功率谱估计介绍(介绍了matlab函数)
- 格式:doc
- 大小:25.50 KB
- 文档页数:1
功率谱估计 matlab
在MATLAB中进行功率谱密度估计可以使用多种方法,其中最常
用的是基于信号处理工具箱中的函数。
功率谱密度估计是一种用于
分析信号频谱特性的方法,它可以帮助我们了解信号中不同频率成
分的能量分布情况。
在MATLAB中,可以使用periodogram函数来对信号进行功率谱
密度估计。
该函数可以接受原始信号作为输入,并返回频率和对应
的功率谱密度估计值。
另一个常用的函数是pwelch,它可以对信号
进行Welch方法的功率谱估计,该方法是一种常用的频谱估计方法,可以减小估计值的方差。
除了这些内置函数,MATLAB还提供了其他一些工具和函数用于
功率谱密度估计,比如spectrogram函数用于计算信号的短时功率
谱密度估计,cpsd函数用于计算信号的交叉功率谱密度估计等。
在进行功率谱密度估计时,需要注意选择合适的窗函数、重叠
比例等参数,以保证估计结果的准确性和可靠性。
此外,还需要考
虑信号长度、采样频率等因素对功率谱密度估计的影响。
总之,在MATLAB中进行功率谱密度估计有多种方法和工具可供选择,需要根据具体的应用场景和要求来选择合适的方法和函数进行使用。
希望这些信息能对你有所帮助。
在matlab中,功率谱估计是信号处理和频谱分析中常用的一种方法。
通过对信号的频谱特性进行估计,可以有效地分析信号的功率分布情况,从而为信号处理和系统设计提供重要的参考信息。
在matlab中,提供了多种功率谱估计的函数,以下将对其中几种常用的函数进行介绍和分析。
1. periodogram函数periodogram函数是matlab中用于估计信号功率谱密度的函数之一。
它基于傅里叶变换将离散时间信号转换成频域信号,然后计算频域信号的功率谱密度。
其调用格式为:[Pxx, F] = periodogram(x,window,nfft,fs)其中,x为输入的离散时间信号,window为窗函数,nfft为离散傅里叶变换的点数,fs为信号的采样频率。
periodogram函数返回的Pxx 为功率谱密度估计值,F为对应的频率。
2. pwelch函数pwelch函数也是用于估计功率谱密度的函数,它采用了Welch方法,通过对信号进行分段处理,然后对各段信号进行傅里叶变换,并对各段功率谱密度进行平均。
其调用格式为:[Pxx, F] = pwelch(x,window,noverlap,nfft,fs)其中,x为输入的离散时间信号,window为窗函数,noverlap为相邻分段的重叠点数,nfft为离散傅里叶变换的点数,fs为信号的采样频率。
pwelch函数返回的Pxx为功率谱密度估计值,F为对应的频率。
3. cpsd函数cpsd函数用于估计信号的交叉功率谱密度,即两个信号之间的频谱特性。
其调用格式为:[Pxy, F] = cpsd(x,y,window,noverlap,nfft,fs)其中,x和y为输入的两个离散时间信号,window为窗函数,noverlap为相邻分段的重叠点数,nfft为离散傅里叶变换的点数,fs为信号的采样频率。
cpsd函数返回的Pxy为交叉功率谱密度估计值,F为对应的频率。
4. mscohere函数mscohere函数用于估计信号的相干函数,即两个信号之间的相关性。
功率谱估计 matlab
在MATLAB中,可以使用多种方法来进行功率谱密度(PSD)的估计。
以下是一些常用的方法:
1. 通过信号处理工具箱中的函数进行估计:
MATLAB的信号处理工具箱提供了一些内置函数来进行功率谱密度估计,比如pwelch()和periodogram()函数。
这些函数可以直接对信号进行处理并估计其功率谱密度。
2. 基于频谱估计的方法:
在MATLAB中,你可以使用基于频谱估计的方法来进行功率谱密度估计,比如传统的傅里叶变换、Welch方法、Bartlett方法、Blackman-Tukey方法等。
这些方法可以通过MATLAB中的相关函数来实现,比如fft()函数用于傅里叶变换,pwelch()函数用于Welch 方法估计等。
3. 使用自相关函数:
自相关函数可以用于估计信号的功率谱密度。
在MATLAB中,你
可以使用xcorr()函数来计算信号的自相关函数,然后对自相关函
数进行傅里叶变换来得到功率谱密度估计。
4. 基于模型的方法:
MATLAB中还提供了一些基于模型的方法来进行功率谱密度估计,比如Yule-Walker方法、Maximum Entropy方法等。
你可以使用相
应的函数来实现这些方法,比如pyulear()函数用于Yule-Walker
方法估计。
总的来说,MATLAB提供了丰富的工具和函数来进行功率谱密度
的估计,你可以根据具体的需求和信号特性选择合适的方法来进行
估计。
希望这些信息能够帮助到你。
matlab 功率谱计算在MATLAB中,可以使用多种方法来计算信号的功率谱。
下面我将从多个角度介绍几种常用的方法。
方法一,使用fft函数计算功率谱。
1. 首先,将信号进行零均值化,即减去信号的均值。
2. 然后,使用fft函数对零均值化后的信号进行傅里叶变换,得到频域表示。
3. 对频域表示进行平方运算,得到每个频率分量的幅度平方。
4. 最后,对幅度平方进行归一化处理,即除以信号长度和采样频率的乘积,得到功率谱密度。
示例代码如下:matlab.% 假设信号为x,采样频率为Fs.x = % 输入信号。
Fs = % 采样频率。
% 零均值化。
x = x mean(x);% 计算功率谱。
N = length(x); % 信号长度。
X = fft(x); % 傅里叶变换。
Pxx = (abs(X).^2)/(NFs); % 幅度平方归一化。
% 绘制功率谱图。
f = (0:N-1)(Fs/N); % 频率轴。
plot(f, 10log10(Pxx));xlabel('频率 (Hz)');ylabel('功率谱密度 (dB/Hz)');方法二,使用pwelch函数计算功率谱。
MATLAB还提供了pwelch函数,可以更方便地计算信号的功率谱密度估计。
pwelch函数使用了Welch方法,可以自动进行分段加窗、重叠和平均处理,得到更准确的功率谱估计结果。
示例代码如下:matlab.% 假设信号为x,采样频率为Fs.x = % 输入信号。
Fs = % 采样频率。
% 计算功率谱。
[Pxx, f] = pwelch(x, [], [], [], Fs);% 绘制功率谱图。
plot(f, 10log10(Pxx));xlabel('频率 (Hz)');ylabel('功率谱密度 (dB/Hz)');以上是两种常用的计算信号功率谱的方法,你可以根据实际需求选择适合的方法进行计算。
实验功率谱估计实验目的:1、掌握最大熵谱估计的基本原理。
2、了解最终预测误差(FPE)准则。
3、掌握周期图谱估计的基本原理。
4、掌握传统谱估计中直接法与间接法之间的关系。
5、复习快速傅里叶变换与离散傅里叶变换之间关系。
实验内容:1、设两正弦信号的归一化频率分别为0.175和0.20,用最大熵法编程计算信噪比S/N=30dB、N=32点时该信号的最大熵谱估计结果。
2、用周期图法编程计算上述信号的谱估计结果。
程序示例:1、最大熵谱估计clc;N=32;SNR=30;fs=1;t=1:N;t=t/fs;y=sin(2*pi*0.175*t)+sin(2*pi*0.20*t);x = awgn(y,SNR);M=1;P(M)=0;Rx(M)=0;for n=1:NP(M)=P(M)+(abs(x(n)))^2;ef(1,n)=x(n);eb(1,n)=x(n);endP(M)=P(M)/N;Rx(M)=P(M);M=2;A=0;D=0;for n=M:NA=A+ef(M-1,n)*eb(M-1,n-1);D=D+(abs(ef(M-1,n)))^2+(abs(eb(M-1,n-1)))^2; endxishu=-2*A/D;a(M-1,M-1)=-2*A/D;P(M)=P(M-1)*(1-(abs(xishu))^2);FPE(M-1)=P(M)*(N+M)/(N-M);TH=FPE(M-1);for n=M:Nef(M,n)=ef(M-1,n)+xishu*eb(M-1,n-1);eb(M,n)=eb(M-1,n-1)+xishu*ef(M-1,n);endM=M+1;A=0;D=0;for n=M:NA=A+ef(M-1,n)*eb(M-1,n-1);D=D+(abs(ef(M-1,n)))^2+(abs(eb(M-1,n-1)))^2;endxishu=-2*A/D;a(M-1,M-1)=-2*A/D;P(M)=P(M-1)*(1-(abs(xishu))^2);FPE(M-1)=P(M)*(N+M)/(N-M);for m=1:M-2a(M-1,m)=a(M-2,m)+xishu*a(M-2,M-1-m);endwhile FPE(M-1)<THTH=FPE(M-1);for n=M:Nef(M,n)=ef(M-1,n)+xishu*eb(M-1,n-1);eb(M,n)=eb(M-1,n-1)+xishu*ef(M-1,n);endM=M+1;A=0;D=0;for n=M:NA=A+ef(M-1,n)*eb(M-1,n-1);D=D+(abs(ef(M-1,n)))^2+(abs(eb(M-1,n-1)))^2;endxishu=-2*A/D;a(M-1,M-1)=-2*A/D;P(M)=P(M-1)*(1-(abs(xishu))^2);FPE(M-1)=P(M)*(N+M)/(N-M);for m=1:M-2a(M-1,m)=a(M-2,m)+xishu*a(M-2,M-1-m);endendT=1/fs;sum1=0;f=0.01:0.01:0.5;for m=1:M-1;sum1=sum1+a(M-1,m)*exp(-j*2*pi*m*f*T);ends1=(abs(1+sum1)).^2;s=P(M)*T./s1;plot(f,10*log10(s),'k');xlabel('f/fs');ylabel('功率谱/dB');2、周期图谱估计clc;clear;N=32;SNR=30;fs=1;t=1:N;t=t/fs;y=sin(2*pi*0.175*t)+sin(2*pi*0.20*t);x = awgn(y,SNR);sum1=0;f=0.05:0.01:0.5;for m=1:Nsum1=sum1+x(m)*exp(-j*2*pi*m*f);ends=(abs(sum1)).^2/N;plot(f,10*log10(s),'k');xlabel('f/fs');ylabel('功率谱/dB');实验结果:1、最大熵法估计结果:2、周期图法估计结果:。
功率谱密度估计方法的MATLAB实现功率谱密度估计是信号处理领域中常用的一种方法,用于分析信号的频率特性。
MATLAB提供了多种功率谱密度估计方法的函数,包括传统的傅里叶变换方法和更现代的自相关方法。
以下是一些常见的功率谱密度估计方法及其MATLAB实现。
1.傅里叶变换方法:傅里叶变换方法是最常用的功率谱密度估计方法之一、MATLAB提供了`pwelch`函数来实现傅里叶变换方法的功率谱密度估计。
以下是一个简单的使用例子:```matlabfs = 1000; % 采样率t = 0:1/fs:1-1/fs; % 时间序列x = cos(2*pi*50*t) + randn(size(t)); % 生成一个包含50 Hz 正弦波和噪声的信号[Pxx, f] = pwelch(x, [],[],[], fs); % 估计功率谱密度plot(f, 10*log10(Pxx)); % 画出功率谱密度曲线xlabel('Frequency (Hz)');ylabel('Power Spectral Density (dB/Hz)');```2.自相关方法:自相关方法是另一种常用的功率谱密度估计方法。
MATLAB提供了`pcov`函数来实现自相关方法的功率谱密度估计。
以下是一个简单的使用例子:```matlabfs = 1000; % 采样率t = 0:1/fs:1-1/fs; % 时间序列x = cos(2*pi*50*t) + randn(size(t)); % 生成一个包含50 Hz 正弦波和噪声的信号[Rxx, lags] = xcorr(x, 'biased'); % 估计自相关函数[Pxx, f] = pcov(Rxx, [], fs, length(x)); % 估计功率谱密度plot(f, 10*log10(Pxx)); % 画出功率谱密度曲线xlabel('Frequency (Hz)');ylabel('Power Spectral Density (dB/Hz)');```3.周期图方法:周期图方法是一种能够处理非平稳信号的功率谱密度估计方法。
matlab功率谱计算在MATLAB中,可以使用函数`pwelch`来计算信号的功率谱。
具体步骤如下:1. 准备信号数据。
您可以将信号数据保存在一个向量或数组中。
2. 设置参数。
您需要设置窗口长度(窗长)和窗口重叠。
窗长(window length)指的是计算功率谱时使用的每个窗口的数据点数。
通常情况下,窗长应该是2的幂次方,这样计算效率更高。
窗口重叠(window overlap)指的是每个窗口之间数据点的重叠数。
通常情况下,窗口重叠为窗长的一半。
3. 使用`pwelch`函数计算功率谱。
根据您的需求,可以指定输出参数和输入参数。
常见的输入参数有信号数据、窗长和窗口重叠数;常见的输出参数有频率和功率谱密度。
示例代码如下:```matlab% 准备信号数据signal = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];% 设置参数windowLength = 4; % 窗长windowOverlap = windowLength / 2; % 窗口重叠% 计算功率谱[powerSpectrum, frequencies] = pwelch(signal, windowLength, windowOverlap);% 绘制功率谱图plot(frequencies, 10*log10(powerSpectrum));xlabel('Frequency (Hz)');ylabel('Power Spectral Density (dB/Hz)');```这段代码会计算信号的功率谱,并绘制功率谱图。
其中,`powerSpectrum`为计算得到的功率谱密度,`frequencies`为对应的频率。
注意:`pwelch`函数还有许多其他的输入参数和输出参数,您可以根据自己的需求进行配置。
具体可参考MATLAB的帮助文档。
功率谱密度估计方法的MATLAB 实现功率谱密度估计方法的MATLAB实现在应用数学和物理学中,谱密度、功率谱密度和能量谱密度是一个用于信号的通用概念,它表示每赫兹的功率、每赫兹的能量这样的物理量纲。
在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。
当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。
功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。
信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。
如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。
信号功率谱的概念和应用是电子工程的基础,尤其是在电子通信系统中,例如无线电和微波通信、雷达以及相关系统。
因此学习如何进行功率谱密度估计十分重要,借助于Matlab工具可以实现各种谱估计方法的模拟仿真并输出结果。
下面对周期图法、修正周期图法、最大熵法、Levinson递推法和Burg法的功率谱密度估计方法进行程序设计及仿真并给出仿真结果。
以下程序运行平台:Matlab R2015a(197613)一、周期图法谱估计程序1、源程序Fs=100000; %采样频率100kHzN=1024; %数据长度N=1024n=0:N-1;t=n/Fs;xn=sin(2000*2*pi*t); %正弦波,f=2000HzY=awgn(xn,10); %加入信噪比为10db的高斯白噪声subplot(2,1,1);plot(n,Y)title('信号')xlabel('时间');ylabel('幅度');grid on;window=boxcar(length(xn)); %矩形窗nfft=N/4; %采样点数[Pxx f]=periodogram(Y,window,nfft,Fs); %直接法subplot(2,1,2);plot(f,10*log10(Pxx));grid on;title(['周期图法谱估计,',int2str(N),'点']); xlabel('频率(Hz)');ylabel('功率谱密度');2、仿真结果二、修正周期图法(加窗)谱估计程序1、源程序Fs=100000; %采样频率100kHzN=512; %数据长度M=32; %汉明窗宽度n=0:N-1;t=n/Fs;xn=sin(2000*2*pi*t); %正弦波,f=2000HzY=awgn(xn,10); %加入信噪比为10db的高斯白噪声subplot(2,1,1);subplot(2,1,1);plot(n,Y)title('信号')xlabel('时间');ylabel('幅度');grid on;window=hamming(M); %汉明窗[Pxx f]=pwelch(Y,window,10,256,Fs); subplot(2,1,2);plot(f,10*log10(Pxx));grid on;title(['修正周期图法谱估计N=',int2str(N),' M=',int2str(M)]);xlabel('频率(Hz)');ylabel('功率谱密度'); 2、仿真结果三、最大熵法谱估计程序1、源程序fs=1; %设采样频率N=128; %数据长度改变数据长度会导致分辨率的变化;f1=0.2*fs; %第一个sin信号的频率,f1/fs=0.2P=10; %滤波器阶数n=1:N;s=sin(2*pi*f1*n/fs)+sin(2*pi*f2*n/fs); %s为原始信号x=awgn(s,10); %x为观测信号,即对原始信号加入白噪声,信噪比10dBfigure(1); %画出原始信号和观测信号subplot(2,1,1);plot(s,'b'),xlabel('时间'),ylabel('幅度'),title('原始信号s');grid;subplot(2,1,2);plot(x,'r'),xlabel('时间'),ylabel('幅度'),title('观测信号x');[Pxx1,f]=pmem(x,P,N,fs); %最大熵谱估计figure(2);plot(f,10*log10(Pxx1));xlabel('频率(Hz) ');ylabel('功率谱(dB) ');title(['最大熵法谱估计模型阶数P=',int2str(P),' 数据长度N=',int2str(N)]);2、仿真结果四、L evinson递推法谱估计程序1、源程序fs=1; %设采样频率为1N=1000; %数据长度改变数据长度会导致分辨率的变化;f1=0.2*fs; %第一个sin信号的频率,f1/fs=0.2M=16; %滤波器阶数的最大取值,超过则认为代价太大而放弃L=2*N; %有限长序列进行离散傅里叶变换前,序列补零的长度n=1:N;s=sin(2*pi*f1*n/fs)+sin(2*pi*f2*n/fs);%s为原始信号x=awgn(s,10);%x为观测信号,即对原始信号加入白噪声,信噪比10dBfigure(1); %画出原始信号和观测信号subplot(2,1,1);plot(s,'b'),axis([0 100 -3 3]),xlabel('时间'),ylabel('幅度'),title('原始信号s');grid;subplot(2,1,2);plot(x,'r'),axis([0 100 -3 3]),xlabel('时间'),ylabel('幅度'),title('观测信号x');grid;%计算自相关函数rxx = xcorr(x,x,M,'biased');%计算有偏估计自相关函数,长度为-M到M,%共2M+1r0 = rxx(M+1); %r0为零点上的自相关函数,相对于-M,第M+1个点为零点R = rxx(M+2:2*M+1);% R为从1到第M个点的自相关函数矩阵%确定矩阵大小a = zeros(M,M);FPE = zeros(1,M);%FPE:最终预测误差,用来估计模型的阶次var = zeros(1,M);%求初值a(1,1) = -R(1)/r0;%一阶模型参数var(1) = (1-(abs(a(1,1)))^2)*r0;%一阶方差FPE(1) = var(1)*(M+2)/(M);%递推for p=2:Msum=0;for k=1:p-1%求a(p,p)sum=sum+a(p-1,k)*R(p-k);enda(p,p)=-(R(p)+sum)/var(p-1);for k=1:p-1 %求a(p,k)a(p,k)=a(p-1,k)+a(p,p)*a(p-1,p-k);endvar(p)=(1-a(p,p)^2)*var(p-1); %求方差FPE(p)=var(p)*(M+1+p)/(M+1-p);%求最终预测误差end%确定AR模型的最佳阶数min=FPE(1); %求出FPE最小时对应的阶数p = 1;for k=2:Mif FPE(k)<minmin=FPE(k);p=k;endend%功率谱估计W=0.01:0.01:pi; %功率谱以2*pi为周期,又信号为实信号,只需输出0到PI即可;he=ones(1,length(W)); %length()求向量的长度for k=1:phe=he+(a(p,k).*exp(-j*k*W));endPxx=var(p)./((abs(he)).^2); %功率谱函数;F=W*fs/(pi*2); %将角频率坐标换算成HZ坐标,便于观察;重要!figure;plot(F,abs(Pxx))xlabel('频率/Hz'),ylabel('功率谱P'),title([' AR模型的最佳阶数p=' int2str(p)] );grid;2、仿真结果五、B urg法谱估计程序1、源程序fs=1;%设采样频率为1N=900;%数据长度改变数据长度会导致分辨率的变化;f1=0.2*fs;%第一个sin信号的频率,f1/fs=0.2M=512;%滤波器阶数的最大取值,超过则认为代价太大而放弃n=1:N;s = sin(2*pi*f1*n/fs)+sin(2*pi*f2*n/fs);%s为原始信号x = awgn(s,10);%x为观测信号,即对原始信号加入白噪声,信噪比10dB for i=1:Nef(1,i)=x(i);eb(1,i)=x(i);endsum=0;for i=1:Nsum=sum+x(i)*x(i);endr(1)=sum/N;% Burg递推for p=2:M% 求解第p个反射系数sum1=0;for n=p:Nsum1=sum1+ef(p-1,n)*eb(p-1,n-1);endsum1=-2*sum1;sum2=0;for n=p:Nsum2=sum2+ef(p-1,n)*ef(p-1,n)+eb(p-1,n-1)*eb(p-1,n-1); endk(p-1)=sum1/sum2;% 求解预测误差平均功率r(p)=(1-k(p-1)*k(p-1))*r(p-1);% 求解p阶白噪声方差q(p)=r(p);% 系数aif p>2for i=1:p-2a(p-1,i)=a(p-2,i)+k(p-1)*a(p-2,p-1-i); endenda(p-1,p-1)=k(p-1);% 求解前向预测误差for n=p+1:Nef(p,n)=ef(p-1,n)+k(p-1)*eb(p-1,n-1);end%求解后向预测误差for n=p:N-1eb(p,n)=eb(p-1,n-1)+k(p-1)*ef(p-1,n);endend% 计算功率谱for j=1:Nsum3=0;sum4=0;for i=1:p-1sum3=sum3+a(p-1,i)*cos(2*pi*i*j/N);endsum3=1+sum3;for i=1:p-1sum4=sum4+a(p-1,i)*sin(2*pi*i*j/N);endpxx=sqrt(sum3*sum3+sum4*sum4);pxx=q(M)/pxx;pxx=10*log10(pxx);pp(j)=pxx;end%画出功率谱ff=1:N;ff=ff/N;figure;plot(ff,pp),axis([0 0.5 -20 10]),xlabel('频率'),ylabel('幅度(dB)'),title('功率谱P');grid;2、仿真结果。
[matlab实现经典功率谱估计]matlab功率谱估计1、直接法:直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。
Matlab代码示例:clear;Fs=1000; %采样频率n=0:1/Fs:1;%产生含有噪声的序列xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗nfft=1024;[Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法plot(f,10*log10(Pxx));2、间接法:间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。
Matlab代码示例:clear;Fs=1000; %采样频率n=0:1/Fs:1;%产生含有噪声的序列xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024;cxn=xcorr(xn,”unbiased”); %计算序列的自相关函数CXk=fft(cxn,nfft);Pxx=abs(CXk);index=0:round(nfft/2-1);k=index*Fs/nfft;plot_Pxx=10*log10(Pxx(index+1));plot(k,plot_Pxx);3、改进的直接法:对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。
3.1、Bartlett法Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平均。
Matlab代码示例:clear;Fs=1000;n=0:1/Fs:1;xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024;window=boxcar(length(n)); %矩形窗noverlap=0; %数据无重叠p=0.9; %置信概率[Pxx,Pxxc]=psd(xn,nfft,Fs,window,noverlap,p);index=0:round(nfft/2-1);k=index*Fs/nfft;plot_Pxx=10*log10(Pxx(index+1));plot_Pxxc=10*log10(Pxxc(index+1));figure(1)plot(k,plot_Pxx);pause;figure(2)plot(k,[plot_Pxx plot_Pxx-plot_Pxxc plot_Pxx+plot_Pxxc]);3.2、Welch法Welch法对Bartlett法进行了两方面的修正,一是选择适当的窗函数w(n),并再周期图计算前直接加进去,加窗的优点是无论什么样的窗函数均可使谱估计非负。
功率谱估计介绍
谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。
在这里,结合matlab,我做一个粗略介绍。
功率谱估计可以分为经典谱估计方法与现代谱估计方法。
经典谱估计中最简单的就是周期图法,又分为直接法与间接法。
直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计算N点样本数据的自相关函数,然后取自相关函数的傅里叶变换,即得到功率谱的估计.都可以编程实现,很简单。
在matlab中,周期图法可以用函数periodogram实现。
周期图法估计出的功率谱不够精细,分辨率比较低。
因此需要对周期图法进行修正,可以将信号序列x(n)分为n个不相重叠的小段,分别用周期图法进行谱估计,然后将这n段数据估计的结果的平均值作为整段数据功率谱估计的结果。
还可以将信号序列x(n)重叠分段,分别计算功率谱,再计算平均值作为整段数据的功率谱估计。
种称为分段平均周期图法,一般后者比前者效果好。
加窗平均周期图法是对分段平均周期图法的改进,即在数据分段后,对每段数据加一个非矩形窗进行预处理,然后在按分段平均周期图法估计功率谱。
相对于分段平均周期图法,加窗平均周期图法可以减小频率泄漏,增加频峰的宽度。
welch法就是利用改进的平均周期图法估计估计随机信号的功率谱,它采用信号分段重叠,加窗,FFT
等技术来计算功率谱。
与周期图法比较,welch法可以改善估计谱曲线的光滑性,大大提高谱估计的分辨率。
matlab中,welch法用函数psd实现。
调用格式如下:
[Pxx,F] = PSD(X,NFFT,Fs,WINDOW,NOVERLAP)
X:输入样本数据
NFFT:FFT点数
Fs:采样率
WINDOW:窗类型
NOVERLAP,重叠长度
现代谱估计主要针对经典谱估计分辨率低和方差性不好提出的,可以极大的提高估计的分辨率和平滑性。
可以分为参数模型谱估计和非参数模型谱估计。
参数模型谱估计有AR模型,MA模型,ARMA模型等;非参数模型谱估计有最小方差法和MUSIC法等。
由于涉及的问题太多,这里不再详述,可以参考有关资料。
matlab中,现代谱估计的很多方法都可以实现。
music方法用pmusic命令实现;pburg函数利用burg法实现功率谱估计;pyulear函数利用yule-walker算法实现功率谱估计等等。
另外,sptool工具箱也具有功率谱估计的功能。
窗口化的操作界面很方便,而且有多种方法可以选择
在海杂波抑制的研究中,对海杂波谱分析一定要用到谱估计理论,一定得花时间学好!。