第十三章_经典功率谱估计
- 格式:ppt
- 大小:1.94 MB
- 文档页数:48
现代信号处理作业实验题目:设信号)()8.0cos(25.0)47.0cos()35.0cos()(321n v n n n n x ++++++=θπθπθπ,其中321,,θθθ是[]ππ,-内的独立随机变量,v(n)是单位高斯白噪声。
1.利用周期图法对序列进行功率谱估计。
数据窗采用汉明窗。
2.利用BT 法对序列进行功率谱估计,自相关函数的最大相关长度为M=64,128,256,512采用BARTLETT 窗。
3.利用Welch 法对序列进行功率谱估计,50%重叠,采用汉明窗,L=256,128,64。
4.利用Burg 法对序列进行AR 模型功率谱估计,阶数分别为10,13.要求每个实验都取1024个点,fft 作为谱估计,取50个样本序列的算术平均,画出平均的功率谱图。
实验原理:1)。
周期图法:又称间接法,它把随机信号的N 个观察值x N (n)直接进行傅里叶变换,得到X N (e jw ),然后取其幅值的平方,再除以N ,作为对x (n )真实功率谱的估计。
2^)(1)(jw e X Nw P N per =, 其中∑-=-=1)()(N n jwn N jwN e n x e X 2)。
BT 法:对于N 个观察值x(0),x(1),。
,x(N-1),令x N (n)=a(n)x(n)。
计算r x (m )为∑--=-≤+=mN n N Nx N m m n x n xN m r 101),()(1)(,计算其傅里叶变换∑-=--≤=MMm jwm xBT N M e m rm v w P 1 ,)()()(^^,作为观察值的功率谱的估计。
其中v(m)是平滑窗。
3)。
Welch 法:假定观察数据是x(n),n=0,1,2...,N-1,现将其分段,每段长度为M,段与段之间的重叠为M-K,第i 个数据段经加窗后可表示为 1,...,1,0 )()()(-=+=M i iK n x n a n x i M其中K 为一整数,L 为分段数,该数据段的周期图为2)(1)(^w X MU w P i M iper =,其中∑-=-=10)()(M n j w n iM i M e n x w X 。
功率谱估计引言:对信号和系统进行的分析研究、处理有两类方法:一类是在时域内进行,维纳滤波、卡尔曼滤波以及自适应滤波等都属于时域处理方法;另一类方法是频域研究方法。
对于确定性信号,傅里叶变换是在频率分析研究的理论基础,但是在实际生活中大多数信号是随机信号,而随机信号的傅里叶变换是不存在的,在实际应用中,通常通过采集和观测平稳随机过程的一个抽样序列的一段(有限个)数据,根据这有限个已知的数据来估计随机过程的功率谱问题来对随机信号进行分析,这即是频率谱估计。
功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内通过用某种有效的方法来估计出其功率谱密度,从而得出信号、噪声及干扰的一些性质来,提取被淹没在噪声中的有用信号。
功率谱估计就是通过信号的相关性估计出接受到信号的功率随频率的变化关系,实际用途有滤波,信号识别(分析出信号的频率),信号分离,系统辨识等。
谱估计技术是现代信号处理的一个重要部分,还包括空间谱估计,高阶谱估计等。
按照Weiner —Khintchine 定理,随机信号的功率谱和其自相关函数服从傅里叶变换关系,可以得出功率谱的一个定义,如公式(1)所示:()jwm m xx jw xx e m re P -∞-∞=∑=)( 公式(1)对于平稳随机信号,服从各态历经性,集合平均可以用时间平均来代替,可以推出功率谱的另一定义。
如公式(2)所示:()])(121[2lim ∑-=-∞→+=N N n jwn N jw xx e n x N E e P 公式(2)频率谱估计主要分为经典谱估计和现代谱估计,经典谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有相关法和周期图法;现代谱估计是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱,主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的,应用最广的是AR 参数模型。
第1篇一、实验目的1. 理解经典功率谱估计的原理和方法;2. 掌握BT法、周期图法、Bartlett法和Welch法等经典功率谱估计方法;3. 通过MATLAB仿真,验证各种方法的性能和特点;4. 分析实验结果,总结经典功率谱估计方法的优缺点。
二、实验原理功率谱估计是信号处理中的一个重要方法,用于分析信号的频率成分。
经典功率谱估计方法主要包括BT法、周期图法、Bartlett法和Welch法等。
1. BT法:先估计自相关函数,然后进行傅里叶变换得到功率谱;2. 周期图法:直接对样本进行傅里叶变换,得到功率谱;3. Bartlett法:将信号分成L段,计算每段的自相关函数,然后进行傅里叶变换得到功率谱;4. Welch法:对信号进行分段,计算每段的自相关函数,然后进行傅里叶变换得到功率谱,并对结果进行加权平均。
三、实验环境1. 操作系统:Windows 10;2. 编程语言:MATLAB;3. 实验数据:随机信号样本。
四、实验步骤1. 生成随机信号样本;2. 使用BT法进行功率谱估计;3. 使用周期图法进行功率谱估计;4. 使用Bartlett法进行功率谱估计;5. 使用Welch法进行功率谱估计;6. 对比分析各种方法的估计结果。
五、实验结果与分析1. BT法:BT法是一种较为精确的功率谱估计方法,其估计结果与真实功率谱较为接近。
但是,BT法需要计算样本的自相关函数,计算量较大。
2. 周期图法:周期图法是一种简单易行的功率谱估计方法,但其估计结果存在较大误差。
当样本长度N较大时,周期图法的估计结果逐渐接近真实功率谱。
3. Bartlett法:Bartlett法在Bartlett窗口的宽度较大时,估计结果较为准确。
但是,当Bartlett窗口的宽度较小时,估计结果误差较大。
4. Welch法:Welch法是一种改进的周期图法,通过分段和加权平均,提高了估计精度。
Welch法在估计精度和计算量之间取得了较好的平衡。
功率谱估计方法综述:简介:随机信号的持续时间是无限长的,因此随机信号的总能量是无限的,因而随机过程的任意一个样本寒暑都不满足绝对可积条件,所以其傅里叶变换不存在。
尽管随机信号的总能量是无限的,但其平均功率却是有限的,因此,要对随机信号的频域进行分析,应从功率谱出发进行研究才有意义。
信号的功率谱密度描述随机信号的功率在频域随频率的分布。
功率谱估计(PSD)是用有限长的数据来估计信号的功率谱,即利用给定的N个样本数据估计一个平稳随机信号的功率谱密度。
背景:功率谱估计在实际工程中有重要应用价值,如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域,发挥了重要作用。
功率谱估计方法主要分为2大类:非参数化方法(又称经典功率谱估计)和参数化方法(又称现代功率谱估计)。
非参数化方法有相关函数法(BT法)、周期图法、平均周期图法、平滑平均周期图法等;而参数化谱估计有R模型法、移动平均模型法(简称MA模型法)、自回归移动平均模型法(简称ARMA模型法)、最大熵谱分析法(AR模型法)、Pisarenko谐波分解法、Prony 提取极点法、Prony谱线分解法以及capon最大似然法等,由于涉及许多复杂数学计算,在此未作详细数学推导,以下介绍几种常用的功率谱估计方法一、非参数化方法(经典法)经典功率谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗。
1、自相关法又称相关函数法(BT法),根据维纳—辛钦定理:平稳随机过程的自相关函数和功率谱函数是一傅里叶变换对,对于平稳随机信号来说,其相关函数是确定性函数,故其功率谱也是确定的.这样可由平稳随机离散信号的有限个离散值,求出自相关函数,然后作Fourier变换,得到功率谱。
由于随机序列{X(n)}的自相关函数R(n)=E[X(n)X(n+m)]定义在离散点m上,设取样间隔为错误!未找到引用源。
正弦信号的自相关。
广义上的自相关,或者说最一般的自相关,在matlab 中可用卷积conv 和相关函数xcorr 来实现。
序列x(n)和y(n)的互相关公式为:∑∞-∞=-=nxy m n y n x m )()()(φ同理,自相关公式为:∑∞-∞=-=nxx m n x n x m )()()(φ有以下程序验证: close all clear,clcFs=1000; %采样率 f = 5; % f = .5;% f1 = 2; %信号基频 % f2 = 2.5;N = 1; % 周期数 % t = N/f;t=N; % 信号时长 s% t = N/f1; % N 个周期的时间,针对小频率信号,在此时间内,大频率信号周期更多 n=0:1/Fs:t -1/Fs; % 采样时间点,刚好采N 个周期len = length(n); % 信号点数,也是FFT 变换点数,即采集多少点就做多少点的FFTy = sin(2*pi*f*n); % 采集到的离散信号% y = sin(2*pi*f1*n) + sin(2*pi*f2*n); % 采集到的离散信号 plot(y)y1 = fliplr(y);y_corr = conv(y,y1);% [y_corr1,lags] = xcorr(y,100,'unbiased'); y_corr1 = xcorr(y,y);figure;plot(y_corr)% hold onfigure;plot(y_corr1)相关的图像是一模一样的!但是,在BT 法求功率谱中,信号的自相关却不是这样求的。
由于信号的功率谱与自相关函数互为傅里叶变换关系,因此,信号的功率谱估计可以先通过对自相关函数进行估计,再对其进行傅里叶变换即可,这种方法称为自相关函数法,由Blackman 和Tukey 于1958年提出,故也称为BT 法,又称为间接法。
设N 个样本序列{xn}的值为x(0),x(1),…,x(N -1),现需要用此N 个数据来估计自相关函数)(m xx φ.由于xn 只能观察到0<<n<<N -1的N 个值,而n<0和n>N -1时的xn 值是未知的,一般只能假定为0.根据自相关函数的定义得到:∑-+=10)()(1)(N xx m nx n x Nm φ由于x(n)只有N 个观测值,因此对于每个固定的延迟m ,可以利用的数据只有(N -|m|)个,且在[0,N -1]范围内,所以实际计算)(m xx φ为:∑--+=1||0)()(1)(m N xx m nx n x Nm φ考虑乘积项的长度,自相关序列的估计为:1||其中,)()(||1)(1||0-≤+-=∑--N m m n x n x m N m m N xx φ式中,m 取绝对值是因为)(m xx φ=)(m xx -φ,m 为负值时上式仍适用。
中文摘要介绍了各种经典功率谱估计方法,不仅从理论上对各种方法的谱估计质量进行了分析比较,而且通过Matlab 实验仿真验证了理论分析的正确性。
着重对使用比较广泛的Welch 法进行了深入的研究,给出了窗函数选择的一般要求,通过仿真分析了不同的窗函数对Welch 法谱估计质量的影响,比较了他们的优缺点。
最后分析了采样点数较少即短数据对Welch 法谱估计质量的影响。
关键词:经典谱估计;估计质量;Welch 法;窗函数;短数据AbstractVarious classical Power Spect rum Density ( PSD) estimation methods are int roduced ,estimation quality of eachmethod is analyzed and compared in both theory and simulation using the sof tware Matlab. Then further study is made inWelch method which is used most widely. General selecting criterion of window function is presented and estimation quality ofWelch method using different window function is compared. Finally ,the impact of fewer data on estimation quality of Welchmethod is analyzed.Keywords:classical PSD estimation ;estimation quality ;Welch method ;window function ;fewer data第1章绪论 (4)1.1 引言 (4)1.2 选择背景与意义 (4)1.3 经典谱估计发展和应用 (4)第2章经典功率谱估计 (5)2.1 引言 (5)2.2 自相关函数法的估计 (10)2.3 周期图作为功率谱的估计 (13)2.4 经典功率谱估计方法的改进 (19)2.4.1 巴特利特(Bartlett)平均周期图的方法 (19)2.4.2 Welch法 (23)第3章 MATLAB仿真 (24)3.1 仿真结果 (24)3.2 仿真结果分析 (24)3.3 不同窗函数的Welch 谱估计 (25)3.4 短数据的Welch 谱估计 (25)3.5 结论 (26)第4章周期图法和Welch法的比较 (27)4.1 周期图法和Welch法 (27)4.1.1周期图法 (27)4.1.2 Welch法 (27)4.2算法流程图、MATLAB程序及谱估计的分析 (27)4.2.1 算法流程 (28)4.2.2 程序 (28)第5章总结 (30)第1章绪论1.1 引言信号的频谱分析是研究信号特性的重要手段之一,对于确定性信号,可以Fourier 变换来考察其频谱性质,而对于广义平稳随机信号,由于它一般既不是周期的,又不满足平方可积,严格来说不能进行Fourier 变换,通常是求其功率谱来进行频谱分析。