选修42选修42矩阵与变换
- 格式:pptx
- 大小:1.91 MB
- 文档页数:30
高中数学选修4-2:矩阵与变换矩阵是研究图形(向量)变换的基本工具,有着广泛的应用,许多数学模型都可以用矩阵来表示。
本专题将通过平面图形的变换讨论二阶方阵的乘法及性质、逆矩阵和矩阵的特征向量等概念,并以变换和映射的观点理解解线性方程组的意义,初步展示矩阵应用的广泛性。
一、内容与要求1.引入二阶矩阵2.二阶矩阵与平面向量(列向量)的乘法、平面图形的变换(1)以映射和变换的观点认识矩阵与向量乘法的意义。
(2)证明矩阵变换把平面上的直线变成直线,即证明A(λ1α+λ2β)=λ1Aα+λ2Aβ。
(3)通过大量具体的矩阵对平面上给定图形(如正方形)的变换,认识到矩阵可表示如下的线性变换:恒等、反射、伸压、旋转、切变、投影。
3.变换的复合--二阶方阵的乘法(1)通过变换的实例,了解矩阵与矩阵的乘法的意义。
(2)通过具体的几何图形变换,说明矩阵乘法不满足交换律。
(3)验证二阶方阵乘法满足结合律。
(4)通过具体的几何图形变换,说明乘法不满足消去律。
4.逆矩阵与二阶行列式(1)通过具体图形变换,理解逆矩阵的意义;通过具体的投影变换,说明逆矩阵可能不存在。
(2)会证明逆矩阵的唯一性和(AB)-1=B-1A-1 等简单性质,并了解其在变换中的意义。
(3)了解二阶行列式的定义,会用二阶行列式求逆矩阵。
5.二阶矩阵与二元一次方程组(1)能用变换与映射的观点认识解线性方程组的意义。
(2)会用系数矩阵的逆矩阵解方程组。
(3)会通过具体的系数矩阵,从几何上说明线性方程组解的存在性,唯一性。
6.变换的不变量(1)掌握矩阵特征值与特征向量的定义,能从几何变换的角度说明特征向量的意义。
(2)会求二阶方阵的特征值与特征向量(只要求特征值是两个不同实数的情形)。
7.矩阵的应用(1)利用矩阵A的特征值、特征向量给出Anα简单的表示,并能用它来解决问题。
(2)初步了解三阶或高阶矩阵。
(3)了解矩阵的应用。
8.完成一个学习总结报告。
报告应包括三方面的内容:(1)知识的总结。
一般地,在线性变换下,是否仍然由平面上的直线变成直线,三角形变成三角形呢?教学目标知识与能力了解矩阵的概念掌握五类特殊的线性变换及其二阶矩阵过程与方法情感态度和价值观用代数方法表示几何变换,进而就可以从代数的角度研究几何变换体验在直角坐标系中线性变换与二阶矩阵之间的一一对应关系教学重难点重点1.二阶矩阵的概念2.线性变换及其对应的二阶矩阵难点线性变换与二阶矩阵之间的一一对应关系(一)几种特殊线性变换及其二阶矩阵旋转变换反射变换伸缩变换投影变换切变变换1.旋转变换探究将直角坐标系所有点绕原点沿逆时针方向旋转一个角度α.设平面内点P (x,y )经过旋转后变成点 ()y ,x P ′′′ 那么如何用P 的坐标(x,y )表示 的坐标 ?P ′()y ,x ′′得到:x ’=-x, y ’=-y.① ①称为旋转角为180°的旋转变换的表达式 P ’是P 在这个旋转变换的像. O 180°PP′ y x如图,在直角坐标系x o y 内,点P (x,y )绕原点O 按逆时针方向旋转180°,变成点 ().y ,x P ′′′例1 在直角坐标系x o y 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换.(1)求点A (1,0)在这个旋转变换下的像A ′;(2)写出这个旋转变化的表达式. A(1,0) O30° A ′y x 图1 图2 O yx (x,y ) P α30° ().y ,x P ′′′的横坐标和纵坐标为点解:如图A ,′123= 23×1= °30=cos OA x °30=sin OA y 21=21×1=)21,23(′(1,0)A A 为在这个旋转变换下的像点θ=θ=rsin y rcos x (2) 如图2,分别连接OP ,OP ’,设OP = OP′=r,.OP ,x 为终边的角以轴的正半轴为始边是以记θ∴()()°30+θ=′°30+θ=′sin r y cos r x即: yx y yx x 23+21=′2123=′-② 23212123-即得到正方形数表: 由两角和的三角函数公式得:,cos y sin x y ,sin y cos x x °30+°30=′°30°30=′-其中系数a,b,c,d 均为常数,则称③的几何变换为线性变换. ③式叫做这个线性变换的坐标变换公式.dycx y by ax x +=′+=′③线性变换③与dc b a 一一对应 在平面直角坐标系x O y 中,很多平面变换(平面内有点构成的集合)到它自身的映射都具有下列形式定义 由4个数a,b,c,d 排成的正方形数表 称为二阶矩阵dc b a 数a,b,c,d 称为矩阵的元素.零矩阵: 0000记为: 单位矩阵: 1001记为: 0E2.反射变换平面上的任意一点P 变成它关于直线l 的对称点P ’的线性变换叫做关于直线l 的反射. 例:在直角坐标系xOy 内,任意点P(x,y)关于直线y=x 的对称点为P ’(x ’,y ’).则相应 的坐标变换公式是: x ’=y,y ’=x.对应的二阶矩阵是 0113.伸缩变换在直角坐标系xOy内,将每个点的横坐标变为原来的k1倍,纵坐标变为原来的k2,其中k1 ,k2均为非零常数,称这样的几何变换为伸缩变换.定义伸缩变换的坐标变换公式为: x’=k1x,y’=k2y.对应的二阶矩阵:k k2 14.投影变换设l是一条给定的直线.对平面内任意一点P作直线l的垂线,垂足为P’,称点P’为点P在直线l上的投影.PlαP’定义平面上每一点P变成它在直线l上的投影P’,这个变换称为关与直线l的投影变换.在直角坐标系xOy 内,任意点P 关于x 轴的投影变换的坐标变换公式为: x ’=x,y ’=0.对应的二阶矩阵: 00015.切变变换如图,在直角坐标系xOy 内,将每一点P (x,y )沿与x 轴平行的方向平移ky 各单位变成P ’,其中k 为常数,称这类变换为平行于x 轴的切变变换. O y xP (x,y )P ’(x+ky ,y ) 定义平行与x轴的切变变换的坐标变换公式为:x’=x+ky,y’=y.1k对应的二阶矩阵:1抢答平行于y 轴的切变变换的坐标公式?x ’=x,y ’=kx +y.对应的二阶矩阵: 11k(二)变换、矩阵的相等2π3+2π3=′2π32π3=′cos y sin x y sin y cos x x-x ’=x,y ’=-x.旋转角为 的旋转变换的坐标变换公式 2π3即:2π32π32π32π3cos sin sincos -0110-对应的二阶矩阵:即:x ’=x,y ’=-x.)(-)(-)(-)-(-2π+2π=′2π2π=′cos y sin x y sin y cos x x 旋转角为 的旋转变换的坐标变换公式 2π-即:)(-)(-)(--)(-2π2π2π2πcos sin sin cos 0110-即: 对应的二阶矩阵:观察1.旋转变换的坐标变换公式2.对应的二阶矩阵1.旋转角度定义设σ,ρ是同一直角坐标平面内的两个线性变换.若对平面内任意点P,都有σ(P)= ρ(P),则这两个线性变换相等,记为σ=ρ.设σ,ρ所对应的二阶矩阵分别为A = ,B = .若σ=ρ,则a 1=a 2,b 1=b 2,c 1=c 2,d 1=d 2.这时我们称二阶 矩阵A 与二阶矩阵B 相等.d c b a 2222d c b a 1111定义课堂练习.y ,x ,q ,p B A ,q p p q B ,x y x A ,求且--例:设=2+=23+3=解:由矩阵定义: .x ,q p y ,p ,q x 2=+=23==+3--.q ,p ,y x 1=3=2=2=-,-课堂小结1.几种特殊的线性变换:旋转变换、反射变换、伸缩变换、投影变换、切变变换(要求:理解并掌握各变换所对应的坐标变换公式及其对应的二阶矩阵.)课堂小结2.变换和矩阵的相等(1)变换相等:对应坐标变换公式和二阶矩阵相等(2)矩阵相等:对应系数相等注:两个线性变换相等当且仅当对应的二阶矩阵相等教材习题答案1.(1)坐标变换公式为:对应的二阶矩阵: .y x y ,y x x 22+22=′2222=′-22222222-(2)坐标变换公式为: .x y ,y x =′=′-对应的二阶矩阵: 10012.设P (x,y)是平面直角坐标系x O y 内的任意一点,则它关于原点O 的对称点 为 ∴坐标变换 公式为 对应的二阶矩阵为 ..y y ,x x --=′=′1001--(),y ,x P ′′′3.(1)点 在这个投影变换下的像为();03′,A ()12,A(2)设P (x ,y )是平面直角坐标系xOy 内的任意一点,则它在这个变换下的像为P ’(x +y ,0),因此,坐标变换公式是 1001对应的二阶矩阵是 .y ,y x x 0=′+=′.Z k ,R R .k ∈其中2π32π3+π2=45.由X = Y ,得x = 3 , y =-9 , z = 0.6.设P (x 0 , y 0)是平面直角坐标系xOy 内的任意一点,它关于直线l :y =2x 的投影变换下的像为P ’(x ’,y ’). 易得:过点P (x 0,y 0)垂直于直线的斜率为k =-1/2.于是,直线方程为:().x x y y 0021=---(),x x y y ,x y 0021=2=---解方程组:得直线l :y =2x 与直线y -y 0=-1/2(x -x 0)的坐标((x 0+2y 0)/5,(2x 0+4y 0)/5).∵M 是线段PP ’的中点,所以,y y x y ,x y x x 00000054+2×2=′52+×2=′--即: .y x y ,y x x 53+4=′54+3=′0000-∴坐标变换公式: .y x y ,yx x 53+4=′54+3=′-对应的二阶矩阵: 53545453-(2)对应的坐标变换公式: .y B A )B A (x B A AB y ,y B A ABx B A )A B (x 222222222222++2=′+2+=′-----对应的二阶矩阵:B A )B A (B A AB B A AB B A A B 222222222222++2+2+-----。
矩阵变换的性质-北师大版选修4-2 矩阵与变换教案矩阵变换是线性代数中一项重要的概念,它能够描述一个向量在变换后的位置。
在实际的计算机图形学、物理学、化学等领域中,矩阵变换都扮演着重要的角色。
本文将从矩阵变换的性质方面进行介绍。
矩阵变换的定义矩阵变换是一种将向量转换为另一个向量的数学运算,它通过给定一个矩阵A,将一个向量x变换为另一个向量y的过程。
矩阵变换的公式为:y=Ax其中,A为变换矩阵,x为原始向量,y为变换后的向量。
矩阵变换的性质1. 线性变换矩阵变换是一种线性变换,即它满足以下两个性质:•可加性:对于任意向量x1和x2,有A(x1+x2) = Ax1 + Ax2•齐次性:对于任意标量k和向量x,有A(kx) = k(Ax)这两个性质意味着,矩阵变换对向量加法和数乘保持线性。
这在实际计算中是非常有用的。
2. 逆变换矩阵变换是可逆的,即对于任意矩阵A,存在一个逆矩阵A-1,使得AA-1 = A^-1A= I。
其中,I为单位矩阵。
这意味着,任何矩阵变换都可以通过一个逆变换还原为原始向量。
3. 矩阵乘法的结合律矩阵乘法满足结合律,即对于任意矩阵A、B和C,有(AB)C = A(BC)。
这意味着,矩阵变换的顺序可以随意改变,不影响最终的结果。
4. 矩阵乘法的分配律矩阵乘法满足分配律,即对于任意矩阵A、B和C,有A(B+C) = AB + AC。
这意味着,对于一个向量,可以先将其进行某些变换,然后再将结果进行加法或减法运算,得到最终的结果。
5. 矩阵乘法的交换律矩阵乘法不满足交换律,即对于任意矩阵A和B,一般有AB ≠ BA。
这意味着,矩阵变换的顺序不能随意改变,需要根据具体的应用场景进行选择。
总结矩阵变换是线性代数中一项重要的概念,在计算机图形学、物理学、化学等领域都有广泛的应用。
本文从矩阵变换的性质方面进行了介绍,包括矩阵变换的线性性、可逆性、结合律、分配律和交换律。
这些性质都有极其重要的实际意义,能够帮助我们更好地理解和应用矩阵变换。