第十三章_经典功率谱估计
- 格式:ppt
- 大小:1.94 MB
- 文档页数:48
现代信号处理作业实验题目:设信号)()8.0cos(25.0)47.0cos()35.0cos()(321n v n n n n x ++++++=θπθπθπ,其中321,,θθθ是[]ππ,-内的独立随机变量,v(n)是单位高斯白噪声。
1.利用周期图法对序列进行功率谱估计。
数据窗采用汉明窗。
2.利用BT 法对序列进行功率谱估计,自相关函数的最大相关长度为M=64,128,256,512采用BARTLETT 窗。
3.利用Welch 法对序列进行功率谱估计,50%重叠,采用汉明窗,L=256,128,64。
4.利用Burg 法对序列进行AR 模型功率谱估计,阶数分别为10,13.要求每个实验都取1024个点,fft 作为谱估计,取50个样本序列的算术平均,画出平均的功率谱图。
实验原理:1)。
周期图法:又称间接法,它把随机信号的N 个观察值x N (n)直接进行傅里叶变换,得到X N (e jw ),然后取其幅值的平方,再除以N ,作为对x (n )真实功率谱的估计。
2^)(1)(jw e X Nw P N per =, 其中∑-=-=1)()(N n jwn N jwN e n x e X 2)。
BT 法:对于N 个观察值x(0),x(1),。
,x(N-1),令x N (n)=a(n)x(n)。
计算r x (m )为∑--=-≤+=mN n N Nx N m m n x n xN m r 101),()(1)(,计算其傅里叶变换∑-=--≤=MMm jwm xBT N M e m rm v w P 1 ,)()()(^^,作为观察值的功率谱的估计。
其中v(m)是平滑窗。
3)。
Welch 法:假定观察数据是x(n),n=0,1,2...,N-1,现将其分段,每段长度为M,段与段之间的重叠为M-K,第i 个数据段经加窗后可表示为 1,...,1,0 )()()(-=+=M i iK n x n a n x i M其中K 为一整数,L 为分段数,该数据段的周期图为2)(1)(^w X MU w P i M iper =,其中∑-=-=10)()(M n j w n iM i M e n x w X 。
功率谱估计引言:对信号和系统进行的分析研究、处理有两类方法:一类是在时域内进行,维纳滤波、卡尔曼滤波以及自适应滤波等都属于时域处理方法;另一类方法是频域研究方法。
对于确定性信号,傅里叶变换是在频率分析研究的理论基础,但是在实际生活中大多数信号是随机信号,而随机信号的傅里叶变换是不存在的,在实际应用中,通常通过采集和观测平稳随机过程的一个抽样序列的一段(有限个)数据,根据这有限个已知的数据来估计随机过程的功率谱问题来对随机信号进行分析,这即是频率谱估计。
功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内通过用某种有效的方法来估计出其功率谱密度,从而得出信号、噪声及干扰的一些性质来,提取被淹没在噪声中的有用信号。
功率谱估计就是通过信号的相关性估计出接受到信号的功率随频率的变化关系,实际用途有滤波,信号识别(分析出信号的频率),信号分离,系统辨识等。
谱估计技术是现代信号处理的一个重要部分,还包括空间谱估计,高阶谱估计等。
按照Weiner —Khintchine 定理,随机信号的功率谱和其自相关函数服从傅里叶变换关系,可以得出功率谱的一个定义,如公式(1)所示:()jwm m xx jw xx e m re P -∞-∞=∑=)( 公式(1)对于平稳随机信号,服从各态历经性,集合平均可以用时间平均来代替,可以推出功率谱的另一定义。
如公式(2)所示:()])(121[2lim ∑-=-∞→+=N N n jwn N jw xx e n x N E e P 公式(2)频率谱估计主要分为经典谱估计和现代谱估计,经典谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有相关法和周期图法;现代谱估计是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱,主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的,应用最广的是AR 参数模型。
第1篇一、实验目的1. 理解经典功率谱估计的原理和方法;2. 掌握BT法、周期图法、Bartlett法和Welch法等经典功率谱估计方法;3. 通过MATLAB仿真,验证各种方法的性能和特点;4. 分析实验结果,总结经典功率谱估计方法的优缺点。
二、实验原理功率谱估计是信号处理中的一个重要方法,用于分析信号的频率成分。
经典功率谱估计方法主要包括BT法、周期图法、Bartlett法和Welch法等。
1. BT法:先估计自相关函数,然后进行傅里叶变换得到功率谱;2. 周期图法:直接对样本进行傅里叶变换,得到功率谱;3. Bartlett法:将信号分成L段,计算每段的自相关函数,然后进行傅里叶变换得到功率谱;4. Welch法:对信号进行分段,计算每段的自相关函数,然后进行傅里叶变换得到功率谱,并对结果进行加权平均。
三、实验环境1. 操作系统:Windows 10;2. 编程语言:MATLAB;3. 实验数据:随机信号样本。
四、实验步骤1. 生成随机信号样本;2. 使用BT法进行功率谱估计;3. 使用周期图法进行功率谱估计;4. 使用Bartlett法进行功率谱估计;5. 使用Welch法进行功率谱估计;6. 对比分析各种方法的估计结果。
五、实验结果与分析1. BT法:BT法是一种较为精确的功率谱估计方法,其估计结果与真实功率谱较为接近。
但是,BT法需要计算样本的自相关函数,计算量较大。
2. 周期图法:周期图法是一种简单易行的功率谱估计方法,但其估计结果存在较大误差。
当样本长度N较大时,周期图法的估计结果逐渐接近真实功率谱。
3. Bartlett法:Bartlett法在Bartlett窗口的宽度较大时,估计结果较为准确。
但是,当Bartlett窗口的宽度较小时,估计结果误差较大。
4. Welch法:Welch法是一种改进的周期图法,通过分段和加权平均,提高了估计精度。
Welch法在估计精度和计算量之间取得了较好的平衡。