便确信结构的承载能力和动力学特性,或为改善结构的性能提供依据,结构动力学是抗震设计的基础,也是减震、隔震方法的理论依据。
§结构动力学研究对象与研究目的在动力作用下,结构产生振动,即结构在静平稳位置周围来回地运动(振动)。
振动的缘故,有的是结构本身固有的缘故引发的,如转动机械转子的偏心引发的振动;有的是外界干扰所引发的,如地震作用、风荷载作用,爆炸荷载的作用,和车辆行驶中由于路面不平顺引发的车辆及车辆引发的路面振动等。
因此结构动力学的研究对象正是工程结构的各类振动问题。
而结构动力学的研究目的确实是熟悉和了解工程结构的振动规律,并据此指导工程结构的设计实践及其他有关工作,有效地减轻以幸免有害的振动给工程结构造成破坏,从而为人类社会带来更多的福利,这确实是结构动力学研究的目的和意义。
1.1.1动荷载的概念作用在结构上的荷载是由三个因素确信的,即大小、方向和作用点。
若是这些因素不随时刻转变或随时刻缓慢转变,那么在求解结构的响应时可把其作为静荷载处置加以简化计算,如框架结构的衡宇在自身重力荷载作用下的内力和变形,水塔装满水后的内力和变形等都是结构静力学的范围。
若是作用在结构上的荷载的大小、方向和作用点随时刻转变,使得质量运动加速度所引发的惯性力与荷载相较大到不可轻忽时,那么把这种荷载称为动荷载。
如衡宇结构在风荷载作用下的内力和变形,桥梁结构在汽车荷载作用下的内力和变形,和轮船在海浪的冲击下的内力和变形等都是结构动力学的范围。
应当说明,静与动和加载慢与快是相对的,它与结构自振周期有紧密关系,假设荷载从零增至最大值的加载时刻远大于结构自振周期,例如前者为10s后者为1s,那么加载进程能够为是缓慢的,可作为静荷载对待。
可是假设荷载从零增至最大值的加载时刻接近或小于自振周期,那么加载进程应以为是快速的,这种荷载应作为动荷载来处置。
一振动分析的重要性在实际工程结构的设计工作中,动力学设计和分析是必不可少的一部分。
比如在建筑工程、船舶、汽车等行业中将会接触到大量的旋转结构(例如:轴、轮盘等结构)。
这些结构一般来说在整个机械中占有极其重要的地位,它们的损坏大部分都是由于共振引起较大振动应力而引起的。
同时处于旋转状态,它们所受外界激振力比较复杂,更要求对这些关键部件进行完整的动力设计和分析。
而对于起重机这样的重型机械,控制振动不仅决定结构安全,而且关乎起重机的工作效率和操作人员舒适度。
动态性能是起重机设计的一个重要技术指标。
具体体现在(一)由于机构起动和制动,使起重机金属机构产生持续时间较长的衰减振动,对司机的生理器官和心理感受会产生不良的影响,将影响装卸作业定位精度,降低劳动生产率。
(二)每台装卸桥的金属结构都有固有的振动频率,设计时使这些固有频率避开外激振力的频率可以避免发生共振,有效减小振动幅值。
结构的每个固有振动频率都对应一定的固有振型,准确地计算出结构的固有振型,就可分清在什么样的激振力作用下会发生什么样的振动,从而控制相应激振力的频率,避免该振型下的共振。
二起重机动态分析的内容对起重机的动态分析主要包括,模态分析、谐响应分析、静态分析和瞬态动力分析。
模态分析在动力学分析过程中是必不可少的一个步骤,模态分析用于确定设计结构的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数,是其他动力学分析的起点在模态分析的基础上进行谐响应分析,分析出起重机在受外界激励作用时各阶危险频率下的变形情况。
在工作过程,起重机受得起升冲击,风载冲击以及地震冲击等等的激励影响大,在这些激励下就会出现最大的危险模态,运用谐响应分析分析出这些模态下结构的应力应变和振幅分布情况,通过瞬态分析得出起重机在工作过程中随时间变化的变形情况,起重机在工作时经常启动和制动,将会对结构产生强烈的冲击和振动,瞬态动力学分析,主要研究起重机在启动、制动时系统的弹性振动规律,据此确定系统各部位的动应力响应、位移响应。