选修 矩阵与变换知识点
- 格式:pdf
- 大小:129.18 KB
- 文档页数:4
高中数学选修4-2:矩阵与变换矩阵是研究图形(向量)变换的基本工具,有着广泛的应用,许多数学模型都可以用矩阵来表示。
本专题将通过平面图形的变换讨论二阶方阵的乘法及性质、逆矩阵和矩阵的特征向量等概念,并以变换和映射的观点理解解线性方程组的意义,初步展示矩阵应用的广泛性。
一、内容与要求1.引入二阶矩阵2.二阶矩阵与平面向量(列向量)的乘法、平面图形的变换(1)以映射和变换的观点认识矩阵与向量乘法的意义。
(2)证明矩阵变换把平面上的直线变成直线,即证明A(λ1α+λ2β)=λ1Aα+λ2Aβ。
(3)通过大量具体的矩阵对平面上给定图形(如正方形)的变换,认识到矩阵可表示如下的线性变换:恒等、反射、伸压、旋转、切变、投影。
3.变换的复合--二阶方阵的乘法(1)通过变换的实例,了解矩阵与矩阵的乘法的意义。
(2)通过具体的几何图形变换,说明矩阵乘法不满足交换律。
(3)验证二阶方阵乘法满足结合律。
(4)通过具体的几何图形变换,说明乘法不满足消去律。
4.逆矩阵与二阶行列式(1)通过具体图形变换,理解逆矩阵的意义;通过具体的投影变换,说明逆矩阵可能不存在。
(2)会证明逆矩阵的唯一性和(AB)-1=B-1A-1 等简单性质,并了解其在变换中的意义。
(3)了解二阶行列式的定义,会用二阶行列式求逆矩阵。
5.二阶矩阵与二元一次方程组(1)能用变换与映射的观点认识解线性方程组的意义。
(2)会用系数矩阵的逆矩阵解方程组。
(3)会通过具体的系数矩阵,从几何上说明线性方程组解的存在性,唯一性。
6.变换的不变量(1)掌握矩阵特征值与特征向量的定义,能从几何变换的角度说明特征向量的意义。
(2)会求二阶方阵的特征值与特征向量(只要求特征值是两个不同实数的情形)。
7.矩阵的应用(1)利用矩阵A的特征值、特征向量给出Anα简单的表示,并能用它来解决问题。
(2)初步了解三阶或高阶矩阵。
(3)了解矩阵的应用。
8.完成一个学习总结报告。
报告应包括三方面的内容:(1)知识的总结。
矩阵与变换知识点总结
高中数学矩阵与变换知识点总结(一)一、矩阵与变换知识点汇总一般地两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算.
2.常见的平面变换
恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换六个变换.
3.逆变换与逆矩阵
(1)对于二阶矩阵A、B,若有AB=BA=E,则称A是可逆的,B称为A的逆矩阵;
(2)若二阶矩阵A、B均存在逆矩阵,则AB也存在逆矩阵,且(AB)-1=B-1A-1.
4.特征值与特征向量
设A是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A的一个特征值,而α称为A的属于特征值λ的一个特征向量.
高中数学矩阵与变换知识点总结(二)二、例题解析
三、复习指导
1.认真理解矩阵相等的概念,知道矩阵与矩阵的乘法的意义,并能熟练进行矩阵的乘法运算.
2.掌握几种常见的变换,了解其特点及矩阵表示,注意结合图形去理解和把握矩阵的几种变换.
3.熟练进行行列式的求值运算,会求矩阵的逆矩阵,并能利用逆矩。
教师版-高中数学知识手册:选修4-2矩阵与变换- 57 -矩阵与变换1.矩阵:用A ,B ,C ,…或(ij a )表示矩阵.(其中j i ,分别元素ij a 所在的行和列).2.零矩阵:所有元素都为0的矩阵.3.矩阵相等:对于矩阵B A ,,行数与列数分别相等,且对应位置的元素也分别相等时,B A =.4.二阶矩阵与平面列向量的乘法:⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡0220210120110022211211y a x a y a x a y x a a a a 5.平面变换:①矩阵乘法形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡''→⎥⎦⎤⎢⎣⎡y x d c b a y x y x T :②坐标变换形式:⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡''→⎥⎦⎤⎢⎣⎡dy cx by ax y x y x T : (1)恒等变换矩阵(单位矩阵):⎥⎦⎤⎢⎣⎡=1001 E ,单位矩阵把平面上任意一点(向量)或图形变成自身. (2)伸压变换矩阵:⎥⎦⎤⎢⎣⎡k 001沿着y 轴方向的伸压变换;⎥⎦⎤⎢⎣⎡100 k 沿着x 轴方向的伸压变换. (3)反射变换矩阵:⎥⎦⎤⎢⎣⎡-1001 ,⎥⎦⎤⎢⎣⎡-1001 ,⎥⎦⎤⎢⎣⎡--1001 将平面图形变为关于定直线或定点对称的平面图形. (4)旋转变换矩阵:⎥⎦⎤⎢⎣⎡-=θθθθcos sin sin cos M 绕定点作逆时针旋转θ的旋转变换. ⎥⎦⎤⎢⎣⎡-=θθθθk k k k M k cos sin sin cos . (5)投影变换矩阵:⎥⎦⎤⎢⎣⎡0001 ,⎥⎦⎤⎢⎣⎡0101 将平面内图形投影到某条直线(或某个点). (6)切变变换矩阵:⎥⎦⎤⎢⎣⎡101 k 把平面上的点),(y x P 沿x 轴方向平移||ky 个单位. 6.矩阵乘法:⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯⨯+⨯⨯+⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡222212212122112122121211211211112221121122211211b a b a b a b a b a b a b a b a b b b b a a a a (1)矩阵乘法MN 的几何意义:对向量连续实施的两次几何变换(先N T 后M T )的复合变换(2))(M n M M M M n个共⋅⋅⋅=(3)矩阵乘法的性质:① BA AB ≠(不具有交换律);②)()(BC A C AB =(满足结合律);③AC AB =≠>C B =(不具有消去律).7.逆矩阵:对于二阶矩阵,若E BA AB ==,则称A 是可逆的,B 称为A 的逆矩阵.(1)可逆矩阵⎥⎦⎤⎢⎣⎡=d c b a A (0≠-bc ad )的逆矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-bc ad a bc ad c bc ad b bc ad d A 1. (2)可逆矩阵积的逆矩阵:111)(---=A B AB ;二阶矩阵A 可逆,且AC AB =,则C B =.8.二阶行列式: d c b a 的运算结果是个数值:bc ad d c b a A -== )det(. (1)二元一次方程组⎩⎨⎧=+=+n dy cx m by ax 的解:⎪⎪⎩⎪⎪⎨⎧==D D y D D x yx ,其中d c b a D =,d n b m D x =,n c m a D y =. (2)二元一次方程组⎩⎨⎧=+=+n dy cx m by ax ,可记作矩阵方程B AX =,即⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡n m y x d c b a ,则B A X 1-=.- 58 - 选修4-2数学知识点 选修4-2—矩阵与变换9.特征值与特征向量:设二阶矩阵A ,对于实数λ,存在一个非零向量α,使得αλα=A ,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.几何观点:特征向量的方向经过变换矩阵A 的作用后,保持在同一直线上.0>λ方向不变;0<λ方向相反;0=λ,特征向量就被变换成零向量.代数方法:⎥⎦⎤⎢⎣⎡=d c b a A 的特征多项式:bc d a d c b a f ---=----=))(()(λλλλλ . 例:已知矩阵A =3101⎡⎤⎢⎥-⎣⎦,求A 的特征值1λ,2λ及对应的特征向量21,αα. 解:矩阵A 的特征多项式为()f λ=3101λλ--+=(3)(1)λλ-+, 令()f λ=0,得到矩阵A 的特征值为λ1=3,λ2=1-.当λ1=3时,由3101⎡⎤⎢⎥-⎣⎦x y ⎡⎤⎢⎥⎣⎦=3x y ⎡⎤⎢⎥⎣⎦,得333x y x y y +=⎧⎨-=⎩,,∴0y =,取1x =,得到属于特征值3的一个特征向量1α=10⎡⎤⎢⎥⎣⎦; 当λ2=1-时,由3101⎡⎤⎢⎥-⎣⎦x y ⎡⎤⎢⎥⎣⎦=-x y ⎡⎤⎢⎥⎣⎦,得3x y x y y +=-⎧⎨-=-⎩,, 取1x =,则4y =-,得到属于特征值1-的一个特征向量2α=14⎡⎤⎢⎥-⎣⎦. 10.多次变换的计算:设⎥⎦⎤⎢⎣⎡=d c b a A 的特征值1λ,2λ及对应的特征向量21,αα,则任一向量β可表示为:21ααβn m +=,则)()()()()(22112121αλαλααααt t t t t t n m A n A m n m A A +=+=+=.例: 已知矩阵⎥⎦⎤⎢⎣⎡-=4121A ,向量⎥⎦⎤⎢⎣⎡=47α , (1) 求矩阵A 的特征值1λ、2λ和特征向量1α 、2α ;(2) 求α 5A 的值.解:(1) 矩阵A 的特征多项式为)3)(2(654121)(2--=+-=---=λλλλλλλf , 令0)(=λf ,得21=λ或32=λ,将21=λ代入⎩⎨⎧=-+=--0)4(02)1(y x y x λλ,得⎩⎨⎧=-=-0202y x y x ,属于特征值2的一个特征向量为⎥⎦⎤⎢⎣⎡=121α ; 同理32=λ对应的特征向量为⎥⎦⎤⎢⎣⎡=112α .(2) 由21ααα n m +=得⎩⎨⎧=+=+472n m n m ,求得3=m ,1=n .因此 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⨯=+=+=+=339435113122333)3(5525215125152155αλαλααααα A A A A .。
高中数学选修矩阵知识点总结1、五种特殊变换旋转变换 ⎢⎣⎡a a sin cos ⎥⎦⎤-aa c o s s i n⎪⎩⎪⎨⎧+=-=a y a x y a y a x x c o s s i ns i n c o s''反射变换 关于X 轴对称 ⎢⎣⎡01 ⎥⎦⎤-10 ⎪⎩⎪⎨⎧-==y y xx ''关于Y 轴对称 ⎢⎣⎡-01 ⎥⎦⎤10⎪⎩⎪⎨⎧=-=y y xx ''关于Y=X 对称 ⎢⎣⎡10 ⎥⎦⎤01⎪⎩⎪⎨⎧==yy xx '' 伸缩变换 纵轴伸缩 ⎢⎣⎡01⎥⎦⎤k 0 ⎪⎩⎪⎨⎧==ky y xx '' 横轴伸缩 ⎢⎣⎡0k⎥⎦⎤10⎪⎩⎪⎨⎧==yy kxx '' 横纵均伸缩 ⎢⎣⎡01k ⎥⎦⎤20k ⎪⎩⎪⎨⎧==yk y xk x 2'1'投影变换 关于X 轴正投影 ⎢⎣⎡00 ⎥⎦⎤01⎪⎩⎪⎨⎧==0''y xx 关于Y 轴正投影 ⎢⎣⎡00 ⎥⎦⎤10⎪⎩⎪⎨⎧==yy x ''关于AX+BY=0投影⎢⎢⎢⎢⎣⎡+-+22222B A AB B A B ⎥⎥⎥⎥⎦⎤++-22222B A A B A AB ⎪⎪⎩⎪⎪⎨⎧+++-=+-+=y B A A x B A AB y y B A ABx B A B x 22222'22222' 切变变换 沿X 轴平行方向移ky 个单位⎢⎣⎡01⎥⎦⎤1k⎪⎩⎪⎨⎧=+=y y kyx x ''沿Y 轴平行方向移kx 个单位⎢⎣⎡k1⎥⎦⎤10⎪⎩⎪⎨⎧+==ykx y xx '' 2.矩阵的概念:形如2341⎛⎫⎪⎝⎭、3m ⎛⎫⎪⎝⎭的矩形数字(或字母)阵列称为矩阵.通常用大写黑体的拉丁字母A 、B 、C …表示,或者用()ij a 表示,其中i,j 分别表示元素ij a 所在的行与列.同一横排中按原来次序排列的一行数(或字母)叫做矩阵的行,同一竖排中按原来次序排列的一行数(或字母)叫做矩阵的列. 组成矩阵的每一个数(或字母)称为矩阵的元素。
- 57 -选修4-2—矩阵与变换 选修4-2数学知识点矩阵与变换1.矩阵:用A ,B ,C ,…或(ij a )表示矩阵.(其中j i ,分别元素ij a 所在的行和列).2.零矩阵:所有元素都为0的矩阵.3.矩阵相等:对于矩阵B A ,,行数与列数分别相等,且对应位置的元素也分别相等时,B A =.4.二阶矩阵与平面列向量的乘法:⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡0220210120110022211211y a x a y a x a y x a a a a 5.平面变换:①矩阵乘法形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡''→⎥⎦⎤⎢⎣⎡y x d c b a y x y x T :②坐标变换形式:⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡''→⎥⎦⎤⎢⎣⎡dy cx by ax y x y x T : (1)恒等变换矩阵(单位矩阵):⎥⎦⎤⎢⎣⎡=1001 E ,单位矩阵把平面上任意一点(向量)或图形变成自身. (2)伸压变换矩阵:⎥⎦⎤⎢⎣⎡k 001沿着y 轴方向的伸压变换;⎥⎦⎤⎢⎣⎡100 k 沿着x 轴方向的伸压变换. (3)反射变换矩阵:⎥⎦⎤⎢⎣⎡-1001 ,⎥⎦⎤⎢⎣⎡-1001 ,⎥⎦⎤⎢⎣⎡--1001 将平面图形变为关于定直线或定点对称的平面图形. (4)旋转变换矩阵:⎥⎦⎤⎢⎣⎡-=θθθθcos sin sin cos M 绕定点作逆时针旋转θ的旋转变换. ⎥⎦⎤⎢⎣⎡-=θθθθk k k k M k cos sin sin cos . (5)投影变换矩阵:⎥⎦⎤⎢⎣⎡0001 ,⎥⎦⎤⎢⎣⎡0101 将平面内图形投影到某条直线(或某个点). (6)切变变换矩阵:⎥⎦⎤⎢⎣⎡101 k 把平面上的点),(y x P 沿x 轴方向平移||ky 个单位. 6.矩阵乘法:⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯⨯+⨯⨯+⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡222212212122112122121211211211112221121122211211b a b a b a b a b a b a b a b a b b b b a a a a (1)矩阵乘法MN 的几何意义:对向量连续实施的两次几何变换(先N T 后M T )的复合变换(2))(M n M M M M n 个共⋅⋅⋅=(3)矩阵乘法的性质:① BA AB ≠(不具有交换律);②)()(BC A C AB =(满足结合律);③AC AB =≠>C B =(不具有消去律).7.逆矩阵:对于二阶矩阵,若E BA AB ==,则称A 是可逆的,B 称为A 的逆矩阵.(1)可逆矩阵⎥⎦⎤⎢⎣⎡=d c b a A (0≠-bc ad )的逆矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-bc ad a bc ad c bc ad b bc ad d A 1. (2)可逆矩阵积的逆矩阵:111)(---=A B AB ;二阶矩阵A 可逆,且AC AB =,则C B =.8.二阶行列式: d c ba 的运算结果是个数值:bc ad dc b a A -== )det(. (1)二元一次方程组⎩⎨⎧=+=+n dy cx m by ax 的解:⎪⎪⎩⎪⎪⎨⎧==D D y D D x yx ,其中d c b a D =,d n b m D x =,n c m a D y =. (2)二元一次方程组⎩⎨⎧=+=+n dy cx m by ax ,可记作矩阵方程B AX =,即⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡n m y x d c b a ,则B A X 1-=.- 58 - 选修4-2数学知识点 选修4-2—矩阵与变换9.特征值与特征向量:设二阶矩阵A ,对于实数λ,存在一个非零向量α,使得λ=A ,那么λ称为A 的一个特征值,而称为A 的属于特征值λ的一个特征向量.几何观点:特征向量的方向经过变换矩阵A 的作用后,保持在同一直线上.0>λ方向不变;0<λ方向相反;0=λ,特征向量就被变换成零向量.代数方法:⎥⎦⎤⎢⎣⎡=d c b a A 的特征多项式:bc d a d c b a f ---=----=))(()(λλλλλ . 例:已知矩阵A =3101⎡⎤⎢⎥-⎣⎦,求A 的特征值1λ,2λ及对应的特征向量21,αα. 解:矩阵A 的特征多项式为()f λ=3101λλ--+=(3)(1)λλ-+, 令()f λ=0,得到矩阵A 的特征值为λ1=3,λ2=1-.当λ1=3时,由3101⎡⎤⎢⎥-⎣⎦x y ⎡⎤⎢⎥⎣⎦=3x y ⎡⎤⎢⎥⎣⎦,得333x y x y y +=⎧⎨-=⎩,,∴0y =,取1x =,得到属于特征值3的一个特征向量1α=10⎡⎤⎢⎥⎣⎦; 当λ2=1-时,由3101⎡⎤⎢⎥-⎣⎦x y ⎡⎤⎢⎥⎣⎦=-x y ⎡⎤⎢⎥⎣⎦,得3x y x y y +=-⎧⎨-=-⎩,, 取1x =,则4y =-,得到属于特征值1-的一个特征向量2α=14⎡⎤⎢⎥-⎣⎦. 10.多次变换的计算:设⎥⎦⎤⎢⎣⎡=d c b a A 的特征值1λ,2λ及对应的特征向量21,αα,则任一向量β可表示为:21ααβn m +=,则)()()()()(22112121αλαλααααβt t t t t t n m A n A m n m A A +=+=+=.例: 已知矩阵⎥⎦⎤⎢⎣⎡-=4121A ,向量⎥⎦⎤⎢⎣⎡=47α , (1) 求矩阵A 的特征值1λ、2λ和特征向量1α 、2α ;(2) 求α 5A 的值.解:(1) 矩阵A 的特征多项式为)3)(2(654121)(2--=+-=---=λλλλλλλf , 令0)(=λf ,得21=λ或32=λ,将21=λ代入⎩⎨⎧=-+=--0)4(02)1(y x y x λλ,得⎩⎨⎧=-=-0202y x y x ,属于特征值2的一个特征向量为⎥⎦⎤⎢⎣⎡=121α ; 同理32=λ对应的特征向量为⎥⎦⎤⎢⎣⎡=112α .(2) 由21ααα n m +=得⎩⎨⎧=+=+472n m n m ,求得3=m ,1=n .因此 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⨯=+=+=+=339435113122333)3(5525215125152155αλαλααααα A A A A .。
第 1 页共 21 页选修 4- 2矩阵与变换第一节平面变换、变换的复合与矩阵的乘法1.二阶矩阵与平面向量(1) 矩阵的概念在数学中,把形如123134,1,20这样的矩形数字 (或字母 )阵列称为矩阵,其35- 1中,同一横排中按原来次序排列的一行数(或字母 )叫做矩阵的行,同一竖排中按原来次序排列的一列数 (或字母 )叫做矩阵的列,而组成矩阵的每一个数(或字母 )称为矩阵的元素.(2)二阶矩阵与平面列向量的乘法① [a 11a12 ]b11= [ a11×b11+ a 12×b 21 ] ;b21②a11a12x0=a11× x0+ a12× y0.a21a22 y0a21× x0+ a22× y02.几种常见的平面变换10(1) 当 M =时,则对应的变换是恒等变换.01(2)k010由矩阵 M =或 M =(k>0) 确定的变换 T M称为 (垂直 )伸压变换.01k(3)反射变换是轴对称变换、中心对称变换的总称.cos θ - sin θ(4) 当 M =时,对应的变换叫旋转变换,即把平面图形(或点 )逆时针旋转sin θcos θθ角度.(5)将一个平面图投影到某条直线 (或某个点 )的变换称为投影变换.1k10 (6) 由矩阵 M =或 M =k 确定的变换称为切变变换.011 3.矩阵的乘法一般地,对于矩阵a11a12b11b12M =a22, N=,规定乘法法则如下:a21b21b2211 12 11 12a bbb ba ab b11 11+ a 12 21a 11 12+ a 12 22MN =a 22b 21=a 21b 11+ a 22b 21.a 21 b22a 21b 12+ a 22b 224.矩 乘法的几何意(1) 的复合:在数学中,一一 的平面几何 常可以看做是伸 、反射、旋 、切 的一次或多次复合,而伸 、反射、切 等 通常叫做初等 ; 的矩 叫做初等 矩 .(2)MN 的几何意 : 向量x 矩 乘法α= 施的两次几何 (先 T N 后 T M )y的复合 .·(3) 当 向量 施 n ( n > 1 且 n ∈ N * )次 T M , 地我M n = M ·M ·⋯ ·M .5.矩 乘法的运算性(1) 矩 乘法不 足交 律于二 矩A ,B 来 ,尽管 AB , BA 均有意 ,但可能 AB ≠BA .(2) 矩 乘法 足 合律A ,B ,C 二 矩 , 一定有(AB)C = A(BC).(3) 矩 乘法不 足消去律.A ,B ,C 二 矩 ,当 AB = AC ,可能 B ≠C. [ 小 体 ]1 8 1 x1.已知矩 A =3,矩 B =.若 A =B , x + y = ________.2y 3解析: 因 A = B ,x = 8, + =10.所以y = 2,x y答案: 102.已知x x ′2x + 3y , 它所 的 矩 ________.y→=y ′x + yxx ′ 2 3 x解析: 将它写成矩 的乘法形式→′ =1 ,所以它所 的 矩y1yy2 3 1 .12 3答案:111.矩 的乘法 着 的复合,而两个 的复合仍是一个 ,且两个 的复合 程是有序的,易 倒.2.矩阵乘法不满足交换律和消去律,但满足结合律.[ 小题纠偏 ]1 2 , B =4 2 1.设 A =4k ,若 AB = BA ,则实数 k 的值为 ________.37解析: AB =1 24 2 =4+ 2k163 4k 7,12+ 4k 3442 1 21016BA = k7 34 = ++ 28,k 21 2k 因为 AB = BA ,故 k = 3.答案: 32.已知 A =1 0 , B =- 1 0- 1 00 0 0 1, C =,计算 AB , AC.0 - 1解: AB =1 0 - 1 0- 1 00 1 =,1 0 - 10 - 1 0 . AC =0 0- 1= 0 0 0考点一二阶矩阵的运算 基础送分型考点 —— 自主练透[ 题组练透 ]1 11 11.已知 A =2 2,计算 A 2, B 2.1 , B = - 1- 1 1221 1 11 1 1 解: A 2=2 2 2 2 2 2 . 1 1 1 =1 1 12 2222 21111B 2=- 1 - 1 - 1 =.- 12.(2014 江·苏高考 )已知矩阵 A =- 1 211 21 ,B =,向量 α= ,x ,y 为实数. 若x2- 1 yA α=B α,求 x + y 的值.解: 由已知,得 A α= - 12 2 = - 2+ 2y , α= 11 2 = 2+ y y2 - 1 y1 x 2+ xy4- y第 4 页共 21 页因为 A α= B α,所以 - 2+ 2y2+ y=,2+ xy 4- y- 2+ 2y = 2+ y ,故2+ xy =4- y.x =- 12,所以 x + y = 7 解得2.y = 4.3.已知矩阵 A =1 0 - 4 3 31 , B = 4 - 2且 α= ,试判断 (AB)α与 A(B α)的关系.2 4解: 因为 AB =1 0- 43 -4 31 2= ,4 - 2 4 - 1- 43 3所以 (AB)α=- 1 4= ,48 因为 B α=-433 =0 ,4 - 2441 0 0 0A(B α)=24=. 18所以 (AB)α= A(B α).[ 谨记通法 ]1.矩阵的乘法规则两矩阵 M , N 的乘积 C = MN 是这样一个矩阵;(1) C 的行数与 M 的相同,列数与 N 的相同;(2) C 的第 i 行第 j 列的元素C ij 由 M 的第 i 行与 N 的第 j 列元素对应相乘求和得到. [ 提醒 ] 只有 M 的行数与 N 的列数相同时,才可以求MN ,否则无意义.2.矩阵的运算律(1) 结合律 (AB)C = A(BC);(2) 分配律 A(B ±C)= AB ±AC , (B ±C)A = BA ±CA ;(3) λ(AB)= (λA )B = A( λB ).考点二平面变换的应用重点保分型考点 —— 师生共研[ 典例引领 ]2 - 2 2 2已知曲线 C :xy = 1,若矩阵 M =对应的变换将曲线C 变为曲线 C ′,求2 222曲线 C ′的方程.解: 设曲线 C 上一点 (x ′ , y ′ )对应于曲线 C ′ 上一点 (x ,y),2 - 222x ′x所以=y,22 ′y222 222′=所以x + y y - x所以 ′ - ′ = , ′ +′ = ,y ′ = ,所以 x ′ y ′=2 x2 yx2x2 yy.x22x + y y - x = 1,×2 2所以曲线 C ′ 的方程为 y 2- x 2= 2.[ 由题悟法 ]利用平面变换解决问题的类型及方法:(1) 已知曲线 C 与变换矩阵,求曲线C 在变换矩阵对应的变换作用下得到的曲线C ′的表达式,常先转化为点的对应变换再用代入法(相关点法 )求解.(2) 已知曲线 C ′是曲线 C 在平面变换作用下得到的,求与平面变换对应的变换矩阵, 常根据变换前后曲线方程的特点设出变换矩阵,构建方程(组 )求解.[ 即时应用 ]a 022x + y已知圆 C :x 2+ y 2= 1 在矩阵 A =(a>0,b>0) 对应的变换作用下变为椭圆=0 b9 41,求 a , b 的值.解:设 P(x ,y)为圆 C 上的任意一点, 在矩阵 A 对应的变换下变为另一个点 P ′ (x ′ ,y ′ ),x ′ a 0x x ′= ax , 则 =,即y ′0 byy ′ = by.2 2 2222xya xb y又因为点 P ′ (x ′ , y ′ )在椭圆 9 + 4 = 1 上,所以 9 + 4 = 1. 由已知条件可知,x 2+ y 2=1,所以 a 2 = 9, b 2= 4.因为 a>0 , b>0 ,所以 a = 3, b = 2.考点三 变换的复合与矩阵的乘法 重点保分型考点 —— 师生共研[ 典例引领 ]在平面直角坐标系xOy 中,已知点 A(0,0),B(- 2,0),C(- 2,1).设 k 为非零实数,矩阵k 0 0 1A 1,B 1,C 1,M =1 , N =,点 A , B , C 在矩阵 MN 对应的变换下得到点分别为1 0△ A 1B 1C 1 的面积是△ ABC 面积的 2 倍,求 k 的值.k 0 0 1 0 k解: 由题设得 MN =1 1=,1 0 由 0k 0 0 0 k - 2,=,=1 00 01- 20 k -2k,可知 A 1(0,0),B 1(0,- 2), C 1(k ,- 2).1 0=1- 2计算得△ABC 的面积是1,△A 1 1 1 的面积是 |k|,B C则由题设知: |k|= 2× 1= 2.所以 k 的值为 2 或- 2.[ 由题悟法 ]矩阵的乘法对应着变换的复合,而两个变换的复合仍是一个变换,且两个变换的复合过程是有序的,不能颠倒.二阶矩阵的运算关键是记熟运算法则.[ 即时应用 ]1 0已知圆 C :x 2+ y 2= 1,先将圆 C 作关于矩阵 P =的伸压变换,再将所得图形绕原0 2点逆时针旋转 90°,求所得曲线的方程.0 - 1解: 绕原点逆时针旋转 90° 的变换矩阵 Q =,1 0则 M = QP =0 - 11 0 0 - 210 2=.1设 A(x 0, y 0 为圆 C 上的任意一点,在T M 变换下变为另一点 A ′ (x 0′ , y 0′ ),)′-x 0′ =- 2y 0,2则=,即y 0 ′ 10 y 0y 0′ = x 0,x 0= y 0′ ,所以x 0′y 0=- 2 .又因为点 A(x 0, y 0) 在曲线 x 2+ y 2= 1 上,2x 0′ 2所以 (y 0′ ) + -= 1.2故所得曲线的方程为x4+ y 2 =1.0 11, N =1 ,求 MN .1.设 M =00 120 11 0 0 112.解: MN =0 =1211 2 T 把曲2.(2016 南·京三模 )已知曲线 C :x 2+ 2xy + 2y 2= 1,矩阵 A =所对应的变换1 0线 C 变成曲线 C 1,求曲线 C 1 的方程.1 2 解: 设曲线 C 上的任意一点 P(x , y), P 在矩阵 A =对应的变换下得到点 Q(x ′ ,1 0y ′ ).1 2 x x ′ x + 2y = x ′ ,则10 =, 即y′ x = y ′ ,yx ′ -y ′所以 x = y ′ , y = .2x ′ - y ′+2x ′ - y ′2= 1,即 x ′ 2+ y ′ 2= 2,代入 x 2+ 2xy +2y 2= 1,得 y ′ 2 +2y ′ ·22所以曲线 C 1 的方程为 x 2+ y 2= 2.3. (2016 南·通、扬州、泰州、淮安三调 )在平面直角坐标系xOy 中,直线 x + y - 2= 0 在矩阵 A =1 ax + y - b = 0(a , b ∈ R) ,求 a + b 的值.1 对应的变换作用下得到直线2解: 设 P(x , y)是直线 x + y -2= 0 上任意一点,由 1a x =x + ay ,得 (x + ay)+ (x + 2y)- b = 0,即 x + a + 2 - b= 0.12 y x + 2y2 y 2a + 22 = 1, a = 0,所以 a +b = 4.由条件得解得-b=- 2,b = 4,2第 8 页共 21 页4.已知 M =1- 22 - 12 , W =- 3,试求满足 MZ = W 的二阶矩阵 Z .3 1a b解: 设 Z =d ,c则 MZ = 1 - 2 a b a - 2cb -2d=.23 c d 2a + 3c 2b +3d又因为 MZ = W ,且 W =2 - 1,- 31a - 2cb - 2d 2 - 1所以+ = - 3 1 , +3c3d2a 2ba = 0,a - 2c = 2,1b =-b - 2d =- 1,7,所以解得2a + 3c =- 3, c =- 1,2b + 3d = 1.d = 37.0 1 - 7故 Z =.- 1371 15. (2016 苏·锡常镇一调 )设矩阵 M =y = sin x 在矩阵, N = 2,试求曲线21MN 变换下得到的曲线方程.11解: 由题意得 MN = 1 0 2 0= 20 . 0 20 1 0 2设曲线 y = sin x 上任意一点 P(x , y)在矩阵 MN 变换下得到点 P ′ (x ′, y ′ ),x ′1x则2,=yy21x = 2x ′ , 即 x ′ = 2x ,得1y ′ = 2y ,y =2y ′ .因为 y = sin x ,所以 1 ′ =′ ,即 ′ = ′2ysin 2xy2sin 2x .因此所求的曲线方程为 y = 2sin 2x.6.(2017 苏·锡常镇调研 )已知变换 T 把平面上的点 (3,- 4),(5,0)分别变换成 (2,- 1),(-1,2),试求变换 T 对应的矩阵 M .a b a b3 2 a b 5 =- 1解: 设 M =,由题意,得= , ,c dc d- 4 - 1 c d 0 213a - 4b = 2, a =- 5,13,3c - 4d =- 1,b =-20所以解得2 5a =- 1,c =5,5c = 2.11d = 20.113-5-20即 M =.2 11 5207.(2016 ·通、扬州、淮安、宿迁、泰州二调南 )在平面直角坐标系xOy 中,设点 A(- 1,2)- 1 0 在矩阵 M =对应的变换作用下得到点 A ′,将点 B(3,4)绕点 A ′逆时针旋转90°得0 1到点 B ′,求点 B ′的坐标.解: 设 B ′(x , y),- 1 0- 11 依题意,由0 1=,得 A ′ (1,2) .22―→ ―→则 A ′ B = (2,2) , A ′ B = (x - 1, y - 2).0 - 1记旋转矩阵 N =,1 00 - 1 2x - 1 - 2x - 1 则=,即=,10 2- 2- 2y 2y 解得x =- 1,y = 4,所以点 B ′ 的坐标为 (- 1,4).1 0 1 02x 2- 2xy + 1= 0 在矩阵 MN 对应的变换作8.已知 M =, N =,求曲线0 2- 1 1用下得到的曲线方程.1 0 1 01 0解: MN =2 - 11=,- 22设 P(x ′ , y ′ )是曲线 2x 2- 2xy + 1= 0 上任意一点,点 P 在矩阵 MN 对应的变换下变为点 P ′ ( x , y),x1 0 x ′x ′则有=2 ′=,y- 2- ′ + ′y2x 2yx = x ′ ,即y =- 2x ′ + 2y ′ ,x ′ =x ,于是yy ′ =x + 2.代入 2x 2- 2xy + 1= 0 得 xy = 1,所以曲线 2x 2- 2xy + 1=0 在 MN 对应的变换作用下得到的曲线方程为xy = 1.第二节逆变换与逆矩阵、矩阵的特征值与特征向量1.逆变换与逆矩阵(1) 对于二阶矩阵 A , B ,若有 AB = BA = E ,则称 A 是可逆的, B 称为 A 的逆矩阵.(2) 若二阶矩阵 A ,B 均存在逆矩阵,则 - 1- 1 - 1AB 也存在逆矩阵,且 (AB) = B A .(3) 利用行列式解二元一次方程组.2.逆矩阵的求法一般地,对于二阶矩阵a b - 1A =,当 ad - bc ≠ 0 时,矩阵 A 可逆,且它的逆矩阵 Ac dd- b ad - bc ad - bc=.- c aad - bcad - bc3.特征值与特征向量的定义设 A 是一个二阶矩阵,如果对于实数 λ,存在一个非零向量 α,使得 A α= λα,那么 λ称为 A 的一个特征值,而α称为 A 的属于特征值 λ的一个特征向量.4.特征多项式的定义a b是一个二阶矩阵, λ∈ R ,我们把行列式f(λ)=λ- a - b 2设 A =d - c= λ- (a + d)λcλ- d+ ad - bc 称为 A 的特征多项式.5.特征值与特征向量的计算设 λ是二阶矩阵a bλ与 α的步骤为:A =的特征值, α为 λ的特征向量,求c d第一步:令矩阵λ- a - b2A 的特征多项式 f(λ)=λ- d = λ- (a + d)λ+ ad - bc = 0,求出 λ- c的值.第二步: 将 λ的值代入二元一次方程组λ- a x - by = 0,得到一组非零解 x 0 ,于是- cx + λ- d y = 0,y非零向量 x 0即为矩阵 A 的属于特征值 λ的一个特征向量.y 06.A n α(n ∈ N * )的简单表示(1) 设二阶矩阵 A =a b , α是矩阵 A 的属于特征值 λ的任意一个特征向量,则A n α=cdn *).λα(n ∈ N, λ是二阶矩阵 A 的两个不同特征值,α, β是矩阵 A 的分别属于特征值 λ, λ(2) 设 λ1 212的特征向量,对于平面上任意一个非零向量γ,设 γ= t 1 α+ t 2β(其中 t 1, t 2 为实数 ),则 A n γ=n n* .1λ1α+ t 2λ2β(n ∈ N)t[ 小题体验 ]1 61.矩阵 M = - 2- 6 的特征值为 __________ .解析: 矩阵 M 的特征多项式为 f(λ)= λ- 1 - 6λ+2)( λ+ 3) ,令 λ= ,得 M 的特(f( ) 02 λ+ 6征值为 λ=-1 2, λ=-2 3.答案: - 2 或- 32.设2 a 2 a 的值为 ________.3是矩阵 M = 的一个特征向量,则实数322解析: 设是矩阵 M 属于特征值 λ的一个特征向量,3a 2 2 2则2 = λ , 33 32a + 6=2λ, λ= 4,故解得12= 3λ a = 1.答案: 11.不是每个二阶矩阵都可逆, 只有当ab中 ad - bc ≠ 0 时,才可逆, 如当 A =10 , c d0 01 0因为 1× 0- 0× 0= 0,找不到二阶矩阵 B ,使得 BA = AB =E 成立,故 A = 不可逆.0 2.如果向量 α是属于 λ的特征向量,将它乘非零实数t 后所得的新向量t α与向量 α共线,故 t α也是属于 λ的特征向量,因此,一个特征值对应多个特征向量,显然,只要有了特征值的一个特征向量,就可以表示出属于这个特征值的共线的所有特征向量了.[ 小题纠偏 ]1.矩阵 A =2 35的逆矩阵为 ____________. 6x y 解析:法一: 设矩阵 A 的逆矩阵 A-1=,z w2 3 x y1 0 则6 z w= , 512x + 3z 2y + 3w 1 0即=0 1 , 5x + 6z 5y + 6w2x + 3z = 1,x =- 2,2y + 3w = 0,y = 1,所以解得55x + 6z = 0, z = 3,5y + 6w = 1,2w =- 3.A -1=-21故所求的逆矩阵5- 2 .3 3法二: 注意到 2× 6- 3×5=- 3≠0,故 A 存在逆矩阵 A-1,6 - 3- 3- 3- 21且 A -1==52 .- 5 2-3 3- 3 - 3- 2 1 答案:5 - 2331 222.已知矩阵 A =- 4 的一个特征值为 λ,向量 α= 是矩阵 A 的属于 λ的一个特a- 3 征向量,则 a + λ= _____.解析: 因为 A α= λα,所以2- 6= 2λ, 即解得2a + 12=- 3λ,所以 a + λ=- 3- 2=- 5.答案: - 51 2 2 2a- 4 - 3 = λ ,- 3a =- 3,λ=- 2,考点一求逆矩阵与逆变换重点保分型考点 —— 师生共研[ 典例引领 ]- 1 01 2 A -1已知矩阵 A =2, B =,求矩阵 B.6 解: 设矩阵 A 的逆矩阵为a bc,d- 1 0 a b1 0,即 - a - b 1 0则== ,2 c d12c 2d 0 11故 a =- 1, b = 0, c = 0, d =2.所以矩阵 A 的逆矩阵为 A -1=- 11 .2所以 A- 1 0 1 2- 1- 2-1B =1=.0 632[ 由题悟法 ]求一个矩阵 A 的逆矩阵或证明一个矩阵不可逆时,常用两种解法.法一: 待定矩阵法:先设出其逆矩阵,根据逆矩阵的定义 AB = BA = E ,应用矩阵相等的定义列方程组求解,若方程组有解,即可求出其逆矩阵,若方程组无解,则说明此矩阵不可逆,此种方法称为待定矩阵法.a b法二: 利用逆矩阵公式,对矩阵A = :c d①若 ad - bc = 0,则 A 的逆矩阵不存在.d- b ②若 ad - bc ≠ 0,则- 1ad - bc ad - bc.A =- caad - bc ad - bc[ 即时应用 ]11 1已知 A = 1, B =,求矩阵 AB 的逆矩阵.1 021 0 1- = 1≠ 0, 解:法一: 因为 A =1 ,且 1 ×2 02 0212 -111 0所以 A-1=22 =,20 1- 1 12 2 1- 1.同理 B-1=0 1因此 (AB)-1= B-1A -1=1- 1 1 0 1 - 20 2 =.0 1 0 211 1法二: 因为 A =10 , B =,20 1所以1 0 1 1 = 11 ,且× 1- × = 1≠ 0,AB=11 10 0 120 1222第 15 页 共 21 页1 - 1 21 11 - 2所以 (AB)-1=22.=20 1 01 12 2考点二特征值与特征向量的计算及应用重点保分型考点 —— 师生共研[ 典例引领 ]2 a已知矩阵 M =,其中 a ∈ R ,若点 P(1,- 2)在矩阵 M 的变换下得到点 P ′(- 4,0).2 1(1) 求实数 a 的值;(2) 求矩阵 M 的特征值及其对应的特征向量.解: (1) 由 2 a1- 4 ,得 - =-==3.2 1 -22 2a4? a2 3λ- 2 - 3(2) 由 (1)知 M =,则矩阵 M 的特征多项式为 f (λ)= =( λ- 2)( λ- 1)- 621- 2 λ- 12= λ- 3λ-4.令 f(λ)= 0,得矩阵 M 的特征值为- 1 与 4.λ- 2 x - 3y = 0,把 λ=- 1 代入二元一次方程组- 2x + λ- 1 y =0,得 x + y = 0,1所以矩阵 M 的属于特征值- 1 的一个特征向量为;-1λ- 2 x - 3y = 0,把 λ= 4 代入二元一次方程组- 2x + λ- 1 y = 0,得 2x - 3y = 0.所以矩阵 M 的属于特征值4 的一个特征向量为3.2[ 由题悟法 ](1) 求矩阵 A 的特征值与特征向量的一般思路为:先确定其特征多项式 f(λ),再由 f(λ)= 0求 出 该 矩 阵 的 特 征 值 , 然 后 把 特 征 值 代 入 矩 阵 A所 确 定 的 二 元 一 次 方 程 组λ- a x - by = 0, 即可求出特征向量.- cx + λ- d y = 0,(2) 根据矩阵 A 的特征值与特征向量求矩阵A 的一般思路:设 A =a b c ,根据 A α=λαd构建 a , b , c , d 的方程求解.[ 即时应用 ]1x 1 的属于特征值 - 21. (2015 江·苏高考 )已知 x , y ∈ R ,向量 a = 是矩阵 A =y 0 - 1的一个特征向量,求矩阵A 以及它的另一个特征值.解: 由已知,得 Aa =- 2a ,x 11- - 2即=x 1=,y0 - 1y2x - 1=- 2, x =- 1, 则即y = 2,y = 2,-11 所以矩阵 A =2.从而矩阵 A 的特征多项式f (λ)= (λ+ 2)( λ- 1),所以矩阵 A 的另一个特征值为1.1 2.已知二阶矩阵 M 有特征值 λ= 3 及对应的一个特征向量 α1=,并且矩阵 M 对应的1变换将点 (-1,2)变换成 (9,15) ,求矩阵 M .解: 设 M = a b ,则a b 1 1 3 a + b = 3,= 3=,故c dc d 113c +d = 3.a b - 1 9-a + 2b = 9,又= ,故c d215- c + 2d = 15.联立以上两方程组解得a =- 1,b = 4,c =- 3,d = 6,- 1 4故 M =.- 3 6考点三根据 A , α计算 A n αn ∈ N *重点保分型考点 —— 师生共研[ 典例引领 ]1 23给定的矩阵 A = , B = .- 1 4 2 (1) , λ及对应的特征向量 α, α;求 A 的特征值 λ1 2 12(2) 求 A 4B.解: (1) 设 A 的一个特征值为 λ,由题意知:λ- 1 - 2= 0,即 (λ- 2)(λ- 3)= 0,所以 λ1= 2, λ2= 3.1λ- 4当 λ1= 2 时,由1 2 xx2 的特征向量 α1=24 = 2,得 A 属于特征值;- 1 yy1当 λ2= 3 时,由1 2 xx 3 的特征向量 α2=14 = 3,得 A 属于特征值.- 1 y y1(2) 由于 B =32 1= α+ α,= + 2 1 1 1 2故 A 4=4 α+ α = 4α+ 34α= 16α+ 81α= 32 81= 1132 + .16 8197[ 由题悟法 ]已知矩阵 A 和向量 α,求 A n α(n ∈ N * ),其步骤为:(1) 求出矩阵, λ和对应的特征向量 α, αA 的特征值 λ1 2 12. (2) 把 α用特征向量的组合来表示:α= s α1+ t α2.nnn表示 A n(3) 应用 A α= s λα11 + t λα.2α2[ 即时应用 ]已知 M = 1 2 , β= 1 ,计算 M 5β21 7.λ- 1 - 2解: 矩阵 M 的特征多项式为f( λ)=2= λ- 2λ- 3.- 2 λ- 1令 f(λ)= 0,解得 λ=1 3,λ=-2 1,12 xx,得x + 2y = 3x ,令= 32 1 y y2x + y = 3y ,从而求得 λ1=3 的一个特征向量为1α1=,11同理得对应λ2=-1的一个特征向量为α2=- 1.令β= mα1+ nα2,则 m=4, n=- 3.55α- 3α555551- 3× (- 1)51β==α-=-=×=M M (44(M3(Mα4(λα3(λα312)1)2) 1 1)22)41- 1975.9691.(2016 无·锡期末 )已知矩阵 A=1012-1对应的变换把直线 l 0, B=,若矩阵 AB21变为直线 l′: x+ y- 2= 0,求直线 l 的方程.解:由题意得 B-1=1- 2,01101- 21- 2所以 AB-1==,020102设直线 l 上任意一点 (x, y)在矩阵 AB-1对应的变换下为点 (x′, y′ ),则1- 2x=02yx′x′= x- 2y,,所以y′y′= 2y,将 x′, y′代入 l′的方程,得 (x- 2y)+ 2y-2= 0,化简后得 l: x= 2.12- 11-12. (2016 江·苏高考 )已知矩阵 A=0-2,矩阵 B 的逆矩阵 B=2,求矩阵02AB.解:设 B=ab,c d-11-1a b10则 B2=,=B c d010 2即错误 ! =错误 ! ,1a = 1, a - 2c = 1,1,11b = 1b - 2d = 0,4所以 B =4故解得.2c = 0,c = 0,121d =2d = 1,2,1 1 1 51424因此, AB = 0- 2=.1 0-123. (2016 南·京、盐城、连云港、徐州二模)已知 a , b 是实数,如果矩阵 3 aA =所b - 2对应的变换 T 把点 (2,3) 变成 (3,4).(1) 求 a , b 的值;(2) 若矩阵 A 的逆矩阵为 B ,求 B 2.3 a23解: (1) 由题意得=,b - 2 34所以 6+ 3a = 3,2b - 6= 4,所以 a =- 1, b = 5.3 - 1(2) 由 (1)得 A =.5 - 22 - 1由矩阵的逆矩阵公式得B =.5 - 32 - 1 2 - 1- 1 1所以 B 2==. 5 - 3 5 - 3 - 544. (2016 常·州期末 )已知矩阵 M =a 2 8 的一个特征向量是e =14的属于特征值 ,点b1P(- 1,2)在 M 对应的变换作用下得到点Q ,求 Q 的坐标.a 2 1 1 解: 由题意知4 b = 8×,11a + 2= 8,a = 6,故解得4+ b = 8,b = 4,6 2 - 1 =- 2所以42,所以点 Q 的坐标为 (-2,4).4 4- 1 45. (2016 苏·州暑假测试 )求矩阵 M =2 的特征值和特征向量.6λ+ 1 - 42解: 特征多项式f(λ)== λ+1)( λ-6)= λ-7)( λ+ 2) ,- = λ- λ-(85 14(- 2 λ- 6由 f(λ)= 0,解得 λ1= 7,λ2=- 2.8x - 4y = 0,1 将 λ= 7 代入特征方程组,得即 y = 2x ,可取为属于特征值 λ= 7 的11- 2x + y = 0,2一个特征向量.- - = ,4x 4y 0同理, λ=-2 2 时,特征方程组是即 x =- 4y ,所以可取为属于- 2x - 8y = 0,- 1特征值 λ2=- 2 的一个特征向量.M = - 1 4λ1= 7, λ2=- 2.属于 λ1=7 的一个特征向量综上所述,矩阵2 有两个特征值61,属于 λ2=- 2 的一个特征向量为4为- 1. 23 6λ= 8 的一个特征向量e = 6,及属于特征值 λ=- 36.矩阵 M =有属于特征值255的一个特征向量 e =13 ,计算 M3α2- 1 .对向量 α= 8.解: 令 α= me + ne ,将具体数据代入,有m = 1,n =- 3,所以 α=e - 3e 所以M 3α 1212 .3333 3 3 6 1 3 153= M - 3e = - 3M - 3× (-3) 3 =(e 1= λ - 3λ = 8.5- 1 2 479- 1 27. (2016 泰·州期末 )已知矩阵 M =5x 的一个特征值为- 2,求 M 2.2λ+ 1- 22解: 把 λ=- 2 代入-λ- + = ,得= ,= λ-5λ- x(x1)(x 5)x 3-2第 21 页共 21 页- 124所以矩阵 M =65,所以 M 2=.351428.已知二阶矩阵 M 有特征值 λ= 8 及对应的一个特征向量 e 1=1 ,并且矩阵 M 对应的1变换将点 (-1,2)变换成 (- 2,4). 求:(1) 矩阵 M;(2) 矩阵 M 的另一个特征值,及对应的一个特征向量e 2 的坐标之间的关系;(3) 直线 l : x -y + 1= 0 在矩阵 M 的作用下的直线 l ′的方程.a ba b 1 18解: (1) 设 M =,则c d 1 = 8 = ,c d1 8a + = ,b-1-2-a + 2b =- 2,b8a= ,故故c d+ =8.24-c + 2d = 4.c da = 6,b = 2,62 联立以上两方程组,解得故 M =.c = 4,44d = 4,2(2) 由 (1) 知,矩阵 M 的特征多项式为f (λ)= (λ- 6)( λ- 4)- 8=λ- 10λ+ 16,故其另一个特征值为λ= 2.设矩阵 M 的另一个特征向量是e 2=x ,y则 Me 2=6x + 2yx ,解得 2x + y =0.= 2y4x + 4y(3) 设点 (x ,y)是直线 l 上的任意一点, 其在矩阵 M 的变换下对应的点的坐标为 (x ′ ,y ′ ),则 6 2 x =x ′,即 x = 1 ′ -1 ′ , =-1′ +3′ ,代入直线l 的方程后并化简,4 4 y′4x8yy4x8yy得 x ′ - y ′ + 2=0,即 x -y + 2= 0.。