高考数学一轮复习配套讲义:选修4-2 矩阵与变换
- 格式:doc
- 大小:864.50 KB
- 文档页数:15
选修4-2 矩阵与变换 A[最新考纲]1.了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系. 2.了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示.3.理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质. 4.理解逆矩阵的意义,会求出简单二阶逆矩阵.5.理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.知 识 梳 理1.矩阵的乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则:[a 11 a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21].(2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21a 12a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 设A 是一个二阶矩阵,α、β是平面上的任意两个向量,λ、λ1、λ2是任意三个实数,则①A (λα)=λAα;②A (α+β)=Aα+Aβ; ③A (λ1α+λ2β)=λ1Aα+λ2Aβ.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21b 12b 22= ⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22性质:①一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律;②矩阵的乘法满足结合律,即(AB )C =A (BC );③矩阵的乘法不满足消去律. 2.矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a b c d (det A =ad -bc ≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc-c ad -bc a ad -bc .(3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n 的系数矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤ab c d 可逆,那么该方程组有唯一解⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤a b c d -1⎣⎢⎢⎡⎦⎥⎥⎤m n , 其中A -1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc-c ad -bc a ad -bc . 3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量. (2)特征多项式与特征方程设λ是二阶矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤ab c d 的一个特征值,它的一个特征向量为ξ=⎣⎢⎢⎡⎦⎥⎥⎤x y ,则A ⎣⎢⎢⎡⎦⎥⎥⎤x y =λ⎣⎢⎢⎡⎦⎥⎥⎤x y , 即⎣⎢⎢⎡⎦⎥⎥⎤x y 满足二元一次方程组⎩⎪⎨⎪⎧ax +by =λx ,cx +dy =λy ,故⎩⎪⎨⎪⎧λ-a x -by =0-cx + λ-d y =0⇔⎣⎢⎢⎡⎦⎥⎥⎤λ-a -b -c λ-d ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤00(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a b c d 的特征多项式;方程⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤ab c d 的特征方程.(3)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0的一个根. 解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎪⎨⎪⎧x =x 1,y =y 1,⎩⎪⎨⎪⎧x =x 2,y =y 2,记ξ1=⎣⎢⎢⎡⎦⎥⎥⎤x 1y 1,ξ2=⎣⎢⎢⎡⎦⎥⎥⎤x 2y 2. 则Aξ1=λ1ξ1、Aξ2=λ2ξ2,因此λ1、λ2是矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤ab c d 的特征值,ξ1=⎣⎢⎢⎡⎦⎥⎥⎤x 1y 1,ξ2=⎣⎢⎢⎡⎦⎥⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量.诊 断 自 测1. ⎣⎢⎢⎡⎦⎥⎥⎤1 00 -1 ⎣⎢⎢⎡⎦⎥⎥⎤57=________. 解析 ⎣⎢⎢⎡⎦⎥⎥⎤1 00 -1⎣⎢⎢⎡⎦⎥⎥⎤57=⎣⎢⎢⎡⎦⎥⎥⎤ 1×5+0×7 0×5+ -1 ×7=⎣⎢⎢⎡⎦⎥⎥⎤5-7. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤5-7 2.若A =⎣⎢⎢⎡⎦⎥⎥⎤12 1212 12,B =⎣⎢⎢⎡⎦⎥⎥⎤12 -12-12 12,则AB =________.解析 AB =⎣⎢⎢⎡⎦⎥⎥⎤12 1212 12⎣⎢⎢⎡⎦⎥⎥⎤ 12 -12-12 12=⎣⎢⎢⎡⎦⎥⎥⎤12×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×1212×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×12 =⎣⎢⎢⎡⎦⎥⎥⎤0 00 0. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤0 00 0 3.设A =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 1,B =⎣⎢⎢⎡⎦⎥⎥⎤0 -11 0,则AB 的逆矩阵为________. 解析 ∵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 1,B -1=⎣⎢⎢⎡⎦⎥⎥⎤0 1-1 0 ∴(AB )-1=B -1A-1=⎣⎢⎢⎡⎦⎥⎥⎤ 0 1-1 0 ⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 1=⎣⎢⎢⎡⎦⎥⎥⎤0 11 0. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤0 11 0 4.函数y =x 2在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 14变换作用下的结果为________. 解析⎣⎢⎢⎡⎦⎥⎥⎤1 00 14 ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x 14y=⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′⇒x =x ′,y =4y ′, 代入y =x 2,得y ′=14x ′2,即y =14x 2.答案 y =14x 25.若A =⎣⎢⎢⎡⎦⎥⎥⎤1 56 2,则A 的特征值为________. 解析 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -5 -6 λ-2 =(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4. 答案 7和-4考点一 矩阵与变换【例1】 (2014·苏州市自主学习调查)已知a ,b 是实数,如果矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2 a b 1所对应的变换将直线x -y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤2 a b 1 ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′, 所以⎩⎪⎨⎪⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′),在直线x +2y =1上,所以(2+2b )x +(a +2)y =1,即⎩⎪⎨⎪⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.规律方法 理解变换的意义,掌握矩阵的乘法运算法则是求解的关键,利用待定系数法,构建方程是解决此类题的关键.【训练1】 已知变换S 把平面上的点A (3,0),B (2,1)分别变换为点A ′(0,3),B ′(1,-1),试求变换S 对应的矩阵T .解 设T =⎣⎢⎢⎡⎦⎥⎥⎤ac bd ,则T :⎣⎢⎢⎡⎦⎥⎥⎤30→⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤a c b d ⎣⎢⎢⎡⎦⎥⎥⎤30=⎣⎢⎢⎡⎦⎥⎥⎤3a 3b =⎣⎢⎢⎡⎦⎥⎥⎤03,解得⎩⎪⎨⎪⎧a =0,b =1;T :⎣⎢⎢⎡⎦⎥⎥⎤21→⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤a c b d ⎣⎢⎢⎡⎦⎥⎥⎤21=⎣⎢⎢⎡⎦⎥⎥⎤2a +c 2b +d =⎣⎢⎢⎡⎦⎥⎥⎤ 1-1, 解得⎩⎪⎨⎪⎧c =1,d =-3,综上可知T =⎣⎢⎢⎡⎦⎥⎥⎤0 11 -3. 考点二 二阶逆矩阵与二元一次方程组【例2】 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2 -31 -1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标.解 依题意得由M =⎣⎢⎢⎡⎦⎥⎥⎤2 -31 -1,得|M |=1, 故M-1=⎣⎢⎢⎡⎦⎥⎥⎤-1 3-1 2. 从而由⎣⎢⎢⎡⎦⎥⎥⎤2 -31 -1⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤135得⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-1-1 32⎣⎢⎢⎡⎦⎥⎥⎤135=⎣⎢⎢⎡⎦⎥⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎢⎡⎦⎥⎥⎤ 2-3,故⎩⎪⎨⎪⎧x =2,y =-3,∴A (2,-3)为所求.规律方法 求逆矩阵时,可用定义法解方程处理,也可以用公式法直接代入求解.在求逆矩阵时要重视(AB )-1=B -1A -1性质的应用.【训练2】 已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤21 32,(1)求矩阵A 的逆矩阵;(2)利用逆矩阵知识解方程组⎩⎪⎨⎪⎧2x +3y -1=0,x +2y -3=0.解 (1)法一 设逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤acb d , 则由⎣⎢⎢⎡⎦⎥⎥⎤21 32⎣⎢⎢⎡⎦⎥⎥⎤acb d =⎣⎢⎢⎡⎦⎥⎥⎤10 01,得⎩⎪⎨⎪⎧2a +3c =1,2b +3d =0,a +2c =0,b +2d =1,解得⎩⎪⎨⎪⎧a =2,b =-3,c =-1,d =2,A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1-32. 法二 由公式知若A =⎣⎢⎢⎡⎦⎥⎥⎤acb d =⎣⎢⎢⎡⎦⎥⎥⎤21 32,(2)已知方程组⎩⎪⎨⎪⎧2x +3y -1=0,x +2y -3=0,可转化为⎩⎪⎨⎪⎧2x +3y =1,x +2y =3,即AX =B ,其中A =⎣⎢⎢⎡⎦⎥⎥⎤21 32,X =⎣⎢⎢⎡⎦⎥⎥⎤x y ,B =⎣⎢⎢⎡⎦⎥⎥⎤13,且由(1), 得A-1=⎣⎢⎢⎡⎦⎥⎥⎤2-1-32. 因此,由AX =B ,同时左乘A -1,有A -1AX =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32⎣⎢⎢⎡⎦⎥⎥⎤13=⎣⎢⎢⎡⎦⎥⎥⎤-75. 即原方程组的解为⎩⎪⎨⎪⎧x =-7,y =5.考点三 求矩阵的特征值与特征向量【例3】 已知a ∈R ,矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1a 21对应的线性变换把点P (1,1)变成点P ′(3,3),求矩阵A 的特征值以及每个特征值的一个特征向量.解 由题意⎣⎢⎢⎡⎦⎥⎥⎤1a 21 ⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤3a +1=⎣⎢⎢⎡⎦⎥⎥⎤33, 得a +1=3,即a =2,矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=(λ-1)2-4=(λ+1)(λ-3), 令f (λ)=0,所以矩阵A 的特征值为λ1=-1,λ2=3. ①对于特征值λ1=-1,解相应的线性方程组⎩⎪⎨⎪⎧x +y =0,2x +2y =0得一个非零解⎩⎪⎨⎪⎧x =1,y =-1.因此,α=⎣⎢⎢⎡⎦⎥⎥⎤1-1是矩阵A 的属于特征值λ1=-1的一个特征向量;②对于特征值λ2=3,解相应的线性方程组⎩⎪⎨⎪⎧2x -2y =0,-2x +2y =0得一个非零解⎩⎪⎨⎪⎧x =1,y =1.因此,β=⎣⎢⎢⎡⎦⎥⎥⎤11是矩阵A 的属于特征值λ2=3的一个特征向量.规律方法 已知A =⎣⎢⎢⎡⎦⎥⎥⎤acb d ,求特征值和特征向量,其步骤为: (1)令f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -c -b λ-d =(λ-a )(λ-d )-bc =0,求出特征值λ;(2)列方程组⎩⎪⎨⎪⎧λ-a x -by =0,-cx + λ-d y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应的向量.【训练3】 (2014·扬州质检)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤3-1-13,求M 的特征值及属于各特征值的一个特征向量.解 由矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-311λ-3= (λ-3)2-1=0,解得λ1=2,λ2=4,即为矩阵M 的特征值.设矩阵M 的特征向量为⎣⎢⎢⎡⎦⎥⎥⎤x y , 当λ1=2时,由M ⎣⎢⎢⎡⎦⎥⎥⎤x y =2⎣⎢⎢⎡⎦⎥⎥⎤x y ,可得⎩⎪⎨⎪⎧-x +y =0,x -y =0.可令x =1,得y =1,∴α1=⎣⎢⎢⎡⎦⎥⎥⎤11是M 的属于λ1=2的特征向量. 当λ2=4时,由M ⎣⎢⎢⎡⎦⎥⎥⎤x y =4⎣⎢⎢⎡⎦⎥⎥⎤x y , 可得⎩⎪⎨⎪⎧x +y =0,x +y =0,取x =1,得y =-1,∴α2=⎣⎢⎢⎡⎦⎥⎥⎤1-1是M 的属于λ2=4的特征向量.用坐标转移的思想求曲线在变换作用下的新方程【典例】 二阶矩阵M 对应的变换T 将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在变换T 作用下得到了直线m :x -y =4,求l 的方程. [审题视点] (1)变换前后的坐标均已知,因此可以设出矩阵,用待定系数法求解.(2)知道直线l 在变换T 作用下的直线m ,求原直线,可用坐标转移法.解 (1)设M =⎣⎢⎢⎡⎦⎥⎥⎤ab c d ,则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1, ⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤-2 1=⎣⎢⎢⎡⎦⎥⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎢⎡⎦⎥⎥⎤1 23 4. (2)因为⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤1 23 4⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y 且m :x ′-y ′=4, 所以(x +2y )-(3x +4y )=4,即x +y +2=0,∴直线l 的方程是x +y +2=0.[反思感悟] (1)本题考查了求变换矩阵和在变换矩阵作用下的曲线方程问题,题目难度属中档题.(2)本题突出体现了待定系数法的思想方法和坐标转移的思想方法 . (3)本题的易错点是计算错误和第(2)问中坐标转移的方向错误. 【自主体验】(2014·南京金陵中学月考)求曲线2x 2-2xy +1=0在矩阵MN 对应的变换作用下得到的曲线方程,其中M =⎣⎢⎢⎡⎦⎥⎥⎤10 02,N = ⎣⎢⎢⎡⎦⎥⎥⎤1-1 01.解 MN =⎣⎢⎢⎡⎦⎥⎥⎤10 02⎣⎢⎢⎡⎦⎥⎥⎤ 1-1 01=⎣⎢⎢⎡⎦⎥⎥⎤1-2 02. 设P (x ′,y ′)是曲线2x 2-2xy +1=0上任意一点,点P 在矩阵MN 对应的变换下变为点P ′(x ,y ),则⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ 1-2 02⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤ x ′-2x ′+2y ′, 于是x ′=x ,y ′=x +y2,代入2x ′2-2x ′y ′+1=0,得xy =1.所以曲线2x 2-2xy +1=0在MN 对应的变换作用下得到的曲线方程为xy =1.一、填空题1.已知变换T :⎣⎢⎢⎡⎦⎥⎥⎤x y →⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤3x +4y 5x +6y ,则该变换矩阵为________. 解析 ⎩⎪⎨⎪⎧x ′=3x +4y ,y ′=5x +6y ,可写成⎣⎢⎢⎡⎦⎥⎥⎤3 45 6⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′.答案 ⎣⎢⎢⎡⎦⎥⎥⎤3 45 6 2.计算⎣⎢⎢⎡⎦⎥⎥⎤3 75 8⎣⎢⎢⎡⎦⎥⎥⎤2-1等于________. 解析 ⎣⎢⎢⎡⎦⎥⎥⎤3 75 8⎣⎢⎢⎡⎦⎥⎥⎤ 2-1=⎣⎢⎢⎡⎦⎥⎥⎤3×2-75×2-8=⎣⎢⎢⎡⎦⎥⎥⎤-1 2. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤-1 2 3.矩阵⎣⎢⎢⎡⎦⎥⎥⎤5 00 1的逆矩阵为________. 解析 ⎣⎢⎢⎡⎦⎥⎥⎤5 00 1=5,∴⎣⎢⎢⎡⎦⎥⎥⎤5 00 1的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤15 0 01. 答案⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1 4.若矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤3 a b 13把直线l :2x +y -7=0变换成另一直线l ′:9x +y -91=0,则a =________,b =________. 解析 取l 上两点(0,7)和(3.5,0),则⎣⎢⎢⎡⎦⎥⎥⎤3 a b 13⎣⎢⎢⎡⎦⎥⎥⎤07=⎣⎢⎢⎡⎦⎥⎥⎤7a 91,⎣⎢⎢⎡⎦⎥⎥⎤3 a b 13⎣⎢⎢⎡⎦⎥⎥⎤3.5 0=⎣⎢⎢⎡⎦⎥⎥⎤10.53.5b . 由已知(7a,91),(10.5,3.5b )在l ′上,代入得a =0,b =-1. 答案 0 -15.矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤6 -36 -3的特征值为________. 解析 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-6 3-6 λ+3=(λ-6)(λ+3)+18=0.∴λ=0或λ=3. 答案 0或36.已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1 23 4,α=⎣⎢⎢⎡⎦⎥⎥⎤12,β=⎣⎢⎢⎡⎦⎥⎥⎤ 0-3,则M (2α+4β)=________.解析 2α+4β=⎣⎢⎢⎡⎦⎥⎥⎤24+⎣⎢⎢⎡⎦⎥⎥⎤ 0-12=⎣⎢⎢⎡⎦⎥⎥⎤ 2-8,M (2α+4β)=⎣⎢⎢⎡⎦⎥⎥⎤1 23 4⎣⎢⎢⎡⎦⎥⎥⎤ 2-8=⎣⎢⎢⎡⎦⎥⎥⎤-14-26. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤-14-26 7.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10 21的作用下变换为曲线C 2,则C 2的方程为________.解析 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎢⎢⎡⎦⎥⎥⎤10 21⎣⎢⎢⎡⎦⎥⎥⎤x ′ y ′=⎣⎢⎢⎡⎦⎥⎥⎤x y ,即⎩⎪⎨⎪⎧x =x ′+2y ′,y =y ′⇒⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y .因为P ′是曲线C 1上的点, 所以C 2的方程为(x -2y )2+y 2=1. 答案 (x -2y )2+y 2=18.已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤2 -1-4 3,B =⎣⎢⎢⎡⎦⎥⎥⎤4 -1-3 1,则满足AX =B 的二阶矩阵X为________.解析 由题意,得A -1= AX =B , ∴X =A -1B =.答案⎣⎢⎢⎡⎦⎥⎥⎤92 -1 5 -1 9.已知矩阵A 将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是⎣⎢⎢⎡⎦⎥⎥⎤11,则矩阵A 为________.解析 设A =⎣⎢⎢⎡⎦⎥⎥⎤acb d ,由⎣⎢⎢⎡⎦⎥⎥⎤a cb d ⎣⎢⎢⎡⎦⎥⎥⎤10=⎣⎢⎢⎡⎦⎥⎥⎤23,得⎩⎪⎨⎪⎧a =2,c =3.由⎣⎢⎢⎡⎦⎥⎥⎤a cb d ⎣⎢⎢⎡⎦⎥⎥⎤11=3⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤33,得⎩⎪⎨⎪⎧a +b =3,c +d =3.所以⎩⎪⎨⎪⎧b =1,d =0.所以A =⎣⎢⎢⎡⎦⎥⎥⎤23 10. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤23 10 二、解答题10.(2012·江苏卷)已知矩阵A 的逆矩阵A -1=错误!,求矩阵A 的特征值.解 因为AA -1=E ,所以A =(A -1)-1.因为A -1=错误!,所以A =(A -1)-1=错误!, 于是矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-2-3λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.11.已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤ 1a -1b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎢⎡⎦⎥⎥⎤21. (1)求矩阵A ;(2)若向量β=⎣⎢⎢⎡⎦⎥⎥⎤74,计算A 5β的值. 解 (1)A =⎣⎢⎢⎡⎦⎥⎥⎤1 2-1 4. (2)矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6=0,得λ1=2,λ2=3,当λ1=2时,α1=⎣⎢⎢⎡⎦⎥⎥⎤21,当λ2=3时,得α2=⎣⎢⎢⎡⎦⎥⎥⎤11. 由β=m α1+n α2,得⎩⎪⎨⎪⎧2m +n =7,m +n =4,解得m =3,n =1.∴A 5β=A 5(3α1+α2)=3(A 5α1)+A 5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎢⎡⎦⎥⎥⎤21+35⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤435339. 12.(2012·福建卷)设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a 0b 1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1. (1)求实数a ,b 的值; (2)求A 2的逆矩阵.解 (1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的像是P ′(x ′,y ′).由⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤a 0b 1⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ ax bx +y ,得⎩⎪⎨⎪⎧x ′=ax ,y ′=bx +y .又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1, 即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1,依题意得⎩⎪⎨⎪⎧ a 2+b 2=2,2b =2,解得⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =1.因为a >0,所以⎩⎪⎨⎪⎧a =1,b =1.(2)由(1)知,A =⎣⎢⎢⎡⎦⎥⎥⎤1 01 1,A 2=⎣⎢⎢⎡⎦⎥⎥⎤1 01 1⎣⎢⎢⎡⎦⎥⎥⎤1 01 1=⎣⎢⎢⎡⎦⎥⎥⎤1 02 1. 所以|A 2|=1,(A 2)-1=⎣⎢⎢⎡⎦⎥⎥⎤1 0-2 1.。
第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。
一、二阶矩阵 1.矩阵的概念①OP → =→的坐标排成一列,并简记为⎣⎢⎡⎦⎥⎤2 3 ⎣⎢⎡⎦⎥⎤2 3③ 概念一:象⎣⎢⎡⎦⎥⎤2 3 80908688⎡⎤⎢⎥⎣⎦23324m ⎡⎤⎢⎥-⎣⎦的矩形数字(或字母)阵列称为矩阵.通常用大写的拉丁字母A 、B 、C…表示,叫做矩阵的行,竖排叫做矩阵的列. 名称介绍:①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。
②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。
③行矩阵:[a 11,a 12](仅有一行) ④列矩阵:⎣⎢⎡⎦⎥⎤a 11 a 21 (仅有一列)⑤向量a →=(x,y ),平面上的点P (x,y )都可以看成行矩阵[,]x y 或列矩阵x y ⎡⎤⎢⎥⎣⎦,在本书中规定所有的平面向量均写成列向量x y ⎡⎤⎢⎥⎣⎦的形式。
概念二:由4个数a,b,c,d 排成的正方形数表a b c d ⎡⎤⎢⎥⎣⎦称为二阶矩阵。
a,b,c,d 称为矩阵的元素。
①零矩阵:所有元素均为0,即0000⎡⎤⎢⎥⎣⎦,记为0。
②二阶单位矩阵:1001⎡⎤⎢⎥⎣⎦,记为E 2. 二、二阶矩阵与平面向量的乘法定义:规定二阶矩阵A=a b c d ⎡⎤⎢⎥⎣⎦,与向量x y α→⎡⎤=⎢⎥⎣⎦的乘积为ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦,即A α→=a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=ax by cx dy +⎡⎤⎢⎥+⎣⎦三、二阶矩阵与线性变换— 2— 3— ⎣⎢⎡⎦⎥⎤80 9086 88231,3242x y mz x y z ++=⎧⎨-+=⎩简记为23324m ⎡⎤⎢⎥-⎣⎦1.旋转变换问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转变换作用下的象。
选修4-2 矩阵与变换A[最新考纲]1.了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系.2.了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示.3.理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质. 4.理解逆矩阵的意义,会求出简单二阶逆矩阵.5.理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.知 识 梳 理1.矩阵的乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则: [a 11 a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21]. (2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 设A 是一个二阶矩阵,α、β是平面上的任意两个向量,λ、λ1、λ2是任意三个实数,则①A (λα)=λAα;②A (α+β)=Aα+Aβ; ③A (λ1α+λ2β)=λ1Aα+λ2Aβ.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21 b 12b 22= ⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 性质:①一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律;②矩阵的乘法满足结合律,即(AB )C =A (BC );③矩阵的乘法不满足消去律. 2.矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (det A =ad -bc ≠0),它的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc -c ad -bc a ad -bc . (3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎨⎧ax +by =m ,cx +dy =n的系数矩阵A =⎣⎢⎡⎦⎥⎤a b c d 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b c d -1⎣⎢⎡⎦⎥⎤m n , 其中A -1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc-c ad -bca ad -bc . 3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量.(2)特征多项式与特征方程 设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的一个特征值,它的一个特征向量为ξ=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y , 即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎨⎧ax +by =λx ,cx +dy =λy , 故⎩⎨⎧(λ-a )x -by =0-cx +(λ-d )y =0⇔⎣⎢⎡⎦⎥⎤λ-a -b -c λ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式 ⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征多项式;方程⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的特征方程. (3)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎨⎧ x =x 1,y =y 1,⎩⎨⎧x =x 2,y =y 2,记ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2.则Aξ1=λ1ξ1、Aξ2=λ2ξ2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征值,ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量. 诊 断 自 测1. ⎣⎢⎡⎦⎥⎤1 00 -1 ⎣⎢⎡⎦⎥⎤57=________.解析 ⎣⎢⎡⎦⎥⎤1 00 -1⎣⎢⎡⎦⎥⎤57=⎣⎢⎢⎡⎦⎥⎥⎤ 1×5+0×7 0×5+(-1)×7=⎣⎢⎡⎦⎥⎤5-7.答案 ⎣⎢⎡⎦⎥⎤5-72.若A =⎣⎢⎢⎡⎦⎥⎥⎤12 121212,B =⎣⎢⎢⎡⎦⎥⎥⎤12 -12-1212,则AB =________. 解析AB =⎣⎢⎢⎡⎦⎥⎥⎤12 1212 12⎣⎢⎢⎡⎦⎥⎥⎤ 12 -12-12 12 =⎣⎢⎢⎡⎦⎥⎥⎤12×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×1212×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×12=⎣⎢⎡⎦⎥⎤0 00 0.答案 ⎣⎢⎡⎦⎥⎤0 00 0 3.设A =⎣⎢⎡⎦⎥⎤-1 0 0 1,B =⎣⎢⎡⎦⎥⎤0 -11 0,则AB 的逆矩阵为________. 解析 ∵A-1=⎣⎢⎡⎦⎥⎤-1 0 0 1,B -1=⎣⎢⎡⎦⎥⎤0 1-1 0 ∴(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0 ⎣⎢⎡⎦⎥⎤-1 0 0 1=⎣⎢⎡⎦⎥⎤0 11 0. 答案 ⎣⎢⎡⎦⎥⎤0 11 0 4.函数y =x 2在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10014变换作用下的结果为________. 解析 ⎣⎢⎢⎡⎦⎥⎥⎤1 00 14 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ x 14y =⎣⎢⎡⎦⎥⎤x ′y ′⇒x =x ′,y =4y ′, 代入y =x 2,得y ′=14x ′2,即y =14x 2. 答案 y =14x 25.若A =⎣⎢⎡⎦⎥⎤1 56 2,则A 的特征值为________. 解析 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -5 -6 λ-2 =(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4. 答案 7和-4考点一 矩阵与变换【例1】 (2014·苏州市自主学习调查)已知a ,b 是实数,如果矩阵M =⎣⎢⎡⎦⎥⎤2a b 1所对应的变换将直线x -y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎡⎦⎥⎤2 a b1 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 所以⎩⎨⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′),在直线x +2y =1上,所以 (2+2b )x +(a +2)y =1,即⎩⎨⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.规律方法 理解变换的意义,掌握矩阵的乘法运算法则是求解的关键,利用待定系数法,构建方程是解决此类题的关键.【训练1】 已知变换S 把平面上的点A (3,0),B (2,1)分别变换为点A ′(0,3),B ′(1,-1),试求变换S 对应的矩阵T . 解 设T =⎣⎢⎡⎦⎥⎤a c bd ,则T :⎣⎢⎡⎦⎥⎤30→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤30=⎣⎢⎡⎦⎥⎤3a 3b =⎣⎢⎡⎦⎥⎤03,解得⎩⎨⎧a =0,b =1;T :⎣⎢⎡⎦⎥⎤21→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤2a +c 2b +d =⎣⎢⎡⎦⎥⎤ 1-1, 解得⎩⎨⎧c =1,d =-3,综上可知T =⎣⎢⎡⎦⎥⎤0 11 -3. 考点二 二阶逆矩阵与二元一次方程组【例2】 已知矩阵M =⎣⎢⎡⎦⎥⎤2 -31 -1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标.解 依题意得由M =⎣⎢⎡⎦⎥⎤2 -31 -1,得|M |=1, 故M -1=⎣⎢⎡⎦⎥⎤-13-12. 从而由⎣⎢⎡⎦⎥⎤2 -31 -1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤135得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-1-1 32⎣⎢⎢⎡⎦⎥⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤ 2-3,故⎩⎨⎧x =2,y =-3,∴A (2,-3)为所求. 规律方法 求逆矩阵时,可用定义法解方程处理,也可以用公式法直接代入求解.在求逆矩阵时要重视(AB )-1=B -1A -1性质的应用. 【训练2】 已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤21 32, (1)求矩阵A 的逆矩阵;(2)利用逆矩阵知识解方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0.解 (1)法一 设逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤a c b d , 则由⎣⎢⎢⎡⎦⎥⎥⎤2132⎣⎢⎢⎡⎦⎥⎥⎤a cb d =⎣⎢⎢⎡⎦⎥⎥⎤1001,得⎩⎨⎧2a +3c =1,2b +3d =0,a +2c =0,b +2d =1,解得⎩⎨⎧a =2,b =-3,c =-1,d =2,A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1-32. 法二 由公式知若A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d =⎣⎢⎢⎡⎦⎥⎥⎤2132,(2)已知方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0,可转化为⎩⎨⎧2x +3y =1,x +2y =3,即AX =B ,其中A =⎣⎢⎢⎡⎦⎥⎥⎤21 32,X =⎣⎢⎢⎡⎦⎥⎥⎤x y ,B =⎣⎢⎢⎡⎦⎥⎥⎤13,且由(1), 得A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32. 因此,由AX =B ,同时左乘A -1,有 A -1AX =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32⎣⎢⎢⎡⎦⎥⎥⎤13=⎣⎢⎢⎡⎦⎥⎥⎤-75. 即原方程组的解为⎩⎨⎧x =-7,y =5.考点三 求矩阵的特征值与特征向量【例3】 已知a ∈R ,矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1a21对应的线性变换把点P (1,1)变成点P ′(3,3),求矩阵A 的特征值以及每个特征值的一个特征向量. 解 由题意⎣⎢⎢⎡⎦⎥⎥⎤1a21 ⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤3a +1=⎣⎢⎢⎡⎦⎥⎥⎤33, 得a +1=3,即a =2,矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2 -2λ-1=(λ-1)2-4=(λ+1)(λ-3), 令f (λ)=0,所以矩阵A 的特征值为λ1=-1,λ2=3. ①对于特征值λ1=-1,解相应的线性方程组⎩⎨⎧ x +y =0,2x +2y =0得一个非零解⎩⎨⎧x =1,y =-1.因此,α=⎣⎢⎢⎡⎦⎥⎥⎤1-1是矩阵A 的属于特征值λ1=-1的一个特征向量; ②对于特征值λ2=3,解相应的线性方程组⎩⎨⎧2x -2y =0,-2x +2y =0得一个非零解⎩⎨⎧x =1,y =1.因此,β=⎣⎢⎢⎡⎦⎥⎥⎤11是矩阵A 的属于特征值λ2=3的一个特征向量. 规律方法 已知A =⎣⎢⎢⎡⎦⎥⎥⎤a cb d ,求特征值和特征向量,其步骤为: (1)令f (λ)=⎪⎪⎪⎪⎪⎪(λ-a )-c -b(λ-d )=(λ-a )(λ-d )-bc =0,求出特征值λ; (2)列方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应的向量.【训练3】 (2014·扬州质检)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤3-1-13,求M 的特征值及属于各特征值的一个特征向量.解 由矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-311λ-3= (λ-3)2-1=0,解得λ1=2,λ2=4,即为矩阵M 的特征值. 设矩阵M 的特征向量为⎣⎢⎡⎦⎥⎤x y ,当λ1=2时,由M ⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧-x +y =0,x -y =0.可令x =1,得y =1,∴α1=⎣⎢⎡⎦⎥⎤11是M 的属于λ1=2的特征向量.当λ2=4时,由M ⎣⎢⎡⎦⎥⎤x y =4⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧x +y =0,x +y =0,取x =1,得y =-1,∴α2=⎣⎢⎡⎦⎥⎤1-1是M 的属于λ2=4的特征向量.用坐标转移的思想求曲线在变换作用下的新方程【典例】 二阶矩阵M 对应的变换T 将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在变换T 作用下得到了直线m :x -y =4,求l 的方程.[审题视点] (1)变换前后的坐标均已知,因此可以设出矩阵,用待定系数法求解. (2)知道直线l 在变换T 作用下的直线m ,求原直线,可用坐标转移法. 解 (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1, ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1 23 4. (2)因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y 且m :x ′-y ′=4, 所以(x +2y )-(3x +4y )=4,即x +y +2=0,∴直线l 的方程是x +y +2=0.[反思感悟] (1)本题考查了求变换矩阵和在变换矩阵作用下的曲线方程问题,题目难度属中档题.(2)本题突出体现了待定系数法的思想方法和坐标转移的思想方法 .(3)本题的易错点是计算错误和第(2)问中坐标转移的方向错误. 【自主体验】(2014·南京金陵中学月考)求曲线2x 2-2xy +1=0在矩阵MN 对应的变换作用下得到的曲线方程,其中M =⎣⎢⎢⎡⎦⎥⎥⎤10 02,N =⎣⎢⎢⎡⎦⎥⎥⎤ 1-101. 解 MN =⎣⎢⎢⎡⎦⎥⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤ 1-101=⎣⎢⎢⎡⎦⎥⎥⎤ 1-202. 设P (x ′,y ′)是曲线2x 2-2xy +1=0上任意一点,点P 在矩阵MN 对应的变换下变为点P ′(x ,y ), 则⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ 1-202⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤ x ′-2x ′+2y ′, 于是x ′=x ,y ′=x +y2,代入2x ′2-2x ′y ′+1=0,得xy =1.所以曲线2x 2-2xy +1=0在MN 对应的变换作用下得到的曲线方程为xy =1.一、填空题1.已知变换T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤3x +4y 5x +6y ,则该变换矩阵为________. 解析 ⎩⎪⎨⎪⎧x ′=3x +4y ,y ′=5x +6y ,可写成⎣⎢⎡⎦⎥⎤3 45 6⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′. 答案 ⎣⎢⎡⎦⎥⎤3 45 6 2.计算⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤2-1等于________. 解析 ⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎢⎡⎦⎥⎥⎤3×2-75×2-8=⎣⎢⎡⎦⎥⎤-1 2. 答案 ⎣⎢⎡⎦⎥⎤-1 23.矩阵⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为________. 解析 ⎣⎢⎡⎦⎥⎤5 00 1=5,∴⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1 4.若矩阵A =⎣⎢⎡⎦⎥⎤3 a b 13把直线l :2x +y -7=0变换成另一直线l ′:9x +y -91=0,则a =________,b =________. 解析 取l 上两点(0,7)和(3.5,0),则⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤7a 91,⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤3.5 0=⎣⎢⎡⎦⎥⎤10.53.5b . 由已知(7a,91),(10.5,3.5b )在l ′上,代入得a =0,b =-1. 答案 0 -15.矩阵M =⎣⎢⎡⎦⎥⎤6 -36 -3的特征值为________. 解析 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-6 3-6 λ+3=(λ-6)(λ+3)+18=0. ∴λ=0或λ=3. 答案 0或3 6.已知矩阵M =⎣⎢⎡⎦⎥⎤1234,α=⎣⎢⎡⎦⎥⎤12,β=⎣⎢⎡⎦⎥⎤ 0-3,则M (2α+4β)=________.解析 2α+4β=⎣⎢⎡⎦⎥⎤24+⎣⎢⎡⎦⎥⎤ 0-12=⎣⎢⎡⎦⎥⎤ 2-8,M (2α+4β)=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤ 2-8=⎣⎢⎢⎡⎦⎥⎥⎤-14-26.答案 ⎣⎢⎡⎦⎥⎤-14-26 7.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤121的作用下变换为曲线C 2,则C 2的方程为________.解析 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎢⎢⎡⎦⎥⎥⎤10 21⎣⎢⎢⎡⎦⎥⎥⎤x ′ y ′=⎣⎢⎢⎡⎦⎥⎥⎤x y ,即⎩⎪⎨⎪⎧ x =x ′+2y ′,y =y ′⇒⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y . 因为P ′是曲线C 1上的点, 所以C 2的方程为(x -2y )2+y 2=1. 答案 (x -2y )2+y 2=18.已知矩阵A =⎣⎢⎡⎦⎥⎤2 -1-4 3,B =⎣⎢⎡⎦⎥⎤4 -1-3 1,则满足AX =B 的二阶矩阵X 为________.解析 由题意,得A -1= AX =B , ∴X =A -1B =. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤92 -1 5 -1 9.已知矩阵A 将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是⎣⎢⎢⎡⎦⎥⎥⎤11,则矩阵A 为________.解析 设A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d ,由⎣⎢⎢⎡⎦⎥⎥⎤a c b d ⎣⎢⎢⎡⎦⎥⎥⎤10=⎣⎢⎢⎡⎦⎥⎥⎤23,得⎩⎪⎨⎪⎧a =2,c =3. 由⎣⎢⎢⎡⎦⎥⎥⎤a cb d ⎣⎢⎢⎡⎦⎥⎥⎤11=3⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤33,得⎩⎪⎨⎪⎧ a +b =3,c +d =3.所以⎩⎪⎨⎪⎧b =1,d =0.所以A =⎣⎢⎢⎡⎦⎥⎥⎤23 10.答案 ⎣⎢⎢⎡⎦⎥⎥⎤23 10 二、解答题10.(2012·江苏卷)已知矩阵A 的逆矩阵A -1=错误!,求矩阵A 的特征值. 解 因为AA -1=E ,所以A =(A -1)-1.因为A -1=错误!,所以A =(A -1)-1=错误!, 于是矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-2 -3λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4. 11.已知矩阵A =⎣⎢⎡⎦⎥⎤ 1a -1b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21.(1)求矩阵A ;(2)若向量β=⎣⎢⎡⎦⎥⎤74,计算A 5β的值.解 (1)A =⎣⎢⎡⎦⎥⎤1 2-1 4. (2)矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6=0,得λ1=2,λ2=3,当λ1=2时,α1=⎣⎢⎡⎦⎥⎤21,当λ2=3时,得α2=⎣⎢⎡⎦⎥⎤11.由β=m α1+n α2,得⎩⎨⎧2m +n =7,m +n =4,解得m =3,n =1.∴A 5β=A 5(3α1+α2)=3(A 5α1)+A5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎡⎦⎥⎤21+35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤435339.12.(2012·福建卷)设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a0b1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1. (1)求实数a ,b 的值; (2)求A 2的逆矩阵.解 (1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的像是P ′(x ′,y ′). 由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 0b1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ ax bx +y ,得⎩⎨⎧x ′=ax ,y ′=bx +y .又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1, 即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1,依题意得⎩⎨⎧ a 2+b 2=2,2b =2,解得⎩⎨⎧ a =1,b =1或⎩⎨⎧a =-1,b =1.因为a >0,所以⎩⎨⎧a =1,b =1.(2)由(1)知,A =⎣⎢⎡⎦⎥⎤1011,A 2=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 01 1=⎣⎢⎡⎦⎥⎤1 02 1. 所以|A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤10-21.。
选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法(对应学生用书(理)185~187页)1. 已知A =⎣⎢⎡⎦⎥⎤x +2y x +3y x -y x +y ,B =⎣⎢⎡⎦⎥⎤34ab ,若A =B ,求ax +by 的值.解:∵ A =B ,∴ ⎩⎪⎨⎪⎧x +2y =3,x +3y =4,x -y =a ,x +y =b ,∴ x =1,y =1,a =0,b =2,则ax +by =0+2=2.2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m 、k 的值.解:⎣⎢⎡⎦⎥⎤m 001⎣⎢⎡⎦⎥⎤-1 k =⎣⎢⎡⎦⎥⎤-2-4,⎩⎪⎨⎪⎧-m =-2,k =-4. 解得⎩⎪⎨⎪⎧m =2,k =-4. 3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用变换为(x ,2x),则有⎣⎢⎡⎦⎥⎤a 0b 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 2x ,解得⎩⎪⎨⎪⎧a =1,b =2,∴ T =⎣⎢⎡⎦⎥⎤1020.4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程.解:设点(x ,y)是曲线y =x 上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0110的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=y ,y ′=x. 因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y.5. (2014·无锡期末)求使等式⎣⎢⎡⎦⎥⎤1 23 4=⎣⎢⎡⎦⎥⎤1 00 2M ⎣⎢⎡⎦⎥⎤1 00 -1成立的矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤a b 2c 2d ,∴ ⎣⎢⎡⎦⎥⎤a b 2c 2d ⎣⎢⎡⎦⎥⎤1 00 -1=⎣⎢⎡⎦⎥⎤a -b 2c -2d .∴ ⎣⎢⎡⎦⎥⎤1 234=⎣⎢⎡⎦⎥⎤a -b 2c-2d ,∴ ⎩⎪⎨⎪⎧1=a ,2=-b ,3=2c ,4=-2d ,∴ ⎩⎪⎨⎪⎧a =1,b =-2,c =32,d =-2.∴ M =⎣⎢⎢⎡⎦⎥⎥⎤1-232-2.1. 二阶矩阵与平面向量 (1) 矩阵的概念在数学中,把形如⎣⎢⎡⎦⎥⎤13,⎣⎢⎡⎦⎥⎤2 31 5,⎣⎢⎡⎦⎥⎤1,3, 42,0,-1这样的矩形数字(或字母)阵列称为矩阵,其中,同一横排中按原来次序排列的一行数(或字母)叫做矩阵的行,同一竖排中按原来次序排列的一列数(或字母)叫做矩阵的列,而组成矩阵的每一个数(或字母)称为矩阵的元素.(2) 二阶矩阵与平面列向量的乘法① [a 11 a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11×b 11+a 12×b 21];② ⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k (k>0)确定的变换T M 称为(垂直)伸压变换.(3) 反射变换是轴对称变换、中心对称变换的总称.(4) 当M =⎣⎢⎡⎦⎥⎤cos θ-sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 线性变换的基本性质(1) 设向量α=⎣⎢⎡⎦⎥⎤x y ,则λα=⎣⎢⎡⎦⎥⎤λx λy .(2) 设向量α=⎣⎢⎡⎦⎥⎤x 1y 1,β=⎣⎢⎡⎦⎥⎤x 2y 2,则α+β=⎣⎢⎡⎦⎥⎤x 1+x 2y 1+y 2.(3) A 是一个二阶矩阵,α、β是平面上任意两个向量,λ是任一实数,则A (λα)=λA α,A (α+β)=A α+A β.(4) 二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点). 4. 二阶矩阵的乘法(1) A =⎣⎢⎡⎦⎥⎤a 1 b 1c 1 d 1,B =⎣⎢⎡⎦⎥⎤a 2b 2c 2d 2,则AB =⎣⎢⎡⎦⎥⎤a 1a 2+b 1c 2 a 1b 2+b 1d 2c 1a 2+d 1c 2 c 1b 2+d 1d 2(2) 矩阵乘法满足结合律(AB )C =A (BC ). [备课札记]题型1 二阶矩阵的运算, 1) 已知⎣⎢⎡⎦⎥⎤1 01 2B =⎣⎢⎡⎦⎥⎤-4 3 4 -1,求矩阵B . 解:设B =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤1 01 2B =⎣⎢⎡⎦⎥⎤ab a +2c b +2d ,故⎩⎪⎨⎪⎧a =-4,b =3,a +2c =4,b +2d =-1,解得⎩⎪⎨⎪⎧a =-4,b =3,c =4,d =-2.故B =⎣⎢⎡⎦⎥⎤-4 3 4 -2.备选变式(教师专享)已知矩阵A =⎣⎢⎡⎦⎥⎤1 01 2,B =⎣⎢⎡⎦⎥⎤-4 3 4 -2且α=⎣⎢⎡⎦⎥⎤34,试判断(AB )α与A (B α)的关系.解:AB =⎣⎢⎡⎦⎥⎤-4 3 4 -1,∴ (AB )α=⎣⎢⎡⎦⎥⎤-4 3 4 -1⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤08,A (B α)=⎣⎢⎡⎦⎥⎤1 01 2⎣⎢⎡⎦⎥⎤-4 3 4 -2⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤1012⎣⎢⎡⎦⎥⎤04=⎣⎢⎡⎦⎥⎤08. ∴ (AB )α=A (B α).题型2 求变换前后的曲线方程, 2) (2014·南京、盐城期末)已知曲线C :xy =1,若矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤22 -2222 22对应的变换将曲线C 变为曲线C′,求曲线C′的方程.解:设曲线C 上一点(x′,y ′)对应于曲线C′上一点(x ,y),所以⎣⎢⎢⎡⎦⎥⎥⎤22 -2222 22⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤x y ,所以22x ′-22y ′=x ,22x ′+22y ′=y. 所以x′=x +y 2,y ′=y -x2,所以x′y′=x +y 2·y -x2=1,所以曲线C′的方程为y 2-x 2=2. 备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解: MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN 变换下的对应点,则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =12x 0,y =2y 0,所以⎩⎪⎨⎪⎧x0=2x ,y 0=12y.又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型3 根据变换前后的曲线方程求矩阵, 3) 二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6).(1) 求矩阵M ;(2) 若直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程.解:(1) 不妨设M =⎣⎢⎡⎦⎥⎤a b c d ,则由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤57,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤-3 6,所以⎩⎪⎨⎪⎧a =-2,b =-7,c =-13,d =-20,故M =⎣⎢⎡⎦⎥⎤-2-7-13-20. (2) 取直线l 上的任一点(x ,y),其在M 作用下变换成对应点(x′,y ′),则 ⎣⎢⎡⎦⎥⎤-2-7-13-20⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-2x -7y -13x -20y =⎣⎢⎡⎦⎥⎤x′y′, 即⎩⎪⎨⎪⎧x′=-2x -7y ,y ′=-13x -20y ,代入11x -3y -68=0,得x -y -4=0,即l 的方程为x -y -4=0.变式训练(2014·苏州期末)已知a 、b∈R ,若M =⎣⎢⎡⎦⎥⎤-1 a b 3所对应的变换T M 把直线2x -y =3变换成自身,试求实数a 、b.解:设⎣⎢⎡⎦⎥⎤-1 a b 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,则⎩⎪⎨⎪⎧x′=-x +ay ,y ′=bx +3y.∵ 2x ′-y′=3,∴ 2(-x +ay)-(bx +3y)=3. 即(-2-b)x +(2a -3)y =3.此直线即为2x -y =3, ∴ -2-b =2,2a -3=-1,解得a =1,b =-4.题型4 平面变换的综合应用, 4) 已知M =⎣⎢⎡⎦⎥⎤1101,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,向量α=⎣⎢⎡⎦⎥⎤34.(1) 验证:(MN )α=M (N α);(2) 验证这两个矩阵不满足MN =NM .解:(1) 因为MN =⎣⎢⎡⎦⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤112012, 所以(MN )α=⎣⎢⎢⎡⎦⎥⎥⎤112012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤52. 因为N α=⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤32,所以M (N α)=⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤52,所以(MN )α=M (N α).(2) 因为MN =⎣⎢⎢⎡⎦⎥⎥⎤112012,NM =⎣⎢⎢⎡⎦⎥⎥⎤11012,所以这两个矩阵不满足MN =NM . 备选变式(教师专享)在直角坐标系中,已知△ABC 的顶点坐标为A ()0,0,B ()-1,2,C ()0,3.求△ABC 在矩阵⎣⎢⎡⎦⎥⎤0-110作用下变换所得到的图形的面积.解:因为⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2-1,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤-3 0,所以A ()0,0,B ()-1,2,C ()0,3在矩阵⎣⎢⎡⎦⎥⎤0 -11 0作用下变换所得到的三个顶点坐标分别为A′()0,0,B ′()-2,-1,C ′()-3,0.故S △A ′B ′C ′=12A ′C ′|y B ′|=32.1. 在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0)、B(1,2),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =⎣⎢⎡⎦⎥⎤1 00-1,N =⎣⎢⎢⎡⎦⎥⎥⎤122022. 解:由题设得MN =⎣⎢⎢⎡⎦⎥⎥⎤1 220-22,∴ ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20,⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O 、A 、B 三点在矩阵MN 作用下变换所得的点分别为O′(0,0)、A′(2,0)、B′(2,-1).可得△O′A′B′的面积为1.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤0-11 0=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x -y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡ ⎦⎥⎤x′y′,即⎣⎢⎡ ⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x -y +1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F 的方程为2x +y +1=0.3. (2014·常州期末)已知直线l :ax -y =0在矩阵A =⎣⎢⎡⎦⎥⎤0 11 2对应的变换作用下得到直线l′,若直线l′过点(1,1),求实数a 的值.解:设P(x ,y)为直线l 上任意一点,在矩阵A 对应的变换下变为直线l′上的点P′(x′,y ′),则⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤0 11 2⎣⎢⎡⎦⎥⎤x y ,化简,得⎩⎪⎨⎪⎧x =-2x′+y′,y =x′ 代入ax -y =0,整理,得-(2a +1)x′+ay′=0.将点(1,1)代入上述方程,解得a =-1.4. 变换T 1是逆时针旋转π2的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=⎣⎢⎡⎦⎥⎤1 10 1.(1) 求点P(2,1)在变换T 1作用下的点P′的坐标;(2) 求函数y =x 2的图象依次在T 1、T 2变换的作用下所得曲线的方程.解:(1) M 1=⎣⎢⎡⎦⎥⎤0 -11 0,M 1⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤-1 2,所以点P(2,1)在T 1作用下的点P′的坐标是(-1,2).(2) M =M 2M 1=⎣⎢⎡⎦⎥⎤1 -11 0,设⎣⎢⎡⎦⎥⎤x y 是变换后图象上任一点,与之对应的变换前的点是⎣⎢⎡⎦⎥⎤x 0y 0,则M ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,也就是⎩⎪⎨⎪⎧x 0-y 0=x ,x 0=y ,即⎩⎪⎨⎪⎧x 0=y ,y 0=y -x.所以,所求曲线的方程是y -x =y 2.1. 如图所示,四边形ABCD 和四边形AB′C′D 分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD 变成四边形AB′C′D 的变换矩阵M .解:该变换为切变变换.设矩阵M =⎣⎢⎡⎦⎥⎤10k 1,由图知,C ――→MC ′,则⎣⎢⎡⎦⎥⎤10k 1⎣⎢⎡⎦⎥⎤3-2=⎣⎢⎡⎦⎥⎤33.所以3k -2=3,解得k =53.所以,M =⎣⎢⎢⎡⎦⎥⎥⎤10531. 2. 已知在一个二阶矩阵M 的变换作用下,点A(1,2)变成了点A′(4,5),点B(3,-1)变成了点B′(5,1).(1) 求矩阵M ;(2) 若在矩阵M 的变换作用下,点C(x ,0)变成了点C ′(4,y),求x ,y.解:(1) 设该二阶矩阵为M =⎣⎢⎡⎦⎥⎤a b c d ,由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤45,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 3-1=⎣⎢⎡⎦⎥⎤51,所以⎩⎪⎨⎪⎧a +2b =4,c +2d =5,3a -b =5,3c -d =1,解得a =2,b =1,c =1,d =2,故M =⎣⎢⎡⎦⎥⎤2 11 2.(2) 因为⎣⎢⎡⎦⎥⎤2 11 2⎣⎢⎡⎦⎥⎤x 0=⎣⎢⎡⎦⎥⎤2x x =⎣⎢⎡⎦⎥⎤4y ,解得x =2,y =2.3. (2014·苏北三市期末)设矩阵M =⎣⎢⎡⎦⎥⎤a 00b (其中a >0,b >0),若曲线C :x 2+y 2=1在矩阵M 所对应的变换作用下得到曲线C′:x 24+y 2=1,求a +b 的值.解:设曲线C :x 2+y 2=1上任意一点P(x ,y)在矩阵M 所对应的变换作用下得到点P 1(x 1,y 1),则⎣⎢⎡⎦⎥⎤a 00 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 1y 1,即⎩⎪⎨⎪⎧ax =x 1,by =y 1. 又点P 1(x 1,y 1)在曲线C′:x 24+y 2=1上,所以x 214+y 21=1,则a 2x 24+b 2y 2=1为曲线C 的方程.又曲线C 的方程为x 2+y 2=1,故a 2=4,b 2=1. 因为a >0,b >0,所以a +b =3.4. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1) 求矩阵M ;(2) 设直线l 在变换M 作用下得到了直线m :x -y =4,求l 的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234. (2) 因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y 且m :x′-y′=4,所以(x +2y)-(3x +4y)=4,即x +y +2=0,即直线l 的方程为x +y +2=0.几种特殊的变换 反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y )→(x,-y),变换前后关于x 轴对称; M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y )→(-x ,y),变换前后关于y 轴对称;M =⎣⎢⎡⎦⎥⎤-10 0-1:点的变换为(x ,y )→(-x ,-y),变换前后关于原点对称; M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y )→(y,x),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y )→(x,0); M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y )→(0,y); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y )→(x,x);M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y )→(y,y);M =⎣⎢⎢⎡⎦⎥⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y )→⎝ ⎛⎭⎪⎫x +y 2,x +y 2. 请使用课时训练(A )第1课时(见活页).第2课时 逆变换与逆矩阵、矩阵的特征值 与特征向量(对应学生用书(理)188~190页)1. 已知矩阵A =⎣⎢⎡⎦⎥⎤1 00 2,B =⎣⎢⎡⎦⎥⎤0 -11 0,求(AB )-1.解:∵ AB =⎣⎢⎡⎦⎥⎤0 -12 0,设(AB )-1=⎣⎢⎡⎦⎥⎤a b c d ,∴ (AB )(AB )-1=⎣⎢⎡⎦⎥⎤1 00 1.∴ ⎣⎢⎡⎦⎥⎤0 -12 0⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1, 即[]-c -d 2a 2b =⎣⎢⎡⎦⎥⎤1 00 1.∴ ⎩⎪⎨⎪⎧-c =1,-d =0,2a =0,2b =1,故a =0,b =12,c =-1,d =0.即(AB )-1=⎣⎢⎢⎡⎦⎥⎥⎤ 012-10. 2. 已知矩阵M =⎣⎢⎡⎦⎥⎤a 273,若矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤b-2-7a ,求a 、b 的值.解:由题意,知MM -1=E ,⎣⎢⎡⎦⎥⎤a 273⎣⎢⎡⎦⎥⎤b -2-7a =⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤ab -1407b -213a -14=⎣⎢⎡⎦⎥⎤1001, 即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3. 3. 求矩阵⎣⎢⎡⎦⎥⎤12-12的特征多项式.解:f(λ)=⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4.4. (选修42P 73习题第1题改编)求矩阵M =[16-2-6]的特征值.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)(λ+3),令f(λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. 已知二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32.求矩阵A .解:由特征值、特征向量定义可知,A α1=λ1α1,即⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=-1×⎣⎢⎡⎦⎥⎤1-1,得⎩⎪⎨⎪⎧a -b =-1,c -d =1. 同理可得⎩⎪⎨⎪⎧3a +2b =12,3c +2d =8,解得a =2,b =3,c =2,d =1.因此矩阵A =⎣⎢⎡⎦⎥⎤2 32 1.1. 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.(2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1. (3) 利用行列式解二元一次方程组. 2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使A α=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量.题型1 求逆矩阵与逆变换, 1) 若点A(2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B(-2,2),求矩阵M 的逆矩阵.解:由题意知,M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.(解法1)由M -1M =⎣⎢⎡⎦⎥⎤1 00 1,解得M -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0.(解法2)矩阵M 的行列式det(M )=⎪⎪⎪⎪⎪⎪0 -11 0=1≠0,所以M -1=⎣⎢⎡⎦⎥⎤ 01-10.备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤2-31-1所对应的线性变换把点A(x ,y)变成点A′(13,5),试求M 的逆矩阵及点A 的坐标.解:依题意,由M =⎣⎢⎡⎦⎥⎤2-31-1,得|M |=1,则M -1=⎣⎢⎡⎦⎥⎤-13-12.从而由⎣⎢⎡⎦⎥⎤2-31-1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤135,得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-13-12⎣⎢⎡⎦⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤2-3, 故⎩⎪⎨⎪⎧x =2,y =-3,∴ A 点坐标为(2,-3).题型2 求特征值与特征向量, 2) 已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,得2-2a =-4a =3.(2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =02x -3y =0.∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32. 变式训练(2014·镇江期末)已知矩阵⎣⎢⎡⎦⎥⎤x 32 1的一个特征值为4,求另一个特征值及其对应的一个特征向量.解:矩阵的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-x -3-2λ-1=(λ-1)(λ-x)-6.因为λ1=4是方程f(λ)=0的一个根,所以x =2. 由(λ-1)(λ-2)-6=0,得λ2=-1.设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y ,则⎩⎪⎨⎪⎧3x +3y =0,2x +2y =0,得x =-y ,令x =1,则y =-1,则矩阵的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤1-1.题型3 根据特征值或特征向量求矩阵, 3) 矩阵M =⎣⎢⎡⎦⎥⎤1102有特征向量为e 1=⎣⎢⎡⎦⎥⎤11,e 2=⎣⎢⎡⎦⎥⎤10. (1) 求e 1和e 2对应的特征值;(2) 对向量α=⎣⎢⎡⎦⎥⎤41,记作α=e 1+3e 2,利用这一表达式间接计算M 4α,M 10α.解:(1) 设向量e 1、e 2对应的特征值分别为λ1、λ2,则⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤11=λ1⎣⎢⎡⎦⎥⎤11,⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤10=λ2⎣⎢⎡⎦⎥⎤10, 故λ1=2,λ2=1,即向量e 1,e 2对应的特征值分别是2,1. (2) 因为α=e 1+3e 2,所以M 4α=M 4(e 1+3e 2)=M 4e 1+3M 4e 2=λ41e 1+3λ42e 2=⎣⎢⎡⎦⎥⎤1916,M 10α=M 10(e 1+3e 2)=M 10e 1+3M 10e 2=λ101e 1+3λ102e 2=⎣⎢⎡⎦⎥⎤210+3210.备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤20 0-1有特征向量e 1=⎣⎢⎡⎦⎥⎤10,e 2=⎣⎢⎡⎦⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α=⎣⎢⎡⎦⎥⎤x y ,求M 100α.解:(1) 由矩阵M =⎣⎢⎡⎦⎥⎤2 00-1变换的意义知M -1=⎣⎢⎢⎡⎦⎥⎥⎤1200-1, 又Me 1=λ1e 1,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤10=λ1⎣⎢⎡⎦⎥⎤10,故λ1=2,同理Me 2=λ2e 2,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤01=λ2⎣⎢⎡⎦⎥⎤01,故λ2=-1. (2) 因为α=⎣⎢⎡⎦⎥⎤x y =x e 1+y e 2,所以M 100α=M 100(x e 1+y·e 2)=x M 100e 1+y M 100e 2=x λ1001e1+y λ2100e 2=⎣⎢⎡⎦⎥⎤2100x y .1. 求矩阵⎣⎢⎡⎦⎥⎤2112的特征值及对应的特征向量.解:特征多项式f(λ)=⎪⎪⎪⎪⎪⎪λ-2-1-1λ-2=(λ-2)2-1=λ2-4λ+3,由f(λ)=0,解得λ1=1,λ2=3,将λ1=1代入特征方程组,得⎩⎪⎨⎪⎧-x -y =0,-x -y =0,x +y =0,可取⎣⎢⎡⎦⎥⎤1-1为属于特征值λ1=1的一个特征向量.同理,当λ2=3时,由⎩⎪⎨⎪⎧x -y =0,-x +y =0,x -y =0,所以可取⎣⎢⎡⎦⎥⎤11为属于特征值λ2=3的一个特征向量.综上所述,矩阵⎣⎢⎡⎦⎥⎤2 11 2有两个特征值λ1=1,λ2=3;属于特征值λ1=1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1,属于特征值λ2=3的一个特征向量为⎣⎢⎡⎦⎥⎤11.2. 已知矩阵A 的逆矩阵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,求矩阵A 的特征值. 解:∵ A -1A =E ,∴ A =(A -1)-1.∵ A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,∴ A =(A -1)-1=⎣⎢⎡⎦⎥⎤2321.∴ 矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4.令f(λ)=0,解得矩阵A 的特征值λ1=-1,λ2=4.3. (2014·南通期末)设二阶矩阵A 、B 满足A -1=⎣⎢⎡⎦⎥⎤1 23 4,(BA )-1=⎣⎢⎡⎦⎥⎤1 001,求B -1. 解:设B -1=⎣⎢⎡⎦⎥⎤a b c d ,因为(BA )-1=A -1B -1,所以⎣⎢⎡⎦⎥⎤1 00 1=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤a b c d ,即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1,解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12,所以B -1=⎣⎢⎢⎡⎦⎥⎥⎤-2 132-12. 4. 设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 0b 1(a>0)对应的变换作用下得到的曲线为x 2+y 2=1.(1) 求实数a 、b 的值;(2) 求A 2的逆矩阵.解:(1) 设曲线2x 2+2xy +y 2=1上任一点P(x ,y)在矩阵A 对应的变换下的象是P′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a 0b 1⎣⎢⎡⎦⎥⎤x y =[]ax bx +y ,得⎩⎪⎨⎪⎧x′=ax ,y ′=bx +y. 因为P′(x′,y ′)在圆x 2+y 2=1上,所以(ax)2+(bx +y)2=1,化简可得(a 2+b 2)x 2+2bxy +y 2=1,依题意可得a 2+b 2=2,2b =2a =1,b =1或a =-1,b =1, 而由a>0可得a =b =1.(2) 由(1)A =⎣⎢⎡⎦⎥⎤1011,得A 2=⎣⎢⎡⎦⎥⎤1011⎣⎢⎡⎦⎥⎤1011=⎣⎢⎡⎦⎥⎤1021|A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤ 10-21.1. 已知矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 1,若点P(1,1)在矩阵A 对应的变换作用下得到点P′(0,-8).(1) 求实数a 的值; (2) 求矩阵A 的特征值.解:(1) 由⎣⎢⎡⎦⎥⎤1 -1a 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0-8,得a +1=-8,所以a =-9.(2) 由(1)知A =⎣⎢⎡⎦⎥⎤ 1 -1-9 1,则矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1 19 λ-1=(λ-1)2-9=λ2-2λ-8,令f(λ)=0,所以矩阵A 的特征值为-2或4.2. 已知矩阵A =⎣⎢⎡⎦⎥⎤a 21 b 有一个属于特征值1的特征向量α=⎣⎢⎡⎦⎥⎤2-1.(1) 求矩阵A ;(2) 矩阵B =⎣⎢⎡⎦⎥⎤1 -10 1,点O(0,0),M(2,-1),N(0,2),求△OMN 在矩阵AB 的对应变换作用下所得到的△O′M′N′的面积.解:(1) 由已知得⎣⎢⎡⎦⎥⎤a 21 b ⎣⎢⎡⎦⎥⎤ 2-1=1·⎣⎢⎡⎦⎥⎤2-1,∴ ⎩⎪⎨⎪⎧2a -2=22-b =-1.解得⎩⎪⎨⎪⎧a =2,b =3,故A =⎣⎢⎡⎦⎥⎤2 21 3. (2) AB =⎣⎢⎡⎦⎥⎤2 21 3⎣⎢⎡⎦⎥⎤1 -10 1=⎣⎢⎡⎦⎥⎤2 01 2.∴ (AB )⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤2 01 2⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,(AB )⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎡⎦⎥⎤2 01 2⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎡⎦⎥⎤40,(AB )⎣⎢⎡⎦⎥⎤02=⎣⎢⎡⎦⎥⎤2 01 2⎣⎢⎡⎦⎥⎤02=⎣⎢⎡⎦⎥⎤04,即点O 、M 、N 变成点O′(0,0),M ′(4,0),N ′(0,4),△O ′M ′N ′的面积为12×4×4=8.3. (2014·南京、盐城一模)已知矩阵A =⎣⎢⎡⎦⎥⎤1a -1b 的一个特征值为2,其对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤21.(1) 求矩阵A ;(2) 若A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,求x 、y 的值.解:(1) 由题意,得⎣⎢⎡⎦⎥⎤ 1 a -1 b ⎣⎢⎡⎦⎥⎤21=2⎣⎢⎡⎦⎥⎤21,即⎩⎪⎨⎪⎧2+a =4,-2+b =2,解得a =2,b =4.所以A =⎣⎢⎡⎦⎥⎤ 1 2-1 4. (2) (解法1)A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,即⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤24,所以⎩⎪⎨⎪⎧x +2y =2,-x +4y =4,解得⎩⎪⎨⎪⎧x =0,y =1. (解法2)因为A =⎣⎢⎡⎦⎥⎤ 1 2-1 4,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤23 -1316 16. 因为A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,所以⎣⎢⎡⎦⎥⎤x y =A -1⎣⎢⎡⎦⎥⎤a b =⎣⎢⎢⎡⎦⎥⎥⎤23-1316 16⎣⎢⎡⎦⎥⎤24=⎣⎢⎡⎦⎥⎤01.所以⎩⎪⎨⎪⎧x =0,y =1.4. 设矩阵M =⎣⎢⎡⎦⎥⎤a 00b (其中a>0,b>0).(1) 若a =2,b =3,求矩阵M 的逆矩阵M -1;(2) 若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C′:x 24+y 2=1,求a 、b 的值.解:(1) 设矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2,则MN -1=⎣⎢⎡⎦⎥⎤1001.又M =⎣⎢⎡⎦⎥⎤2003,所以⎣⎢⎡⎦⎥⎤2003⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2=⎣⎢⎡⎦⎥⎤1001,所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M -1=⎣⎢⎡⎦⎥⎤120013. (2) 设曲线C 上任意一点P(x ,y),它在矩阵M 所对应的线性变换作用下得到P′(x′,y ′),则⎣⎢⎡⎦⎥⎤a 00b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎩⎪⎨⎪⎧ax =x′,by =y′.又点P′(x′,y ′)在曲线C′上,所以x′24+y′2=1,则a 2x 24+b 2y 2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧a 2=4,b 2=1.又a>0,b>0,所以⎩⎪⎨⎪⎧a =2,b =1.1. 矩阵的逆矩阵(1) 已知A 、B 、C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .(2) 对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (ad -bc≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -b ad -bc-c ad -bc a ad -bc.2. 二阶行列式与方程组的解对于关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n ,我们把⎪⎪⎪⎪⎪⎪a b c d 称为二阶行列式,它的运算结果是一个数值(或多项式),记为det(A )=⎪⎪⎪⎪⎪⎪a b c d =ad -bc.若将方程组中行列式⎪⎪⎪⎪⎪⎪a b c d 记为D ,⎪⎪⎪⎪⎪⎪m b n d 记为D x ,⎪⎪⎪⎪⎪⎪a m c n 记为D y ,则当D≠0时,方程组的解为⎩⎪⎨⎪⎧x =D x D,y =D y D.请使用课时训练(B )第2课时(见活页).。
选修4-2 矩阵与变换A[最新考纲]1.了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系.2.了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示.3.理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质. 4.理解逆矩阵的意义,会求出简单二阶逆矩阵.5.理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.知 识 梳 理1.矩阵的乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则: [a 11 a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21]. (2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 设A 是一个二阶矩阵,α、β是平面上的任意两个向量,λ、λ1、λ2是任意三个实数,则①A (λα)=λAα;②A (α+β)=Aα+Aβ; ③A (λ1α+λ2β)=λ1Aα+λ2Aβ.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21 b 12b 22= ⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 性质:①一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律;②矩阵的乘法满足结合律,即(AB )C =A (BC );③矩阵的乘法不满足消去律. 2.矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (det A =ad -bc ≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc -c ad -bc a ad -bc . (3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎨⎧ax +by =m ,cx +dy =n的系数矩阵A =⎣⎢⎡⎦⎥⎤a b c d 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b c d -1⎣⎢⎡⎦⎥⎤m n , 其中A-1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc-c ad -bca ad -bc . 3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量.(2)特征多项式与特征方程 设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的一个特征值,它的一个特征向量为ξ=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y , 即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎨⎧ax +by =λx ,cx +dy =λy , 故⎩⎨⎧(λ-a )x -by =0-cx +(λ-d )y =0⇔⎣⎢⎡⎦⎥⎤λ-a -b -c λ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式 ⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征多项式;方程⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的特征方程. (3)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎨⎧ x =x 1,y =y 1,⎩⎨⎧x =x 2,y =y 2,记ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2.则Aξ1=λ1ξ1、Aξ2=λ2ξ2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征值,ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量. 诊 断 自 测1. ⎣⎢⎡⎦⎥⎤1 00 -1 ⎣⎢⎡⎦⎥⎤57=________.解析 ⎣⎢⎡⎦⎥⎤1 00 -1⎣⎢⎡⎦⎥⎤57=⎣⎢⎢⎡⎦⎥⎥⎤ 1×5+0×7 0×5+(-1)×7=⎣⎢⎡⎦⎥⎤5-7.答案 ⎣⎢⎡⎦⎥⎤5-72.若A =⎣⎢⎢⎡⎦⎥⎥⎤12 121212,B =⎣⎢⎢⎡⎦⎥⎥⎤ 12 -12-12 12,则AB =________.解析AB =⎣⎢⎢⎡⎦⎥⎥⎤12 121212⎣⎢⎢⎡⎦⎥⎥⎤ 12 -12-12 12 =⎣⎢⎢⎡⎦⎥⎥⎤12×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×1212×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×12=⎣⎢⎡⎦⎥⎤0 00 0.答案 ⎣⎢⎡⎦⎥⎤0000 3.设A =⎣⎢⎡⎦⎥⎤-1 0 0 1,B =⎣⎢⎡⎦⎥⎤0 -11 0,则AB 的逆矩阵为________. 解析 ∵A-1=⎣⎢⎡⎦⎥⎤-1 0 0 1,B -1=⎣⎢⎡⎦⎥⎤0 1-1 0 ∴(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0 ⎣⎢⎡⎦⎥⎤-1 0 0 1=⎣⎢⎡⎦⎥⎤0 11 0. 答案 ⎣⎢⎡⎦⎥⎤0 110 4.函数y =x 2在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10014变换作用下的结果为________. 解析 ⎣⎢⎢⎡⎦⎥⎥⎤1 00 14 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ x 14y =⎣⎢⎡⎦⎥⎤x ′y ′⇒x =x ′,y =4y ′, 代入y =x 2,得y ′=14x ′2,即y =14x 2. 答案 y =14x 25.若A =⎣⎢⎡⎦⎥⎤156 2,则A 的特征值为________. 解析 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -5 -6 λ-2 =(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4. 答案 7和-4考点一 矩阵与变换【例1】 (·苏州市自主学习调查)已知a ,b 是实数,如果矩阵M =⎣⎢⎡⎦⎥⎤2a b 1所对应的变换将直线x -y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎡⎦⎥⎤2 a b1 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 所以⎩⎨⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′),在直线x +2y =1上,所以 (2+2b )x +(a +2)y =1,即⎩⎨⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.规律方法 理解变换的意义,掌握矩阵的乘法运算法则是求解的关键,利用待定系数法,构建方程是解决此类题的关键.【训练1】 已知变换S 把平面上的点A (3,0),B (2,1)分别变换为点A ′(0,3),B ′(1,-1),试求变换S 对应的矩阵T . 解 设T =⎣⎢⎡⎦⎥⎤a c bd ,则T :⎣⎢⎡⎦⎥⎤30→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤30=⎣⎢⎡⎦⎥⎤3a 3b =⎣⎢⎡⎦⎥⎤03,解得⎩⎨⎧a =0,b =1;T :⎣⎢⎡⎦⎥⎤21→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤2a +c 2b +d =⎣⎢⎡⎦⎥⎤ 1-1, 解得⎩⎨⎧c =1,d =-3,综上可知T =⎣⎢⎡⎦⎥⎤0 11 -3. 考点二 二阶逆矩阵与二元一次方程组【例2】 已知矩阵M =⎣⎢⎡⎦⎥⎤2 -31 -1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标.解 依题意得由M =⎣⎢⎡⎦⎥⎤2 -31 -1,得|M |=1, 故M -1=⎣⎢⎡⎦⎥⎤-13-12. 从而由⎣⎢⎡⎦⎥⎤2 -31 -1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤135得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-1-1 32⎣⎢⎢⎡⎦⎥⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤ 2-3,故⎩⎨⎧x =2,y =-3,∴A (2,-3)为所求. 规律方法 求逆矩阵时,可用定义法解方程处理,也可以用公式法直接代入求解.在求逆矩阵时要重视(AB )-1=B -1A -1性质的应用. 【训练2】 已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤21 32, (1)求矩阵A 的逆矩阵;(2)利用逆矩阵知识解方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0.解 (1)法一 设逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤a c b d , 则由⎣⎢⎢⎡⎦⎥⎥⎤2132⎣⎢⎢⎡⎦⎥⎥⎤a cb d =⎣⎢⎢⎡⎦⎥⎥⎤1001,得⎩⎨⎧2a +3c =1,2b +3d =0,a +2c =0,b +2d =1,解得⎩⎨⎧a =2,b =-3,c =-1,d =2,A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1-32. 法二 由公式知若A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d =⎣⎢⎢⎡⎦⎥⎥⎤2132,(2)已知方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0,可转化为⎩⎨⎧2x +3y =1,x +2y =3,即AX =B ,其中A =⎣⎢⎢⎡⎦⎥⎥⎤21 32,X =⎣⎢⎢⎡⎦⎥⎥⎤x y ,B =⎣⎢⎢⎡⎦⎥⎥⎤13,且由(1), 得A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32. 因此,由AX =B ,同时左乘A -1,有 A -1AX =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32⎣⎢⎢⎡⎦⎥⎥⎤13=⎣⎢⎢⎡⎦⎥⎥⎤-75. 即原方程组的解为⎩⎨⎧x =-7,y =5.考点三 求矩阵的特征值与特征向量【例3】 已知a ∈R ,矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1a21对应的线性变换把点P (1,1)变成点P ′(3,3),求矩阵A 的特征值以及每个特征值的一个特征向量. 解 由题意⎣⎢⎢⎡⎦⎥⎥⎤1a21 ⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤3a +1=⎣⎢⎢⎡⎦⎥⎥⎤33, 得a +1=3,即a =2,矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2 -2λ-1=(λ-1)2-4=(λ+1)(λ-3), 令f (λ)=0,所以矩阵A 的特征值为λ1=-1,λ2=3. ①对于特征值λ1=-1,解相应的线性方程组⎩⎨⎧ x +y =0,2x +2y =0得一个非零解⎩⎨⎧x =1,y =-1.因此,α=⎣⎢⎢⎡⎦⎥⎥⎤1-1是矩阵A 的属于特征值λ1=-1的一个特征向量; ②对于特征值λ2=3,解相应的线性方程组⎩⎨⎧2x -2y =0,-2x +2y =0得一个非零解⎩⎨⎧x =1,y =1.因此,β=⎣⎢⎢⎡⎦⎥⎥⎤11是矩阵A 的属于特征值λ2=3的一个特征向量. 规律方法 已知A =⎣⎢⎢⎡⎦⎥⎥⎤a cb d ,求特征值和特征向量,其步骤为: (1)令f (λ)=⎪⎪⎪⎪⎪⎪(λ-a )-c -b(λ-d )=(λ-a )(λ-d )-bc =0,求出特征值λ; (2)列方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应的向量.【训练3】 (·扬州质检)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤3-1-13,求M 的特征值及属于各特征值的一个特征向量.解 由矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-311λ-3= (λ-3)2-1=0,解得λ1=2,λ2=4,即为矩阵M 的特征值. 设矩阵M 的特征向量为⎣⎢⎡⎦⎥⎤x y ,当λ1=2时,由M ⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y , 可得⎩⎨⎧-x +y =0,x -y =0.可令x =1,得y =1,∴α1=⎣⎢⎡⎦⎥⎤11是M 的属于λ1=2的特征向量.当λ2=4时,由M ⎣⎢⎡⎦⎥⎤x y =4⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧x +y =0,x +y =0,取x =1,得y =-1,∴α2=⎣⎢⎡⎦⎥⎤1-1是M 的属于λ2=4的特征向量.用坐标转移的思想求曲线在变换作用下的新方程【典例】 二阶矩阵M 对应的变换T 将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在变换T 作用下得到了直线m :x -y =4,求l 的方程.[审题视点] (1)变换前后的坐标均已知,因此可以设出矩阵,用待定系数法求解. (2)知道直线l 在变换T 作用下的直线m ,求原直线,可用坐标转移法. 解 (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1, ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1 23 4. (2)因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y 且m :x ′-y ′=4, 所以(x +2y )-(3x +4y )=4,即x +y +2=0,∴直线l 的方程是x +y +2=0.[反思感悟] (1)本题考查了求变换矩阵和在变换矩阵作用下的曲线方程问题,题目难度属中档题.(2)本题突出体现了待定系数法的思想方法和坐标转移的思想方法 .(3)本题的易错点是计算错误和第(2)问中坐标转移的方向错误. 【自主体验】(·南京金陵中学月考)求曲线2x 2-2xy +1=0在矩阵MN 对应的变换作用下得到的曲线方程,其中M =⎣⎢⎢⎡⎦⎥⎥⎤10 02,N =⎣⎢⎢⎡⎦⎥⎥⎤ 1-101. 解 MN =⎣⎢⎢⎡⎦⎥⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤ 1-101=⎣⎢⎢⎡⎦⎥⎥⎤ 1-202. 设P (x ′,y ′)是曲线2x 2-2xy +1=0上任意一点,点P 在矩阵MN 对应的变换下变为点P ′(x ,y ), 则⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ 1-202⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤ x ′-2x ′+2y ′, 于是x ′=x ,y ′=x +y2,代入2x ′2-2x ′y ′+1=0,得xy =1.所以曲线2x 2-2xy +1=0在MN 对应的变换作用下得到的曲线方程为xy =1.一、填空题1.已知变换T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤3x +4y 5x +6y ,则该变换矩阵为________. 解析 ⎩⎪⎨⎪⎧x ′=3x +4y ,y ′=5x +6y ,可写成⎣⎢⎡⎦⎥⎤3 45 6⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′. 答案 ⎣⎢⎡⎦⎥⎤345 6 2.计算⎣⎢⎡⎦⎥⎤3758⎣⎢⎡⎦⎥⎤2-1等于________. 解析 ⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎢⎡⎦⎥⎥⎤3×2-75×2-8=⎣⎢⎡⎦⎥⎤-1 2. 答案 ⎣⎢⎡⎦⎥⎤-1 23.矩阵⎣⎢⎡⎦⎥⎤500 1的逆矩阵为________. 解析 ⎣⎢⎡⎦⎥⎤5 00 1=5,∴⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1 4.若矩阵A =⎣⎢⎡⎦⎥⎤3 a b 13把直线l :2x +y -7=0变换成另一直线l ′:9x +y -91=0,则a =________,b =________. 解析 取l 上两点(0,7)和(3.5,0),则⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤7a 91,⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤3.5 0=⎣⎢⎡⎦⎥⎤10.53.5b . 由已知(7a,91),(10.5,3.5b )在l ′上,代入得a =0,b =-1. 答案 0 -15.矩阵M =⎣⎢⎡⎦⎥⎤6 -36 -3的特征值为________. 解析 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-6 3-6 λ+3=(λ-6)(λ+3)+18=0. ∴λ=0或λ=3. 答案 0或3 6.已知矩阵M =⎣⎢⎡⎦⎥⎤1234,α=⎣⎢⎡⎦⎥⎤12,β=⎣⎢⎡⎦⎥⎤ 0-3,则M (2α+4β)=________.解析 2α+4β=⎣⎢⎡⎦⎥⎤24+⎣⎢⎡⎦⎥⎤ 0-12=⎣⎢⎡⎦⎥⎤ 2-8,M (2α+4β)=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤ 2-8=⎣⎢⎢⎡⎦⎥⎥⎤-14-26.答案 ⎣⎢⎡⎦⎥⎤-14-26 7.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1021的作用下变换为曲线C 2,则C 2的方程为________.解析 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎢⎢⎡⎦⎥⎥⎤10 21⎣⎢⎢⎡⎦⎥⎥⎤x ′ y ′=⎣⎢⎢⎡⎦⎥⎥⎤x y ,即⎩⎪⎨⎪⎧ x =x ′+2y ′,y =y ′⇒⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y . 因为P ′是曲线C 1上的点, 所以C 2的方程为(x -2y )2+y 2=1. 答案 (x -2y )2+y 2=18.已知矩阵A =⎣⎢⎡⎦⎥⎤2 -1-4 3,B =⎣⎢⎡⎦⎥⎤4 -1-3 1,则满足AX =B 的二阶矩阵X 为________.解析 由题意,得A -1= AX =B ,∴X =A -1B =. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤92 -1 5 -1 9.已知矩阵A 将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是⎣⎢⎢⎡⎦⎥⎥⎤11,则矩阵A 为________.解析 设A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d ,由⎣⎢⎢⎡⎦⎥⎥⎤a c b d ⎣⎢⎢⎡⎦⎥⎥⎤10=⎣⎢⎢⎡⎦⎥⎥⎤23,得⎩⎪⎨⎪⎧a =2,c =3. 由⎣⎢⎢⎡⎦⎥⎥⎤a cb d ⎣⎢⎢⎡⎦⎥⎥⎤11=3⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤33,得⎩⎪⎨⎪⎧ a +b =3,c +d =3.所以⎩⎪⎨⎪⎧b =1,d =0.所以A =⎣⎢⎢⎡⎦⎥⎥⎤23 10.答案 ⎣⎢⎢⎡⎦⎥⎥⎤23 10 二、解答题10.(·江苏卷)已知矩阵A 的逆矩阵A -1=错误!,求矩阵A 的特征值. 解 因为AA -1=E ,所以A =(A -1)-1.因为A -1=错误!,所以A =(A -1)-1=错误!, 于是矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-2 -3λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4. 11.已知矩阵A =⎣⎢⎡⎦⎥⎤ 1a -1b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21.(1)求矩阵A ;(2)若向量β=⎣⎢⎡⎦⎥⎤74,计算A 5β的值.解 (1)A =⎣⎢⎡⎦⎥⎤1 2-1 4. (2)矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6=0,得λ1=2,λ2=3,当λ1=2时,α1=⎣⎢⎡⎦⎥⎤21,当λ2=3时,得α2=⎣⎢⎡⎦⎥⎤11.由β=m α1+n α2,得⎩⎨⎧2m +n =7,m +n =4,解得m =3,n =1.∴A 5β=A 5(3α1+α2)=3(A 5α1)+A5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎡⎦⎥⎤21+35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤435339.12.(·福建卷)设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a0b1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1. (1)求实数a ,b 的值; (2)求A 2的逆矩阵.解 (1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的像是P ′(x ′,y ′).由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 0b 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ ax bx +y ,得⎩⎨⎧x ′=ax ,y ′=bx +y .又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1, 即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1,依题意得⎩⎨⎧ a 2+b 2=2,2b =2,解得⎩⎨⎧ a =1,b =1或⎩⎨⎧a =-1,b =1.因为a >0,所以⎩⎨⎧a =1,b =1.(2)由(1)知,A =⎣⎢⎡⎦⎥⎤1011,A 2=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 01 1=⎣⎢⎡⎦⎥⎤1 02 1. 所以|A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤10-21.。