高中数学选修4-2《矩阵与变换》.1.1 矩阵的概念
- 格式:ppt
- 大小:7.81 MB
- 文档页数:76
高等数学教材矩阵在高等数学教材中,矩阵是一个重要的概念。
矩阵具有广泛的应用,并在许多领域中起着关键作用,如线性代数、概率论、计算机图形学等等。
本文将详细介绍矩阵的定义、基本运算、特殊矩阵等内容,以帮助读者更好地理解和应用矩阵。
一、矩阵的定义矩阵是一个由m行n列元素排列成的矩形阵列。
其中,m表示矩阵的行数,n表示矩阵的列数。
矩阵中的每个元素可以是任意的数值,可以是实数或复数。
我们用大写字母A、B等来表示矩阵。
二、矩阵的基本运算1. 矩阵的加法:对于两个行数和列数相同的矩阵A和B,它们的和记作A + B,即A和B的对应元素相加得到新的矩阵。
2. 矩阵的数乘:将一个矩阵A的每个元素都乘以一个常数k,得到新的矩阵kA。
3. 矩阵的乘法:对于一个m行n列的矩阵A和一个n行p列的矩阵B,它们的乘积记作AB,即A的行与B的列相乘,得到一个新的m行p列的矩阵。
三、特殊矩阵1. 零矩阵:所有元素均为零的矩阵称为零矩阵,用0表示。
2. 单位矩阵:主对角线上的元素均为1,其余元素均为0的矩阵称为单位矩阵,用I表示。
3. 对角矩阵:除了主对角线上的元素外,其余元素都为0的矩阵称为对角矩阵。
4. 转置矩阵:将矩阵A的行和列对调得到的新矩阵称为A的转置矩阵,记作A^T。
四、矩阵的性质与定理1. 矩阵的加法具有交换律和结合律。
2. 数乘与矩阵的加法满足分配律。
3. 矩阵的乘法具有结合律,但一般不满足交换律。
4. 矩阵的转置满足转置的转置法则,即(A^T)^T = A。
五、矩阵的应用1. 线性方程组的求解:矩阵可用于解决线性方程组,通过矩阵的运算,可以转化为求解矩阵的逆或行列式等问题。
2. 矩阵的特征值与特征向量:通过矩阵的特征值和特征向量,可以研究矩阵的稳定性、振动问题等。
3. 矩阵在图像处理中的应用:计算机图形学中,矩阵可以用于表示和处理图像,如图像的旋转、缩放、平移等操作。
总结:矩阵是高等数学中的重要概念,具有广泛的应用。
选修4-2 矩阵与变换A[最新考纲]1.了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系.2.了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示.3.理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质. 4.理解逆矩阵的意义,会求出简单二阶逆矩阵.5.理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.知 识 梳 理1.矩阵的乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则: [a 11 a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21]. (2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 设A 是一个二阶矩阵,α、β是平面上的任意两个向量,λ、λ1、λ2是任意三个实数,则①A (λα)=λAα;②A (α+β)=Aα+Aβ; ③A (λ1α+λ2β)=λ1Aα+λ2Aβ.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21 b 12b 22= ⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 性质:①一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律;②矩阵的乘法满足结合律,即(AB )C =A (BC );③矩阵的乘法不满足消去律. 2.矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (det A =ad -bc ≠0),它的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc -c ad -bc a ad -bc . (3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎨⎧ax +by =m ,cx +dy =n的系数矩阵A =⎣⎢⎡⎦⎥⎤a b c d 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b c d -1⎣⎢⎡⎦⎥⎤m n , 其中A -1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc-c ad -bca ad -bc . 3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量.(2)特征多项式与特征方程 设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的一个特征值,它的一个特征向量为ξ=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y , 即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎨⎧ax +by =λx ,cx +dy =λy , 故⎩⎨⎧(λ-a )x -by =0-cx +(λ-d )y =0⇔⎣⎢⎡⎦⎥⎤λ-a -b -c λ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式 ⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征多项式;方程⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的特征方程. (3)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎨⎧ x =x 1,y =y 1,⎩⎨⎧x =x 2,y =y 2,记ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2.则Aξ1=λ1ξ1、Aξ2=λ2ξ2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征值,ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量. 诊 断 自 测1. ⎣⎢⎡⎦⎥⎤1 00 -1 ⎣⎢⎡⎦⎥⎤57=________.解析 ⎣⎢⎡⎦⎥⎤1 00 -1⎣⎢⎡⎦⎥⎤57=⎣⎢⎢⎡⎦⎥⎥⎤ 1×5+0×7 0×5+(-1)×7=⎣⎢⎡⎦⎥⎤5-7.答案 ⎣⎢⎡⎦⎥⎤5-72.若A =⎣⎢⎢⎡⎦⎥⎥⎤12 121212,B =⎣⎢⎢⎡⎦⎥⎥⎤12 -12-1212,则AB =________. 解析AB =⎣⎢⎢⎡⎦⎥⎥⎤12 1212 12⎣⎢⎢⎡⎦⎥⎥⎤ 12 -12-12 12 =⎣⎢⎢⎡⎦⎥⎥⎤12×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×1212×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×12=⎣⎢⎡⎦⎥⎤0 00 0.答案 ⎣⎢⎡⎦⎥⎤0 00 0 3.设A =⎣⎢⎡⎦⎥⎤-1 0 0 1,B =⎣⎢⎡⎦⎥⎤0 -11 0,则AB 的逆矩阵为________. 解析 ∵A-1=⎣⎢⎡⎦⎥⎤-1 0 0 1,B -1=⎣⎢⎡⎦⎥⎤0 1-1 0 ∴(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0 ⎣⎢⎡⎦⎥⎤-1 0 0 1=⎣⎢⎡⎦⎥⎤0 11 0. 答案 ⎣⎢⎡⎦⎥⎤0 11 0 4.函数y =x 2在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10014变换作用下的结果为________. 解析 ⎣⎢⎢⎡⎦⎥⎥⎤1 00 14 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ x 14y =⎣⎢⎡⎦⎥⎤x ′y ′⇒x =x ′,y =4y ′, 代入y =x 2,得y ′=14x ′2,即y =14x 2. 答案 y =14x 25.若A =⎣⎢⎡⎦⎥⎤1 56 2,则A 的特征值为________. 解析 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -5 -6 λ-2 =(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4. 答案 7和-4考点一 矩阵与变换【例1】 (2014·苏州市自主学习调查)已知a ,b 是实数,如果矩阵M =⎣⎢⎡⎦⎥⎤2a b 1所对应的变换将直线x -y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎡⎦⎥⎤2 a b1 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 所以⎩⎨⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′),在直线x +2y =1上,所以 (2+2b )x +(a +2)y =1,即⎩⎨⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.规律方法 理解变换的意义,掌握矩阵的乘法运算法则是求解的关键,利用待定系数法,构建方程是解决此类题的关键.【训练1】 已知变换S 把平面上的点A (3,0),B (2,1)分别变换为点A ′(0,3),B ′(1,-1),试求变换S 对应的矩阵T . 解 设T =⎣⎢⎡⎦⎥⎤a c bd ,则T :⎣⎢⎡⎦⎥⎤30→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤30=⎣⎢⎡⎦⎥⎤3a 3b =⎣⎢⎡⎦⎥⎤03,解得⎩⎨⎧a =0,b =1;T :⎣⎢⎡⎦⎥⎤21→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤2a +c 2b +d =⎣⎢⎡⎦⎥⎤ 1-1, 解得⎩⎨⎧c =1,d =-3,综上可知T =⎣⎢⎡⎦⎥⎤0 11 -3. 考点二 二阶逆矩阵与二元一次方程组【例2】 已知矩阵M =⎣⎢⎡⎦⎥⎤2 -31 -1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标.解 依题意得由M =⎣⎢⎡⎦⎥⎤2 -31 -1,得|M |=1, 故M -1=⎣⎢⎡⎦⎥⎤-13-12. 从而由⎣⎢⎡⎦⎥⎤2 -31 -1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤135得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-1-1 32⎣⎢⎢⎡⎦⎥⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤ 2-3,故⎩⎨⎧x =2,y =-3,∴A (2,-3)为所求. 规律方法 求逆矩阵时,可用定义法解方程处理,也可以用公式法直接代入求解.在求逆矩阵时要重视(AB )-1=B -1A -1性质的应用. 【训练2】 已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤21 32, (1)求矩阵A 的逆矩阵;(2)利用逆矩阵知识解方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0.解 (1)法一 设逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤a c b d , 则由⎣⎢⎢⎡⎦⎥⎥⎤2132⎣⎢⎢⎡⎦⎥⎥⎤a cb d =⎣⎢⎢⎡⎦⎥⎥⎤1001,得⎩⎨⎧2a +3c =1,2b +3d =0,a +2c =0,b +2d =1,解得⎩⎨⎧a =2,b =-3,c =-1,d =2,A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1-32. 法二 由公式知若A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d =⎣⎢⎢⎡⎦⎥⎥⎤2132,(2)已知方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0,可转化为⎩⎨⎧2x +3y =1,x +2y =3,即AX =B ,其中A =⎣⎢⎢⎡⎦⎥⎥⎤21 32,X =⎣⎢⎢⎡⎦⎥⎥⎤x y ,B =⎣⎢⎢⎡⎦⎥⎥⎤13,且由(1), 得A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32. 因此,由AX =B ,同时左乘A -1,有 A -1AX =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32⎣⎢⎢⎡⎦⎥⎥⎤13=⎣⎢⎢⎡⎦⎥⎥⎤-75. 即原方程组的解为⎩⎨⎧x =-7,y =5.考点三 求矩阵的特征值与特征向量【例3】 已知a ∈R ,矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1a21对应的线性变换把点P (1,1)变成点P ′(3,3),求矩阵A 的特征值以及每个特征值的一个特征向量. 解 由题意⎣⎢⎢⎡⎦⎥⎥⎤1a21 ⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤3a +1=⎣⎢⎢⎡⎦⎥⎥⎤33, 得a +1=3,即a =2,矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2 -2λ-1=(λ-1)2-4=(λ+1)(λ-3), 令f (λ)=0,所以矩阵A 的特征值为λ1=-1,λ2=3. ①对于特征值λ1=-1,解相应的线性方程组⎩⎨⎧ x +y =0,2x +2y =0得一个非零解⎩⎨⎧x =1,y =-1.因此,α=⎣⎢⎢⎡⎦⎥⎥⎤1-1是矩阵A 的属于特征值λ1=-1的一个特征向量; ②对于特征值λ2=3,解相应的线性方程组⎩⎨⎧2x -2y =0,-2x +2y =0得一个非零解⎩⎨⎧x =1,y =1.因此,β=⎣⎢⎢⎡⎦⎥⎥⎤11是矩阵A 的属于特征值λ2=3的一个特征向量. 规律方法 已知A =⎣⎢⎢⎡⎦⎥⎥⎤a cb d ,求特征值和特征向量,其步骤为: (1)令f (λ)=⎪⎪⎪⎪⎪⎪(λ-a )-c -b(λ-d )=(λ-a )(λ-d )-bc =0,求出特征值λ; (2)列方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应的向量.【训练3】 (2014·扬州质检)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤3-1-13,求M 的特征值及属于各特征值的一个特征向量.解 由矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-311λ-3= (λ-3)2-1=0,解得λ1=2,λ2=4,即为矩阵M 的特征值. 设矩阵M 的特征向量为⎣⎢⎡⎦⎥⎤x y ,当λ1=2时,由M ⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧-x +y =0,x -y =0.可令x =1,得y =1,∴α1=⎣⎢⎡⎦⎥⎤11是M 的属于λ1=2的特征向量.当λ2=4时,由M ⎣⎢⎡⎦⎥⎤x y =4⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧x +y =0,x +y =0,取x =1,得y =-1,∴α2=⎣⎢⎡⎦⎥⎤1-1是M 的属于λ2=4的特征向量.用坐标转移的思想求曲线在变换作用下的新方程【典例】 二阶矩阵M 对应的变换T 将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在变换T 作用下得到了直线m :x -y =4,求l 的方程.[审题视点] (1)变换前后的坐标均已知,因此可以设出矩阵,用待定系数法求解. (2)知道直线l 在变换T 作用下的直线m ,求原直线,可用坐标转移法. 解 (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1, ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1 23 4. (2)因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y 且m :x ′-y ′=4, 所以(x +2y )-(3x +4y )=4,即x +y +2=0,∴直线l 的方程是x +y +2=0.[反思感悟] (1)本题考查了求变换矩阵和在变换矩阵作用下的曲线方程问题,题目难度属中档题.(2)本题突出体现了待定系数法的思想方法和坐标转移的思想方法 .(3)本题的易错点是计算错误和第(2)问中坐标转移的方向错误. 【自主体验】(2014·南京金陵中学月考)求曲线2x 2-2xy +1=0在矩阵MN 对应的变换作用下得到的曲线方程,其中M =⎣⎢⎢⎡⎦⎥⎥⎤10 02,N =⎣⎢⎢⎡⎦⎥⎥⎤ 1-101. 解 MN =⎣⎢⎢⎡⎦⎥⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤ 1-101=⎣⎢⎢⎡⎦⎥⎥⎤ 1-202. 设P (x ′,y ′)是曲线2x 2-2xy +1=0上任意一点,点P 在矩阵MN 对应的变换下变为点P ′(x ,y ), 则⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ 1-202⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤ x ′-2x ′+2y ′, 于是x ′=x ,y ′=x +y2,代入2x ′2-2x ′y ′+1=0,得xy =1.所以曲线2x 2-2xy +1=0在MN 对应的变换作用下得到的曲线方程为xy =1.一、填空题1.已知变换T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤3x +4y 5x +6y ,则该变换矩阵为________. 解析 ⎩⎪⎨⎪⎧x ′=3x +4y ,y ′=5x +6y ,可写成⎣⎢⎡⎦⎥⎤3 45 6⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′. 答案 ⎣⎢⎡⎦⎥⎤3 45 6 2.计算⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤2-1等于________. 解析 ⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎢⎡⎦⎥⎥⎤3×2-75×2-8=⎣⎢⎡⎦⎥⎤-1 2. 答案 ⎣⎢⎡⎦⎥⎤-1 23.矩阵⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为________. 解析 ⎣⎢⎡⎦⎥⎤5 00 1=5,∴⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1 4.若矩阵A =⎣⎢⎡⎦⎥⎤3 a b 13把直线l :2x +y -7=0变换成另一直线l ′:9x +y -91=0,则a =________,b =________. 解析 取l 上两点(0,7)和(3.5,0),则⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤7a 91,⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤3.5 0=⎣⎢⎡⎦⎥⎤10.53.5b . 由已知(7a,91),(10.5,3.5b )在l ′上,代入得a =0,b =-1. 答案 0 -15.矩阵M =⎣⎢⎡⎦⎥⎤6 -36 -3的特征值为________. 解析 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-6 3-6 λ+3=(λ-6)(λ+3)+18=0. ∴λ=0或λ=3. 答案 0或3 6.已知矩阵M =⎣⎢⎡⎦⎥⎤1234,α=⎣⎢⎡⎦⎥⎤12,β=⎣⎢⎡⎦⎥⎤ 0-3,则M (2α+4β)=________.解析 2α+4β=⎣⎢⎡⎦⎥⎤24+⎣⎢⎡⎦⎥⎤ 0-12=⎣⎢⎡⎦⎥⎤ 2-8,M (2α+4β)=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤ 2-8=⎣⎢⎢⎡⎦⎥⎥⎤-14-26.答案 ⎣⎢⎡⎦⎥⎤-14-26 7.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤121的作用下变换为曲线C 2,则C 2的方程为________.解析 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎢⎢⎡⎦⎥⎥⎤10 21⎣⎢⎢⎡⎦⎥⎥⎤x ′ y ′=⎣⎢⎢⎡⎦⎥⎥⎤x y ,即⎩⎪⎨⎪⎧ x =x ′+2y ′,y =y ′⇒⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y . 因为P ′是曲线C 1上的点, 所以C 2的方程为(x -2y )2+y 2=1. 答案 (x -2y )2+y 2=18.已知矩阵A =⎣⎢⎡⎦⎥⎤2 -1-4 3,B =⎣⎢⎡⎦⎥⎤4 -1-3 1,则满足AX =B 的二阶矩阵X 为________.解析 由题意,得A -1= AX =B , ∴X =A -1B =. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤92 -1 5 -1 9.已知矩阵A 将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是⎣⎢⎢⎡⎦⎥⎥⎤11,则矩阵A 为________.解析 设A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d ,由⎣⎢⎢⎡⎦⎥⎥⎤a c b d ⎣⎢⎢⎡⎦⎥⎥⎤10=⎣⎢⎢⎡⎦⎥⎥⎤23,得⎩⎪⎨⎪⎧a =2,c =3. 由⎣⎢⎢⎡⎦⎥⎥⎤a cb d ⎣⎢⎢⎡⎦⎥⎥⎤11=3⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤33,得⎩⎪⎨⎪⎧ a +b =3,c +d =3.所以⎩⎪⎨⎪⎧b =1,d =0.所以A =⎣⎢⎢⎡⎦⎥⎥⎤23 10.答案 ⎣⎢⎢⎡⎦⎥⎥⎤23 10 二、解答题10.(2012·江苏卷)已知矩阵A 的逆矩阵A -1=错误!,求矩阵A 的特征值. 解 因为AA -1=E ,所以A =(A -1)-1.因为A -1=错误!,所以A =(A -1)-1=错误!, 于是矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-2 -3λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4. 11.已知矩阵A =⎣⎢⎡⎦⎥⎤ 1a -1b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21.(1)求矩阵A ;(2)若向量β=⎣⎢⎡⎦⎥⎤74,计算A 5β的值.解 (1)A =⎣⎢⎡⎦⎥⎤1 2-1 4. (2)矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6=0,得λ1=2,λ2=3,当λ1=2时,α1=⎣⎢⎡⎦⎥⎤21,当λ2=3时,得α2=⎣⎢⎡⎦⎥⎤11.由β=m α1+n α2,得⎩⎨⎧2m +n =7,m +n =4,解得m =3,n =1.∴A 5β=A 5(3α1+α2)=3(A 5α1)+A5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎡⎦⎥⎤21+35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤435339.12.(2012·福建卷)设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a0b1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1. (1)求实数a ,b 的值; (2)求A 2的逆矩阵.解 (1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的像是P ′(x ′,y ′). 由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 0b1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ ax bx +y ,得⎩⎨⎧x ′=ax ,y ′=bx +y .又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1, 即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1,依题意得⎩⎨⎧ a 2+b 2=2,2b =2,解得⎩⎨⎧ a =1,b =1或⎩⎨⎧a =-1,b =1.因为a >0,所以⎩⎨⎧a =1,b =1.(2)由(1)知,A =⎣⎢⎡⎦⎥⎤1011,A 2=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 01 1=⎣⎢⎡⎦⎥⎤1 02 1. 所以|A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤10-21.。
第二节 矩阵的逆矩阵、特征值与特征向量1.矩阵的逆矩阵(1)一般地,设ρ是一个线性变换,如果存在线性变换σ,使得σρ=ρσ=I ,则称变换ρ可逆,并且称σ是ρ的逆变换.(2)设A 是一个二阶矩阵,如果存在二阶矩阵B ,使得BA =AB =E ,则称矩阵A 可逆,或称矩阵A 是可逆矩阵,并且称B 是A 的逆矩阵.(3)(性质1)设A 是一个二阶矩阵,如果A 是可逆的,则A 的逆矩阵是唯一的,A 的逆矩阵记为A -1.(4)(性质2)设A ,B 是二阶矩阵,如果A ,B 都可逆,则AB 也可逆,且(AB )-1=B -1A-1.(5)二阶矩阵A =⎣⎢⎡⎦⎥⎤a b cd 可逆,当且仅当det A =ad -bc ≠0时,A -1=⎣⎢⎡⎦⎥⎤d det A -b det A -c det A a det A . 2.二阶行列式与方程组的解对于关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n ,我们把⎪⎪⎪⎪⎪⎪a b c d 称为二阶行列式,它的运算结果是一个数值,记为det A =⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若将方程组中行列式⎪⎪⎪⎪⎪⎪ab cd 记为D ,⎪⎪⎪⎪⎪⎪m b n d 记为D x ,⎪⎪⎪⎪⎪⎪a m c n 记为D y,则当D ≠0时,方程组的解为⎩⎨⎧x =D x D.y =DyD .3.矩阵特征值、特征向量的相关概念 (1)定义:设矩阵A =⎣⎢⎡⎦⎥⎤a b cd ,如果存在实数λ以及非零向量ξ,使得A ξ=λξ,则称λ是矩阵A 的一个特征值,ξ是矩阵A 的属于特征值λ的一个特征向量.(2)一般地,设ξ是矩阵A 的属于特征值λ的一个特征向量,则对任意的非零常数k ,kξ也是矩阵A 的属于特征值λ的特征向量.(3)一般地,属于矩阵的不同特征值的特征向量不共线. (4)设矩阵A =⎣⎢⎡⎦⎥⎤a b cd ,称f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A 的特征多项式,方程⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0为矩阵A 的特征方程.4.特征向量的应用(1)设A 是一个二阶矩阵,α是矩阵A 的属于特征值λ的任意一个特征向量,则A n α=λn α(n ∈N *).(2)性质1 设λ1,λ2是二阶矩阵A 的两个不同特征值,ξ1,ξ2是矩阵A 的分别属于特征值λ1,λ2的特征向量,对于任意的非零平面向量α,设α=t 1ξ1+t 2ξ2(其中t 1,t 2为实数),则对任意的正整数n ,有A n α=t 1λn 1ξ1+t 2λn2ξ2.1.矩阵⎣⎢⎡⎦⎥⎤0 -11 0的逆矩阵是________.答案:⎣⎢⎡⎦⎥⎤0 1-12.若矩阵⎣⎢⎡⎦⎥⎤2 35 k 可逆,则k 的值不可能是________.答案:1523.若矩阵A =⎣⎢⎡⎦⎥⎤2 1-a 21 a +1不可逆,则实数a 的值为________.解析:由题意|A |=⎪⎪⎪⎪⎪⎪⎪⎪2 1-a 21 a +1 =2×(a +1)-1×(1-a 2)=a 2+2a +1=0,∴a =-1.答案:-14.对任意实数x ,矩阵⎣⎢⎡⎦⎥⎤x 3+m 2-m 2总存在特征向量,则m 的取值范围是________.解析:由条件得f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-x -3-m m -2 λ-2 =(λ-x )(λ-2)-(m -2)(-3-m )=λ2-(x +2)λ+2x +(m +3)(m -2)=0有实数根,所有Δ1=(x +2)2-4(2x +m 2+m -6)≥0对任意实数x 恒成立, 所以Δ2=16+4(4m 2+4m -28)≤0, 解得m 的取值范围是-3≤m ≤2. 答案:-3≤m ≤2.5.已知矩阵M 的特征值λ1=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并有特征值λ2=2及对应的一个特征向量e 2=⎣⎢⎡⎦⎥⎤1-2.则矩阵M =________.解析:设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤88, 故⎩⎪⎨⎪⎧a +b =8,c +d =8,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-2=2⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤2-4,故⎩⎪⎨⎪⎧a -2b =2,c -2d =-4,联立以上两个方程组解得a =6,b =2,c =4,d =4,故M =⎣⎢⎡⎦⎥⎤6 24 4.答案:⎣⎢⎡⎦⎥⎤6244例1 求矩阵A =⎣⎢⎡⎦⎥⎤3 221的逆矩阵.【解析】 法一:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤x y z w ,则⎣⎢⎡⎦⎥⎤3 22 1 ⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 00 1, 即⎣⎢⎢⎡⎦⎥⎥⎤3x +2z 3y +2w 2x +z 2y +w =⎣⎢⎡⎦⎥⎤1 00 1, 故⎩⎪⎨⎪⎧ 3x +2z =1,2x +z =0,且⎩⎪⎨⎪⎧3y +2w =0,2y +w =1,解得x =-1,z =2,y =2,w =-3,从而矩阵A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 2 2 -3. 法二:∵A =⎣⎢⎡⎦⎥⎤3 22 1,∴det A =-1.∴A -1=⎝ ⎛⎭⎪⎪⎫1-1 -2-1-2-1 3-1=⎣⎢⎢⎡⎦⎥⎥⎤-1 22 -3.【点评】 方法一是待定系数法;方法二是公式法.1.已知变换矩阵A 把平面上的点P (2,-1)、Q (-1,2)分别变换成点P 1(3,-4)、Q 1(0,5). (1)求变换矩阵A ;(2)判断变换矩阵A 是否可逆,如果可逆,求矩阵A 的逆矩阵A -1:如不可逆,请说明理由.【解析】 (1)假设所求的变换矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,依题意,可得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎡⎦⎥⎤ 3-4及⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤05,即⎩⎪⎨⎪⎧ 2a -b =3,2c -d =-4,-a +2b =0,-c +2d =5,解得:⎩⎪⎨⎪⎧a =2,b =1,c =-1,d =2所以所求的变换矩阵A =⎣⎢⎡⎦⎥⎤2 1-1 2(2)∵det A =2×2-(-1)×1=5, ∴A 可逆A -1=⎝ ⎛⎭⎪⎪⎫25 -15-1(-1)525=⎝ ⎛⎭⎪⎪⎫251-51525.步骤-求⎣⎢⎡⎦⎥⎤a 1 b 1a 2 b 2的逆矩阵-求方程组的解例2 (1)求矩阵A =⎣⎢⎡⎦⎥⎤2 31 2的逆矩阵;(2)利用逆矩阵知识,解方程组⎩⎪⎨⎪⎧2x +3y -1=0,x +2y -3=0.【解析】 (1)法一:设矩阵A 的逆矩阵为A -1=⎣⎢⎡⎦⎥⎤a b cd ,则由⎣⎢⎡⎦⎥⎤2 31 2 ⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 001,知⎩⎪⎨⎪⎧ 2a +3c =1,2b +3d =0,a +2c =0,b +2d =1.解之得⎩⎪⎨⎪⎧a =2,b =-3,c =-1,d =2.∴A -1=⎣⎢⎡⎦⎥⎤2 -3-1 2.法二:∵A =⎣⎢⎡⎦⎥⎤2 31 2, ∴|A |=4-3=1,∴A-1=⎣⎢⎢⎡⎦⎥⎥⎤21 -31-11 21=⎣⎢⎢⎡⎦⎥⎥⎤2 -3-12.(2)二元一次方程组的系数矩阵为A =⎣⎢⎡⎦⎥⎤2 31 2,由(1)知A -1=⎣⎢⎢⎡⎦⎥⎥⎤ 2 -3-1 2. 因此方程⎩⎪⎨⎪⎧2x +3y =1,x +2y =3有唯一解⎣⎢⎡⎦⎥⎤x y =A -1⎣⎢⎡⎦⎥⎤13. ∴⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ 2 -3-1 2 ⎣⎢⎡⎦⎥⎤13=⎣⎢⎡⎦⎥⎤-7 5.即⎩⎪⎨⎪⎧x =-7,y =5. 【点评】 二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2(a 1,b 1不同时为零,a 2,b 2不同时为零)的系数矩阵为A =⎣⎢⎡⎦⎥⎤a 1 b 1a 2 b 2,只有当|A |≠0时,方程组有唯一解A -1⎣⎢⎡⎦⎥⎤c 1c 2,若|A |=0,则方程组有无数解或无解.2.用矩阵方法求解二元一次方程组⎩⎪⎨⎪⎧2x +y =8,4x -5y =2.解析:原方程组可以写成⎣⎢⎡⎦⎥⎤2 14 -5⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤82,记M =⎣⎢⎡⎦⎥⎤2 14 -5,其行列式⎪⎪⎪⎪⎪⎪2 14 -5=2×(-5)-1×4=-14≠0,∴M -1=⎣⎢⎡⎦⎥⎤514 11427-17. ∴⎣⎢⎡⎦⎥⎤x y =M -1⎣⎢⎡⎦⎥⎤82=⎣⎢⎡⎦⎥⎤32,即方程组的解为⎩⎪⎨⎪⎧x =3,y =2例3 给定矩阵A =⎣⎢⎡⎦⎥⎤1 2-14,B =⎣⎢⎡⎦⎥⎤32.(1)求A 的特征值λ1,λ2及对应特征向量α1,α2;(2)求A 4B .【解析】 (1)设A 的一个特征值为λ,由题意知:⎣⎢⎢⎡⎦⎥⎥⎤λ-1 -21 λ-4=0,即(λ-2)(λ-3)=0,解得λ1=2,λ2=3,当λ1=2时,由⎣⎢⎡⎦⎥⎤1 2-1 4⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值2的特征向量α1=⎣⎢⎡⎦⎥⎤21; 当λ2=3时,由⎣⎢⎡⎦⎥⎤1 2-1 4⎣⎢⎡⎦⎥⎤x y =3⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值3的特征向量α2=⎣⎢⎡⎦⎥⎤11(2)由于B =⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤21+⎣⎢⎡⎦⎥⎤11=α1+α2.故A 4B =A 4(α1+α2)=(24α1)+(34α2)=16α1+81α2=⎣⎢⎡⎦⎥⎤3216+⎣⎢⎡⎦⎥⎤8181=⎣⎢⎡⎦⎥⎤11397. 【点评】 求矩阵的特征值及对应的特征向量是矩阵与变换的重点和难点,解决此类问题首先要利用行列式求出特征徝,然后求出相应的特征向量.请注意每一个特征值对应无数个特征向量,选择坐标为整数的解就能使后面计算简单、方便.3.已知矩阵A =⎣⎢⎡⎦⎥⎤3 3c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量α2=⎣⎢⎡⎦⎥⎤3-2,求矩阵A ,并写出A 的逆矩阵.解析:由矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11可得,⎣⎢⎡⎦⎥⎤3 3c d ⎣⎢⎡⎦⎥⎤11=6⎣⎢⎡⎦⎥⎤11,即c +d =6;由矩阵A 属于特征值1的一个特征向量α2=⎣⎢⎡⎦⎥⎤3-2,可得⎣⎢⎡⎦⎥⎤3 3c d ⎣⎢⎡⎦⎥⎤ 3-2=⎣⎢⎡⎦⎥⎤ 3-2,即3c -2d =-2, 解得⎩⎪⎨⎪⎧c =2,d =4,即A =⎣⎢⎡⎦⎥⎤3 32 4.A 的逆矩阵是⎣⎢⎡⎦⎥⎤23 -12-13 12.一、填空题 1.已知A =⎣⎢⎡⎦⎥⎤1 3a6可逆,则实数a 的取值范围是________.解析:矩阵A 可逆当且仅当det(A )≠0, 即6-3a ≠0,∴a ≠2,∴a 的取值范围为(-∞,2)∪(2,+∞). 答案:(-∞,2)∪(2,+∞)2.设矩阵M =⎣⎢⎡⎦⎥⎤12 3232 -12,则矩阵M 的特征向量可以是________.解析:矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-12 -32-32 λ+12=λ2-1.由于f (λ)=0得矩阵M 的特征值为 λ1=1,λ2=-1.经计算可得,矩阵M 属于特征值λ=1的一个特征向量为⎣⎢⎡⎦⎥⎤31,而属于特征值λ=-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-3.答案:⎣⎢⎡⎦⎥⎤1-33.设可逆矩阵A =⎣⎢⎡⎦⎥⎤a 34 5的逆矩阵A -1=⎣⎢⎡⎦⎥⎤b c a -1,则a =________,b =________,c =________.解析:由AA -1=E得⎣⎢⎢⎡⎦⎥⎥⎤ab +3a ac -34b +5a 4c -5=⎣⎢⎡⎦⎥⎤1 00 1, 即⎩⎪⎨⎪⎧ac =3,4b +5a =0,4c -5=1,ab +3a =1解方程组得a =2,b =-52,c =32.答案:2 -52 324.已知二元一次方程组⎩⎨⎧22x -22y =-1,22x +22y =1,从线性变换的角度求解时应把向量⎣⎢⎡⎦⎥⎤-1 1绕原点作顺时针旋转________的旋转变换.解析:因为方程组⎩⎨⎧22x -22y =-1,22x +22y =1,的矩阵形式是⎣⎢⎡⎦⎥⎤22 -222222⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-1 1,它是把向量⎣⎢⎡⎦⎥⎤x y 绕原点作逆时针旋转π4变换得到⎣⎢⎡⎦⎥⎤-11,所以解方程组就是把向量⎣⎢⎡⎦⎥⎤-1 1绕原点作顺时针旋转π4的旋转变换.答案:π45.A =⎣⎢⎡⎦⎥⎤1 -10 1 ⎣⎢⎡⎦⎥⎤12-3232 12,则A -1=________.解析:A =⎣⎢⎡⎦⎥⎤1-101 ⎣⎢⎡⎦⎥⎤12 -3232 12=⎣⎢⎢⎡⎦⎥⎥⎤1-32-1-323212, ∵|A |=1-32×12--1-32×32=1≠0.∴A -1=⎣⎢⎢⎡⎦⎥⎥⎤12 1+32-32 1-32. 答案:⎣⎢⎢⎡⎦⎥⎥⎤12 1+32-32 1-326.现用矩阵对信息进行加密后传递,规定英文字母数字化为:a →1,b →2,…,z →26,双方约定的矩阵为⎣⎢⎡⎦⎥⎤1 402,发送方传递的密码为67,30,31,8,此组密码所发信息为________.解析:因为A =⎣⎢⎡⎦⎥⎤1 40 2,所以det A =⎪⎪⎪⎪⎪⎪1 40 2=2≠0,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -20 12,而密码矩阵为B =⎣⎢⎡⎦⎥⎤67 3130 8,故明码矩阵X =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤1 -20 12 ⎣⎢⎡⎦⎥⎤67 3130 8=⎣⎢⎡⎦⎥⎤7 1515 4,对应信息为“good ”.答案:good7.矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤-1252 3的特征值与特征向量分别为________. 解析:由⎪⎪⎪⎪⎪⎪⎪⎪λ+1 -2-52 λ-3=(λ+1)(λ-3)-(-2)(-52)=λ2-2λ-8=0,得矩阵M 的特征值为λ1=4,λ2=-2.设属于特征值λ1=4的特征向量为⎣⎢⎡⎦⎥⎤x y ,则它满足方程(λ1+1)x +(-2)y =0,即5x -2y =0.故可取⎣⎢⎡⎦⎥⎤25为属于特征值λ1=4的一个特征向量. 设属于特征值λ2=-2的特征向量为⎣⎢⎡⎦⎥⎤x y ,同理可得x +2y =0.故可取⎣⎢⎡⎦⎥⎤-2 1为属于特征值λ2=-2的一个特征向量.综上所述,矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤-1252 3有两个特征值λ1=4,λ2=-2,属于λ1=4的一个特征向量为α1=⎣⎢⎡⎦⎥⎤25;属于λ2=-2的一个特征向量为α2=⎣⎢⎡⎦⎥⎤-2 1. 答案:λ1=4,α1=⎣⎢⎡⎦⎥⎤25和λ2=-2,α2=⎣⎢⎡⎦⎥⎤-2 1 8.已知矩阵A =⎣⎢⎡⎦⎥⎤2 -1-4 3,B =⎣⎢⎡⎦⎥⎤4 -1-3 1,则满足方程AX =B 的二阶矩阵X =________. 解析:∵A =⎣⎢⎢⎡⎦⎥⎥⎤2 -1-4 3, ∴|A |=⎪⎪⎪⎪⎪⎪⎪⎪2 -1-4 3=2×3-(-1)×(-4)=2≠0. ∴A -1=⎣⎢⎢⎡⎦⎥⎥⎤32 122 1.∵AX =B ,∴X =A -1B , ∴X =⎣⎢⎢⎡⎦⎥⎥⎤32 122 1⎣⎢⎢⎡⎦⎥⎥⎤4 -1-3 1=⎣⎢⎢⎡⎦⎥⎥⎤92 -15 -1.答案:⎣⎢⎢⎡⎦⎥⎥⎤92 -15 -1 二、解答题9.已知矩阵A =⎣⎢⎡⎦⎥⎤1 2-2 -3,B =⎣⎢⎡⎦⎥⎤2 31 2,C =⎣⎢⎡⎦⎥⎤0 11 0,求满足AXB =C 的矩阵X .解析:AXB =C ,所以(A -1A )XB ·B -1=A -1CB -1而A -1AXB·B -1=EXBB -1=X (BB -1)=X ,所以X =A -1CB -1因为A -1=⎣⎢⎡⎦⎥⎤-3 -22 1, B -1=⎣⎢⎢⎡⎦⎥⎥⎤2 -3-1 2, 所以X =A -1CB -1=⎣⎢⎡⎦⎥⎤-3 -22 1⎣⎢⎡⎦⎥⎤0 11 0⎣⎢⎢⎡⎦⎥⎥⎤2 -3-1 2 =⎣⎢⎡⎦⎥⎤-2 -31 2⎣⎢⎢⎡⎦⎥⎥⎤2 -3-1 2 =⎣⎢⎡⎦⎥⎤-1 00 1. 10.已知矩阵A =⎣⎢⎡⎦⎥⎤624 4.(1)求矩阵A 的特征值及对应的特征向量;(2)计算矩阵A n .解析:(1)矩阵A 的特征方程为⎪⎪⎪⎪⎪⎪⎪⎪λ-6 -2-4 λ-4=(λ-6)(λ-4)-8=λ2-10λ+16=0. 得矩阵A 的特征值为λ1=8,λ2=2.当λ1=8时,A 属于λ1的特征向量为α1=⎣⎢⎡⎦⎥⎤11;当λ2=2时,A 属于λ2的特征向量为α2=⎣⎢⎡⎦⎥⎤ 1-2. (2)设A n =⎣⎢⎡⎦⎥⎤a b c d A n α1=8n α1,A n α2=2n α2,即⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤8n 8n ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤ 2n-2·2n , 即⎩⎪⎨⎪⎧a +b =8nc +d =8n a -2b =2n c -2d =-2·2n 解得a =2×8n +2n 3,b =8n -2n 3, c =2×8n -2n +13,d =8n +2n +13. 故A n =⎣⎢⎢⎡⎦⎥⎥⎤2×8n +2n 3 8n -2n 32×8n -2n +13 8n +2n +13. 11.给定矩阵M =⎣⎢⎡⎦⎥⎤23 -13-13 23,N =⎣⎢⎡⎦⎥⎤2 11 2,向量α=⎣⎢⎡⎦⎥⎤ 1-1.(1)求证:M 和N 互为逆矩阵;(2)求证:向量α同时是M 和N 的特征向量;(3)指出矩阵M 和N 的一个公共特征值.解析:(1)证明:因MN =⎣⎢⎡⎦⎥⎤23 -13-13 23⎣⎢⎡⎦⎥⎤2 11 2=⎣⎢⎡⎦⎥⎤1 00 1,且NM =⎣⎢⎡⎦⎥⎤211 2⎣⎢⎡⎦⎥⎤23 -13-13 23=⎣⎢⎡⎦⎥⎤1 00 1,所以M 和N 互为逆矩阵.(2)证明:因为Mα=⎣⎢⎡⎦⎥⎤23 -13-13 23⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤ 1-1, 所以α是N 的特征向量.因为Nα=⎣⎢⎡⎦⎥⎤2 11 2⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤ 1-1, 所以α是N 的特征向量. (3)由(2)知,M 对应于特征向量⎣⎢⎡⎦⎥⎤ 1-1的特征值为1,N 对应于特征向量⎣⎢⎡⎦⎥⎤ 1-1的特征值也为1,故1是矩阵M 和N 的一个公共特征值.12.(2011年福建)设矩阵M =⎝ ⎛⎭⎪⎫a00 b (其中a >0,b >0)①若a =2,b =3,求M 的逆矩阵M -1;②若曲线C :x 2+y 2=1,在矩阵M 所对应的线性变换作用下得到曲线C ′:x 24+y 2=1,求a ,b 的值. 解析:①设M -1=⎣⎢⎡⎦⎥⎤x 1 y 1x 2 y 2,则MM -1=⎣⎢⎡⎦⎥⎤1 00 1又M =⎣⎢⎡⎦⎥⎤2 00 3,∴⎣⎢⎡⎦⎥⎤2 00 3⎣⎢⎡⎦⎥⎤x 1 y 1x 2 y 2=⎣⎢⎡⎦⎥⎤1 00 1. ∴2x 1=1,2y 1=0,3x 2=0,3y 2=1.即x =12,y 1=0,x 2=0,y 2=13. ∴M -1=⎝ ⎛⎭⎪⎫1200 13. ②设C 上任一点P (x ,y ),在M 作用下得点P ′(x ′,y ′)则⎣⎢⎡⎦⎥⎤a 00 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,∴⎩⎪⎨⎪⎧ax =x ′by =y ′又点P ′(x ′,y ′)在C ′上,所以x ′24+y ′2=1. 即a 2x 24+b 2y 2=1为曲线C 的方程. 又C 的方程为x 2+y 2=1,∴⎩⎪⎨⎪⎧ a 2=4,b 2=1.又a >0,b >0,所以⎩⎪⎨⎪⎧ a =2,b =1.。
选修4-2矩阵与变换 2.1.1 矩阵的概念编写人: 编号:001学习目标1、 了解矩阵的产生背景,并会用矩阵形式表示一些实际问题。
2、 了解矩阵的相关知识,如行、列、元素、零矩阵的意义和表示。
学习过程:一、预习:(一)阅读教材,解决下列问题:问题1:已知向量OP ,O(0,0),P(1,3).因此把)3,1(=OP ,如果把OP 的坐标排成一列,可简记为 。
问题2:某电视台举办歌唱比赛,甲乙两名选手初、复赛成绩如下表,并简记为问题3:将方程组⎩⎨⎧=+-=++2423132z y x mz y x 中未知数z y x ,,的系数按原来的次序排列,并简记为(二)建构数学1. 矩阵:我们把形如⎥⎦⎤⎢⎣⎡31,⎥⎦⎤⎢⎣⎡85609080,⎥⎦⎤⎢⎣⎡-42332m 这样的矩形数字阵列称为矩阵。
用大写黑体拉丁字母A,B,…来表示矩阵2. 矩阵的行:3. 矩阵的列:4. 矩阵的元素:5. 零矩阵:6. 行矩阵:7.列矩阵:练习征?问该图形有什么几何特表示平面中的图形,请现用矩阵⎥⎦⎤⎢⎣⎡=02204310M 二、课堂训练:例1.用矩阵表示ABC ∆,其中A(-1,0),B(0,2),C(2,0)例2.某种水果的产地为21,A A ,销地为21,B B ,请用矩阵表示产地i A 运到销地j B 水果数量)(ij a ,其中,2,1,2,1==j i例3.已知⎥⎦⎤⎢⎣⎡-=243x A ,⎥⎦⎤⎢⎣⎡-=21z y B ,若A=B ,试求z y x ,,例4.的量。
两矿区向三个城市送煤万吨。
请用矩阵表示从万吨、万吨、送煤的量分别是万吨;从乙矿区向城市万吨、万吨、是送煤的量分别矿区向城市向三个城市送煤:从甲某公司负责从两个矿区820360400,,160240200,,C B A C B A三、课后巩固:1、写出方程组⎩⎨⎧-=+=-2312my x y x 变量x,y 的系数矩阵.2、已知⎥⎦⎤⎢⎣⎡+=c b d a A 23,⎥⎦⎤⎢⎣⎡++=d a c b B 245,若A=B ,求a ,b ,c ,d.3、“两个矩阵的行数和列数相等”是“两个矩阵相等”的( )A 、充分不必要条件B 、必要不充分条件是C 、充要条件D 、既不充分又不必要条件4、已知⎥⎦⎤⎢⎣⎡b a 2000是一个正三角形的三个顶点坐标所组成的矩阵,求a ,b.5. 已知⎥⎦⎤⎢⎣⎡--+-=1sin cos sin cos 1ββααA ,⎥⎦⎤⎢⎣⎡--=1221B 若A=B ,求α,β.。
第 1 页共 21 页选修 4- 2矩阵与变换第一节平面变换、变换的复合与矩阵的乘法1.二阶矩阵与平面向量(1) 矩阵的概念在数学中,把形如123134,1,20这样的矩形数字 (或字母 )阵列称为矩阵,其35- 1中,同一横排中按原来次序排列的一行数(或字母 )叫做矩阵的行,同一竖排中按原来次序排列的一列数 (或字母 )叫做矩阵的列,而组成矩阵的每一个数(或字母 )称为矩阵的元素.(2)二阶矩阵与平面列向量的乘法① [a 11a12 ]b11= [ a11×b11+ a 12×b 21 ] ;b21②a11a12x0=a11× x0+ a12× y0.a21a22 y0a21× x0+ a22× y02.几种常见的平面变换10(1) 当 M =时,则对应的变换是恒等变换.01(2)k010由矩阵 M =或 M =(k>0) 确定的变换 T M称为 (垂直 )伸压变换.01k(3)反射变换是轴对称变换、中心对称变换的总称.cos θ - sin θ(4) 当 M =时,对应的变换叫旋转变换,即把平面图形(或点 )逆时针旋转sin θcos θθ角度.(5)将一个平面图投影到某条直线 (或某个点 )的变换称为投影变换.1k10 (6) 由矩阵 M =或 M =k 确定的变换称为切变变换.011 3.矩阵的乘法一般地,对于矩阵a11a12b11b12M =a22, N=,规定乘法法则如下:a21b21b2211 12 11 12a bbb ba ab b11 11+ a 12 21a 11 12+ a 12 22MN =a 22b 21=a 21b 11+ a 22b 21.a 21 b22a 21b 12+ a 22b 224.矩 乘法的几何意(1) 的复合:在数学中,一一 的平面几何 常可以看做是伸 、反射、旋 、切 的一次或多次复合,而伸 、反射、切 等 通常叫做初等 ; 的矩 叫做初等 矩 .(2)MN 的几何意 : 向量x 矩 乘法α= 施的两次几何 (先 T N 后 T M )y的复合 .·(3) 当 向量 施 n ( n > 1 且 n ∈ N * )次 T M , 地我M n = M ·M ·⋯ ·M .5.矩 乘法的运算性(1) 矩 乘法不 足交 律于二 矩A ,B 来 ,尽管 AB , BA 均有意 ,但可能 AB ≠BA .(2) 矩 乘法 足 合律A ,B ,C 二 矩 , 一定有(AB)C = A(BC).(3) 矩 乘法不 足消去律.A ,B ,C 二 矩 ,当 AB = AC ,可能 B ≠C. [ 小 体 ]1 8 1 x1.已知矩 A =3,矩 B =.若 A =B , x + y = ________.2y 3解析: 因 A = B ,x = 8, + =10.所以y = 2,x y答案: 102.已知x x ′2x + 3y , 它所 的 矩 ________.y→=y ′x + yxx ′ 2 3 x解析: 将它写成矩 的乘法形式→′ =1 ,所以它所 的 矩y1yy2 3 1 .12 3答案:111.矩 的乘法 着 的复合,而两个 的复合仍是一个 ,且两个 的复合 程是有序的,易 倒.2.矩阵乘法不满足交换律和消去律,但满足结合律.[ 小题纠偏 ]1 2 , B =4 2 1.设 A =4k ,若 AB = BA ,则实数 k 的值为 ________.37解析: AB =1 24 2 =4+ 2k163 4k 7,12+ 4k 3442 1 21016BA = k7 34 = ++ 28,k 21 2k 因为 AB = BA ,故 k = 3.答案: 32.已知 A =1 0 , B =- 1 0- 1 00 0 0 1, C =,计算 AB , AC.0 - 1解: AB =1 0 - 1 0- 1 00 1 =,1 0 - 10 - 1 0 . AC =0 0- 1= 0 0 0考点一二阶矩阵的运算 基础送分型考点 —— 自主练透[ 题组练透 ]1 11 11.已知 A =2 2,计算 A 2, B 2.1 , B = - 1- 1 1221 1 11 1 1 解: A 2=2 2 2 2 2 2 . 1 1 1 =1 1 12 2222 21111B 2=- 1 - 1 - 1 =.- 12.(2014 江·苏高考 )已知矩阵 A =- 1 211 21 ,B =,向量 α= ,x ,y 为实数. 若x2- 1 yA α=B α,求 x + y 的值.解: 由已知,得 A α= - 12 2 = - 2+ 2y , α= 11 2 = 2+ y y2 - 1 y1 x 2+ xy4- y第 4 页共 21 页因为 A α= B α,所以 - 2+ 2y2+ y=,2+ xy 4- y- 2+ 2y = 2+ y ,故2+ xy =4- y.x =- 12,所以 x + y = 7 解得2.y = 4.3.已知矩阵 A =1 0 - 4 3 31 , B = 4 - 2且 α= ,试判断 (AB)α与 A(B α)的关系.2 4解: 因为 AB =1 0- 43 -4 31 2= ,4 - 2 4 - 1- 43 3所以 (AB)α=- 1 4= ,48 因为 B α=-433 =0 ,4 - 2441 0 0 0A(B α)=24=. 18所以 (AB)α= A(B α).[ 谨记通法 ]1.矩阵的乘法规则两矩阵 M , N 的乘积 C = MN 是这样一个矩阵;(1) C 的行数与 M 的相同,列数与 N 的相同;(2) C 的第 i 行第 j 列的元素C ij 由 M 的第 i 行与 N 的第 j 列元素对应相乘求和得到. [ 提醒 ] 只有 M 的行数与 N 的列数相同时,才可以求MN ,否则无意义.2.矩阵的运算律(1) 结合律 (AB)C = A(BC);(2) 分配律 A(B ±C)= AB ±AC , (B ±C)A = BA ±CA ;(3) λ(AB)= (λA )B = A( λB ).考点二平面变换的应用重点保分型考点 —— 师生共研[ 典例引领 ]2 - 2 2 2已知曲线 C :xy = 1,若矩阵 M =对应的变换将曲线C 变为曲线 C ′,求2 222曲线 C ′的方程.解: 设曲线 C 上一点 (x ′ , y ′ )对应于曲线 C ′ 上一点 (x ,y),2 - 222x ′x所以=y,22 ′y222 222′=所以x + y y - x所以 ′ - ′ = , ′ +′ = ,y ′ = ,所以 x ′ y ′=2 x2 yx2x2 yy.x22x + y y - x = 1,×2 2所以曲线 C ′ 的方程为 y 2- x 2= 2.[ 由题悟法 ]利用平面变换解决问题的类型及方法:(1) 已知曲线 C 与变换矩阵,求曲线C 在变换矩阵对应的变换作用下得到的曲线C ′的表达式,常先转化为点的对应变换再用代入法(相关点法 )求解.(2) 已知曲线 C ′是曲线 C 在平面变换作用下得到的,求与平面变换对应的变换矩阵, 常根据变换前后曲线方程的特点设出变换矩阵,构建方程(组 )求解.[ 即时应用 ]a 022x + y已知圆 C :x 2+ y 2= 1 在矩阵 A =(a>0,b>0) 对应的变换作用下变为椭圆=0 b9 41,求 a , b 的值.解:设 P(x ,y)为圆 C 上的任意一点, 在矩阵 A 对应的变换下变为另一个点 P ′ (x ′ ,y ′ ),x ′ a 0x x ′= ax , 则 =,即y ′0 byy ′ = by.2 2 2222xya xb y又因为点 P ′ (x ′ , y ′ )在椭圆 9 + 4 = 1 上,所以 9 + 4 = 1. 由已知条件可知,x 2+ y 2=1,所以 a 2 = 9, b 2= 4.因为 a>0 , b>0 ,所以 a = 3, b = 2.考点三 变换的复合与矩阵的乘法 重点保分型考点 —— 师生共研[ 典例引领 ]在平面直角坐标系xOy 中,已知点 A(0,0),B(- 2,0),C(- 2,1).设 k 为非零实数,矩阵k 0 0 1A 1,B 1,C 1,M =1 , N =,点 A , B , C 在矩阵 MN 对应的变换下得到点分别为1 0△ A 1B 1C 1 的面积是△ ABC 面积的 2 倍,求 k 的值.k 0 0 1 0 k解: 由题设得 MN =1 1=,1 0 由 0k 0 0 0 k - 2,=,=1 00 01- 20 k -2k,可知 A 1(0,0),B 1(0,- 2), C 1(k ,- 2).1 0=1- 2计算得△ABC 的面积是1,△A 1 1 1 的面积是 |k|,B C则由题设知: |k|= 2× 1= 2.所以 k 的值为 2 或- 2.[ 由题悟法 ]矩阵的乘法对应着变换的复合,而两个变换的复合仍是一个变换,且两个变换的复合过程是有序的,不能颠倒.二阶矩阵的运算关键是记熟运算法则.[ 即时应用 ]1 0已知圆 C :x 2+ y 2= 1,先将圆 C 作关于矩阵 P =的伸压变换,再将所得图形绕原0 2点逆时针旋转 90°,求所得曲线的方程.0 - 1解: 绕原点逆时针旋转 90° 的变换矩阵 Q =,1 0则 M = QP =0 - 11 0 0 - 210 2=.1设 A(x 0, y 0 为圆 C 上的任意一点,在T M 变换下变为另一点 A ′ (x 0′ , y 0′ ),)′-x 0′ =- 2y 0,2则=,即y 0 ′ 10 y 0y 0′ = x 0,x 0= y 0′ ,所以x 0′y 0=- 2 .又因为点 A(x 0, y 0) 在曲线 x 2+ y 2= 1 上,2x 0′ 2所以 (y 0′ ) + -= 1.2故所得曲线的方程为x4+ y 2 =1.0 11, N =1 ,求 MN .1.设 M =00 120 11 0 0 112.解: MN =0 =1211 2 T 把曲2.(2016 南·京三模 )已知曲线 C :x 2+ 2xy + 2y 2= 1,矩阵 A =所对应的变换1 0线 C 变成曲线 C 1,求曲线 C 1 的方程.1 2 解: 设曲线 C 上的任意一点 P(x , y), P 在矩阵 A =对应的变换下得到点 Q(x ′ ,1 0y ′ ).1 2 x x ′ x + 2y = x ′ ,则10 =, 即y′ x = y ′ ,yx ′ -y ′所以 x = y ′ , y = .2x ′ - y ′+2x ′ - y ′2= 1,即 x ′ 2+ y ′ 2= 2,代入 x 2+ 2xy +2y 2= 1,得 y ′ 2 +2y ′ ·22所以曲线 C 1 的方程为 x 2+ y 2= 2.3. (2016 南·通、扬州、泰州、淮安三调 )在平面直角坐标系xOy 中,直线 x + y - 2= 0 在矩阵 A =1 ax + y - b = 0(a , b ∈ R) ,求 a + b 的值.1 对应的变换作用下得到直线2解: 设 P(x , y)是直线 x + y -2= 0 上任意一点,由 1a x =x + ay ,得 (x + ay)+ (x + 2y)- b = 0,即 x + a + 2 - b= 0.12 y x + 2y2 y 2a + 22 = 1, a = 0,所以 a +b = 4.由条件得解得-b=- 2,b = 4,2第 8 页共 21 页4.已知 M =1- 22 - 12 , W =- 3,试求满足 MZ = W 的二阶矩阵 Z .3 1a b解: 设 Z =d ,c则 MZ = 1 - 2 a b a - 2cb -2d=.23 c d 2a + 3c 2b +3d又因为 MZ = W ,且 W =2 - 1,- 31a - 2cb - 2d 2 - 1所以+ = - 3 1 , +3c3d2a 2ba = 0,a - 2c = 2,1b =-b - 2d =- 1,7,所以解得2a + 3c =- 3, c =- 1,2b + 3d = 1.d = 37.0 1 - 7故 Z =.- 1371 15. (2016 苏·锡常镇一调 )设矩阵 M =y = sin x 在矩阵, N = 2,试求曲线21MN 变换下得到的曲线方程.11解: 由题意得 MN = 1 0 2 0= 20 . 0 20 1 0 2设曲线 y = sin x 上任意一点 P(x , y)在矩阵 MN 变换下得到点 P ′ (x ′, y ′ ),x ′1x则2,=yy21x = 2x ′ , 即 x ′ = 2x ,得1y ′ = 2y ,y =2y ′ .因为 y = sin x ,所以 1 ′ =′ ,即 ′ = ′2ysin 2xy2sin 2x .因此所求的曲线方程为 y = 2sin 2x.6.(2017 苏·锡常镇调研 )已知变换 T 把平面上的点 (3,- 4),(5,0)分别变换成 (2,- 1),(-1,2),试求变换 T 对应的矩阵 M .a b a b3 2 a b 5 =- 1解: 设 M =,由题意,得= , ,c dc d- 4 - 1 c d 0 213a - 4b = 2, a =- 5,13,3c - 4d =- 1,b =-20所以解得2 5a =- 1,c =5,5c = 2.11d = 20.113-5-20即 M =.2 11 5207.(2016 ·通、扬州、淮安、宿迁、泰州二调南 )在平面直角坐标系xOy 中,设点 A(- 1,2)- 1 0 在矩阵 M =对应的变换作用下得到点 A ′,将点 B(3,4)绕点 A ′逆时针旋转90°得0 1到点 B ′,求点 B ′的坐标.解: 设 B ′(x , y),- 1 0- 11 依题意,由0 1=,得 A ′ (1,2) .22―→ ―→则 A ′ B = (2,2) , A ′ B = (x - 1, y - 2).0 - 1记旋转矩阵 N =,1 00 - 1 2x - 1 - 2x - 1 则=,即=,10 2- 2- 2y 2y 解得x =- 1,y = 4,所以点 B ′ 的坐标为 (- 1,4).1 0 1 02x 2- 2xy + 1= 0 在矩阵 MN 对应的变换作8.已知 M =, N =,求曲线0 2- 1 1用下得到的曲线方程.1 0 1 01 0解: MN =2 - 11=,- 22设 P(x ′ , y ′ )是曲线 2x 2- 2xy + 1= 0 上任意一点,点 P 在矩阵 MN 对应的变换下变为点 P ′ ( x , y),x1 0 x ′x ′则有=2 ′=,y- 2- ′ + ′y2x 2yx = x ′ ,即y =- 2x ′ + 2y ′ ,x ′ =x ,于是yy ′ =x + 2.代入 2x 2- 2xy + 1= 0 得 xy = 1,所以曲线 2x 2- 2xy + 1=0 在 MN 对应的变换作用下得到的曲线方程为xy = 1.第二节逆变换与逆矩阵、矩阵的特征值与特征向量1.逆变换与逆矩阵(1) 对于二阶矩阵 A , B ,若有 AB = BA = E ,则称 A 是可逆的, B 称为 A 的逆矩阵.(2) 若二阶矩阵 A ,B 均存在逆矩阵,则 - 1- 1 - 1AB 也存在逆矩阵,且 (AB) = B A .(3) 利用行列式解二元一次方程组.2.逆矩阵的求法一般地,对于二阶矩阵a b - 1A =,当 ad - bc ≠ 0 时,矩阵 A 可逆,且它的逆矩阵 Ac dd- b ad - bc ad - bc=.- c aad - bcad - bc3.特征值与特征向量的定义设 A 是一个二阶矩阵,如果对于实数 λ,存在一个非零向量 α,使得 A α= λα,那么 λ称为 A 的一个特征值,而α称为 A 的属于特征值 λ的一个特征向量.4.特征多项式的定义a b是一个二阶矩阵, λ∈ R ,我们把行列式f(λ)=λ- a - b 2设 A =d - c= λ- (a + d)λcλ- d+ ad - bc 称为 A 的特征多项式.5.特征值与特征向量的计算设 λ是二阶矩阵a bλ与 α的步骤为:A =的特征值, α为 λ的特征向量,求c d第一步:令矩阵λ- a - b2A 的特征多项式 f(λ)=λ- d = λ- (a + d)λ+ ad - bc = 0,求出 λ- c的值.第二步: 将 λ的值代入二元一次方程组λ- a x - by = 0,得到一组非零解 x 0 ,于是- cx + λ- d y = 0,y非零向量 x 0即为矩阵 A 的属于特征值 λ的一个特征向量.y 06.A n α(n ∈ N * )的简单表示(1) 设二阶矩阵 A =a b , α是矩阵 A 的属于特征值 λ的任意一个特征向量,则A n α=cdn *).λα(n ∈ N, λ是二阶矩阵 A 的两个不同特征值,α, β是矩阵 A 的分别属于特征值 λ, λ(2) 设 λ1 212的特征向量,对于平面上任意一个非零向量γ,设 γ= t 1 α+ t 2β(其中 t 1, t 2 为实数 ),则 A n γ=n n* .1λ1α+ t 2λ2β(n ∈ N)t[ 小题体验 ]1 61.矩阵 M = - 2- 6 的特征值为 __________ .解析: 矩阵 M 的特征多项式为 f(λ)= λ- 1 - 6λ+2)( λ+ 3) ,令 λ= ,得 M 的特(f( ) 02 λ+ 6征值为 λ=-1 2, λ=-2 3.答案: - 2 或- 32.设2 a 2 a 的值为 ________.3是矩阵 M = 的一个特征向量,则实数322解析: 设是矩阵 M 属于特征值 λ的一个特征向量,3a 2 2 2则2 = λ , 33 32a + 6=2λ, λ= 4,故解得12= 3λ a = 1.答案: 11.不是每个二阶矩阵都可逆, 只有当ab中 ad - bc ≠ 0 时,才可逆, 如当 A =10 , c d0 01 0因为 1× 0- 0× 0= 0,找不到二阶矩阵 B ,使得 BA = AB =E 成立,故 A = 不可逆.0 2.如果向量 α是属于 λ的特征向量,将它乘非零实数t 后所得的新向量t α与向量 α共线,故 t α也是属于 λ的特征向量,因此,一个特征值对应多个特征向量,显然,只要有了特征值的一个特征向量,就可以表示出属于这个特征值的共线的所有特征向量了.[ 小题纠偏 ]1.矩阵 A =2 35的逆矩阵为 ____________. 6x y 解析:法一: 设矩阵 A 的逆矩阵 A-1=,z w2 3 x y1 0 则6 z w= , 512x + 3z 2y + 3w 1 0即=0 1 , 5x + 6z 5y + 6w2x + 3z = 1,x =- 2,2y + 3w = 0,y = 1,所以解得55x + 6z = 0, z = 3,5y + 6w = 1,2w =- 3.A -1=-21故所求的逆矩阵5- 2 .3 3法二: 注意到 2× 6- 3×5=- 3≠0,故 A 存在逆矩阵 A-1,6 - 3- 3- 3- 21且 A -1==52 .- 5 2-3 3- 3 - 3- 2 1 答案:5 - 2331 222.已知矩阵 A =- 4 的一个特征值为 λ,向量 α= 是矩阵 A 的属于 λ的一个特a- 3 征向量,则 a + λ= _____.解析: 因为 A α= λα,所以2- 6= 2λ, 即解得2a + 12=- 3λ,所以 a + λ=- 3- 2=- 5.答案: - 51 2 2 2a- 4 - 3 = λ ,- 3a =- 3,λ=- 2,考点一求逆矩阵与逆变换重点保分型考点 —— 师生共研[ 典例引领 ]- 1 01 2 A -1已知矩阵 A =2, B =,求矩阵 B.6 解: 设矩阵 A 的逆矩阵为a bc,d- 1 0 a b1 0,即 - a - b 1 0则== ,2 c d12c 2d 0 11故 a =- 1, b = 0, c = 0, d =2.所以矩阵 A 的逆矩阵为 A -1=- 11 .2所以 A- 1 0 1 2- 1- 2-1B =1=.0 632[ 由题悟法 ]求一个矩阵 A 的逆矩阵或证明一个矩阵不可逆时,常用两种解法.法一: 待定矩阵法:先设出其逆矩阵,根据逆矩阵的定义 AB = BA = E ,应用矩阵相等的定义列方程组求解,若方程组有解,即可求出其逆矩阵,若方程组无解,则说明此矩阵不可逆,此种方法称为待定矩阵法.a b法二: 利用逆矩阵公式,对矩阵A = :c d①若 ad - bc = 0,则 A 的逆矩阵不存在.d- b ②若 ad - bc ≠ 0,则- 1ad - bc ad - bc.A =- caad - bc ad - bc[ 即时应用 ]11 1已知 A = 1, B =,求矩阵 AB 的逆矩阵.1 021 0 1- = 1≠ 0, 解:法一: 因为 A =1 ,且 1 ×2 02 0212 -111 0所以 A-1=22 =,20 1- 1 12 2 1- 1.同理 B-1=0 1因此 (AB)-1= B-1A -1=1- 1 1 0 1 - 20 2 =.0 1 0 211 1法二: 因为 A =10 , B =,20 1所以1 0 1 1 = 11 ,且× 1- × = 1≠ 0,AB=11 10 0 120 1222第 15 页 共 21 页1 - 1 21 11 - 2所以 (AB)-1=22.=20 1 01 12 2考点二特征值与特征向量的计算及应用重点保分型考点 —— 师生共研[ 典例引领 ]2 a已知矩阵 M =,其中 a ∈ R ,若点 P(1,- 2)在矩阵 M 的变换下得到点 P ′(- 4,0).2 1(1) 求实数 a 的值;(2) 求矩阵 M 的特征值及其对应的特征向量.解: (1) 由 2 a1- 4 ,得 - =-==3.2 1 -22 2a4? a2 3λ- 2 - 3(2) 由 (1)知 M =,则矩阵 M 的特征多项式为 f (λ)= =( λ- 2)( λ- 1)- 621- 2 λ- 12= λ- 3λ-4.令 f(λ)= 0,得矩阵 M 的特征值为- 1 与 4.λ- 2 x - 3y = 0,把 λ=- 1 代入二元一次方程组- 2x + λ- 1 y =0,得 x + y = 0,1所以矩阵 M 的属于特征值- 1 的一个特征向量为;-1λ- 2 x - 3y = 0,把 λ= 4 代入二元一次方程组- 2x + λ- 1 y = 0,得 2x - 3y = 0.所以矩阵 M 的属于特征值4 的一个特征向量为3.2[ 由题悟法 ](1) 求矩阵 A 的特征值与特征向量的一般思路为:先确定其特征多项式 f(λ),再由 f(λ)= 0求 出 该 矩 阵 的 特 征 值 , 然 后 把 特 征 值 代 入 矩 阵 A所 确 定 的 二 元 一 次 方 程 组λ- a x - by = 0, 即可求出特征向量.- cx + λ- d y = 0,(2) 根据矩阵 A 的特征值与特征向量求矩阵A 的一般思路:设 A =a b c ,根据 A α=λαd构建 a , b , c , d 的方程求解.[ 即时应用 ]1x 1 的属于特征值 - 21. (2015 江·苏高考 )已知 x , y ∈ R ,向量 a = 是矩阵 A =y 0 - 1的一个特征向量,求矩阵A 以及它的另一个特征值.解: 由已知,得 Aa =- 2a ,x 11- - 2即=x 1=,y0 - 1y2x - 1=- 2, x =- 1, 则即y = 2,y = 2,-11 所以矩阵 A =2.从而矩阵 A 的特征多项式f (λ)= (λ+ 2)( λ- 1),所以矩阵 A 的另一个特征值为1.1 2.已知二阶矩阵 M 有特征值 λ= 3 及对应的一个特征向量 α1=,并且矩阵 M 对应的1变换将点 (-1,2)变换成 (9,15) ,求矩阵 M .解: 设 M = a b ,则a b 1 1 3 a + b = 3,= 3=,故c dc d 113c +d = 3.a b - 1 9-a + 2b = 9,又= ,故c d215- c + 2d = 15.联立以上两方程组解得a =- 1,b = 4,c =- 3,d = 6,- 1 4故 M =.- 3 6考点三根据 A , α计算 A n αn ∈ N *重点保分型考点 —— 师生共研[ 典例引领 ]1 23给定的矩阵 A = , B = .- 1 4 2 (1) , λ及对应的特征向量 α, α;求 A 的特征值 λ1 2 12(2) 求 A 4B.解: (1) 设 A 的一个特征值为 λ,由题意知:λ- 1 - 2= 0,即 (λ- 2)(λ- 3)= 0,所以 λ1= 2, λ2= 3.1λ- 4当 λ1= 2 时,由1 2 xx2 的特征向量 α1=24 = 2,得 A 属于特征值;- 1 yy1当 λ2= 3 时,由1 2 xx 3 的特征向量 α2=14 = 3,得 A 属于特征值.- 1 y y1(2) 由于 B =32 1= α+ α,= + 2 1 1 1 2故 A 4=4 α+ α = 4α+ 34α= 16α+ 81α= 32 81= 1132 + .16 8197[ 由题悟法 ]已知矩阵 A 和向量 α,求 A n α(n ∈ N * ),其步骤为:(1) 求出矩阵, λ和对应的特征向量 α, αA 的特征值 λ1 2 12. (2) 把 α用特征向量的组合来表示:α= s α1+ t α2.nnn表示 A n(3) 应用 A α= s λα11 + t λα.2α2[ 即时应用 ]已知 M = 1 2 , β= 1 ,计算 M 5β21 7.λ- 1 - 2解: 矩阵 M 的特征多项式为f( λ)=2= λ- 2λ- 3.- 2 λ- 1令 f(λ)= 0,解得 λ=1 3,λ=-2 1,12 xx,得x + 2y = 3x ,令= 32 1 y y2x + y = 3y ,从而求得 λ1=3 的一个特征向量为1α1=,11同理得对应λ2=-1的一个特征向量为α2=- 1.令β= mα1+ nα2,则 m=4, n=- 3.55α- 3α555551- 3× (- 1)51β==α-=-=×=M M (44(M3(Mα4(λα3(λα312)1)2) 1 1)22)41- 1975.9691.(2016 无·锡期末 )已知矩阵 A=1012-1对应的变换把直线 l 0, B=,若矩阵 AB21变为直线 l′: x+ y- 2= 0,求直线 l 的方程.解:由题意得 B-1=1- 2,01101- 21- 2所以 AB-1==,020102设直线 l 上任意一点 (x, y)在矩阵 AB-1对应的变换下为点 (x′, y′ ),则1- 2x=02yx′x′= x- 2y,,所以y′y′= 2y,将 x′, y′代入 l′的方程,得 (x- 2y)+ 2y-2= 0,化简后得 l: x= 2.12- 11-12. (2016 江·苏高考 )已知矩阵 A=0-2,矩阵 B 的逆矩阵 B=2,求矩阵02AB.解:设 B=ab,c d-11-1a b10则 B2=,=B c d010 2即错误 ! =错误 ! ,1a = 1, a - 2c = 1,1,11b = 1b - 2d = 0,4所以 B =4故解得.2c = 0,c = 0,121d =2d = 1,2,1 1 1 51424因此, AB = 0- 2=.1 0-123. (2016 南·京、盐城、连云港、徐州二模)已知 a , b 是实数,如果矩阵 3 aA =所b - 2对应的变换 T 把点 (2,3) 变成 (3,4).(1) 求 a , b 的值;(2) 若矩阵 A 的逆矩阵为 B ,求 B 2.3 a23解: (1) 由题意得=,b - 2 34所以 6+ 3a = 3,2b - 6= 4,所以 a =- 1, b = 5.3 - 1(2) 由 (1)得 A =.5 - 22 - 1由矩阵的逆矩阵公式得B =.5 - 32 - 1 2 - 1- 1 1所以 B 2==. 5 - 3 5 - 3 - 544. (2016 常·州期末 )已知矩阵 M =a 2 8 的一个特征向量是e =14的属于特征值 ,点b1P(- 1,2)在 M 对应的变换作用下得到点Q ,求 Q 的坐标.a 2 1 1 解: 由题意知4 b = 8×,11a + 2= 8,a = 6,故解得4+ b = 8,b = 4,6 2 - 1 =- 2所以42,所以点 Q 的坐标为 (-2,4).4 4- 1 45. (2016 苏·州暑假测试 )求矩阵 M =2 的特征值和特征向量.6λ+ 1 - 42解: 特征多项式f(λ)== λ+1)( λ-6)= λ-7)( λ+ 2) ,- = λ- λ-(85 14(- 2 λ- 6由 f(λ)= 0,解得 λ1= 7,λ2=- 2.8x - 4y = 0,1 将 λ= 7 代入特征方程组,得即 y = 2x ,可取为属于特征值 λ= 7 的11- 2x + y = 0,2一个特征向量.- - = ,4x 4y 0同理, λ=-2 2 时,特征方程组是即 x =- 4y ,所以可取为属于- 2x - 8y = 0,- 1特征值 λ2=- 2 的一个特征向量.M = - 1 4λ1= 7, λ2=- 2.属于 λ1=7 的一个特征向量综上所述,矩阵2 有两个特征值61,属于 λ2=- 2 的一个特征向量为4为- 1. 23 6λ= 8 的一个特征向量e = 6,及属于特征值 λ=- 36.矩阵 M =有属于特征值255的一个特征向量 e =13 ,计算 M3α2- 1 .对向量 α= 8.解: 令 α= me + ne ,将具体数据代入,有m = 1,n =- 3,所以 α=e - 3e 所以M 3α 1212 .3333 3 3 6 1 3 153= M - 3e = - 3M - 3× (-3) 3 =(e 1= λ - 3λ = 8.5- 1 2 479- 1 27. (2016 泰·州期末 )已知矩阵 M =5x 的一个特征值为- 2,求 M 2.2λ+ 1- 22解: 把 λ=- 2 代入-λ- + = ,得= ,= λ-5λ- x(x1)(x 5)x 3-2第 21 页共 21 页- 124所以矩阵 M =65,所以 M 2=.351428.已知二阶矩阵 M 有特征值 λ= 8 及对应的一个特征向量 e 1=1 ,并且矩阵 M 对应的1变换将点 (-1,2)变换成 (- 2,4). 求:(1) 矩阵 M;(2) 矩阵 M 的另一个特征值,及对应的一个特征向量e 2 的坐标之间的关系;(3) 直线 l : x -y + 1= 0 在矩阵 M 的作用下的直线 l ′的方程.a ba b 1 18解: (1) 设 M =,则c d 1 = 8 = ,c d1 8a + = ,b-1-2-a + 2b =- 2,b8a= ,故故c d+ =8.24-c + 2d = 4.c da = 6,b = 2,62 联立以上两方程组,解得故 M =.c = 4,44d = 4,2(2) 由 (1) 知,矩阵 M 的特征多项式为f (λ)= (λ- 6)( λ- 4)- 8=λ- 10λ+ 16,故其另一个特征值为λ= 2.设矩阵 M 的另一个特征向量是e 2=x ,y则 Me 2=6x + 2yx ,解得 2x + y =0.= 2y4x + 4y(3) 设点 (x ,y)是直线 l 上的任意一点, 其在矩阵 M 的变换下对应的点的坐标为 (x ′ ,y ′ ),则 6 2 x =x ′,即 x = 1 ′ -1 ′ , =-1′ +3′ ,代入直线l 的方程后并化简,4 4 y′4x8yy4x8yy得 x ′ - y ′ + 2=0,即 x -y + 2= 0.。