高中数学选修4- 2矩阵与变换
- 格式:ppt
- 大小:253.50 KB
- 文档页数:37
反射变换-人教A版选修4-2 矩阵与变换教案一、知识点1. 反射变换的定义反射变换是将一个点关于直线对称成一个新的点,直线称为对称轴,被对称的点称为对称点。
一个点对于两条相交的直线的对称变换,可以看作是两个方向相反的反射变换。
2. 反射变换的矩阵表示以直线 y = ax + b 为对称轴,其矩阵表示为:| 1 - 2a^2 2ab |R = 1/ (| 2ab 1 - 2b^2 |)| 0 0 |3. 反射变换的性质(1)反射变换是不改变距离大小的变换,即对于直线 AB 和A’B’,点 A 到直线 AB 的距离和点A’ 到直线A’B’ 的距离是相等的。
(2)反射变换满足线性运算,即 R(x1 + x2) = R(x1) + R(x2) 以及 R(kx) =kR(x),其中 k 为常数。
(3)反射变换还具有反向性,即进行两次反射变换后还原原来的点。
二、教学设计1. 教学目标通过本节课的学习,学生将掌握反射变换的定义,矩阵表示以及性质等知识;同时,能够运用所学知识解决反射变换的相关问题。
2. 教学重点和难点(1)教学重点:反射变换的定义、矩阵表示和性质。
(2)教学难点:如何运用所学知识解决反射变换的相关问题,如求解经过反射变换后的坐标等。
3. 教学过程(1)引入通过讲解实际场景中的反射现象,如水面反射、镜面反射等,激发学生对反射变换的兴趣和认识。
(2)讲授首先,通过图示等方式,介绍反射变换的定义,以及反射变换的示例;然后,讲解反射变换的矩阵表示,帮助学生理解并掌握相应的公式;最后,讲解反射变换的性质,并结合具体的例子进行说明。
(3)例题练习针对反射变换中的相关问题,设计一系列例题,在课堂上由教师讲解,并且组织学生进行练习和答题,加深对所学知识的理解和掌握,同时锻炼学生的运用能力。
4. 课堂小结教师对学生进行带头小结,帮助学生回顾本节课所学内容,并进行归纳总结,以便学生更好地掌握知识点。
三、课堂反思针对本节课教学情况,我认为还需加强与学生的互动交流,尤其是在例题练习中,应该适当地引导学生思考和讨论,增强他们的自主思考和解决问题的能力,同时通过每节课的反思总结,不断优化和改进教学方式,提高教学质量。
2.逆变换与逆矩阵-湘教版选修4-2矩阵与变换教案一、逆变换在矩阵与变换中,逆变换是一种重要的变换。
逆变换的本质是将原变换的作用反转,即将输出值映射回原输入值。
在这个过程中,需要寻找一个新的变换,使得先作用原来的变换再作用新的变换后,得到的结果是原来的输入值。
考虑一个简单的例子:将一个点绕原点旋转α角度,在用一个向量β将其平移后得到新的点。
我们可以用一个组合变换来描述这个过程:T(x,y) = (x,y)Rα(β1,β2) = (x,y)(cosα, sinα, -sinα, cosα)(1,0,0,1)+ (β1,β2)其中,Rα(β1,β2)表示先将点绕原点旋转α角度,再将其平移β1单位水平方向,β2单位垂直方向。
现在,我们想要逆转这个变换,将终点坐标(x’,y’)反向还原回起始坐标(x,y),也就是满足下面的等式:(x', y') = (x,y)Rα(β1,β2)这个等式求解出来即可得到新的逆变换:(x,y) = (x', y')R-α(-β1,-β2) = (x', y')(cosα, -sinα, sinα, cosα)(-β1,-β2)其中,R-α(-β1,-β2)表示先将点绕原点旋转-α角度,将其平移β1单位水平方向,β2单位垂直方向,即反向执行原来的变换。
二、逆矩阵逆变换的本质是求解一个矩阵的逆矩阵。
对于任意一个可逆矩阵A,存在一个和A相乘等于单位矩阵的矩阵B,使得两个矩阵相乘的结果为单位矩阵:A ×B = B × A = I其中,A和B的乘积顺序并不影响结果,因此称A和B互为逆矩阵。
逆矩阵也满足以下性质:•对于任意可逆矩阵A和其逆矩阵B,A × B = B × A = I•对于任意可逆矩阵A,它的逆矩阵唯一对于一个2x2矩阵A = [a, b; c, d],其逆矩阵可以通过以下公式求解:B = 1/(ad - bc) × [d, -b; -c, a]如果一个矩阵不可逆,则其行列式等于0。
选修4-2 ⎪⎪⎪矩阵与变换第一节平面变换、变换的复合与矩阵的乘法1.二阶矩阵与平面向量 (1)矩阵的概念在数学中,把形如⎣⎢⎡⎦⎥⎤13,⎣⎢⎡⎦⎥⎤2 315,⎣⎢⎡⎦⎥⎤1 3 42 0 -1这样的矩形数字(或字母)阵列称为矩阵,其中,同一横排中按原来次序排列的一行数(或字母)叫做矩阵的行,同一竖排中按原来次序排列的一列数(或字母)叫做矩阵的列,而组成矩阵的每一个数(或字母)称为矩阵的元素.(2)二阶矩阵与平面列向量的乘法①[a 11 a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11×b 11+a 12×b 21]; ②⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 2.几种常见的平面变换(1)当M =⎣⎢⎡⎦⎥⎤1 00 1时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k001或M =⎣⎢⎡⎦⎥⎤100 k (k >0)确定的变换T M 称为(垂直)伸压变换.(3)反射变换是轴对称变换、中心对称变换的总称.(4)当M =⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换. (6) 由矩阵M =⎣⎢⎡⎦⎥⎤1 k 0 1或M =⎣⎢⎡⎦⎥⎤1 0k 1确定的变换称为切变变换.3.矩阵的乘法一般地,对于矩阵M =⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22,N =⎣⎢⎡⎦⎥⎤b 11 b 12b 21 b 22,规定乘法法则如下:MN =⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤b 11 b 12b 21 b 22=⎣⎢⎡⎦⎥⎤a 11b 11+a 12b 21 a 11b 12+a 12b 22a 21b 11+a 22b 21 a 21b 12+a 22b 22. 4.矩阵乘法的几何意义(1)变换的复合:在数学中,一一对应的平面几何变换常可以看做是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变等变换通常叫做初等变换;对应的矩阵叫做初等变换矩阵.(2)矩阵乘法MN 的几何意义为:对向量α=⎣⎢⎡⎦⎥⎤x y 连续实施的两次几何变换(先T N 后T M )的复合变换.(3)当连续对向量实施n ·(n >1且n ∈N *)次变换T M 时,对应地我们记M n =M ·M ·…·M . 5.矩阵乘法的运算性质 (1)矩阵乘法不满足交换律对于二阶矩阵A ,B 来说,尽管AB ,BA 均有意义,但可能AB ≠BA . (2)矩阵乘法满足结合律设A ,B ,C 为二阶矩阵,则一定有(AB )C =A (BC ). (3)矩阵乘法不满足消去律.设A ,B ,C 为二阶矩阵,当AB =AC 时,可能B ≠C . [小题体验]1.已知矩阵A =⎣⎢⎡⎦⎥⎤1 82 3,矩阵B =⎣⎢⎡⎦⎥⎤1x y 3.若A =B ,则x +y =________.解析:因为A =B ,则⎩⎪⎨⎪⎧x =8,y =2,所以x +y =10.答案:102.已知变换⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤2x +3y x +y ,则它所对应的变换矩阵为________.解析:将它写成矩阵的乘法形式⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤2 31 1⎣⎢⎡⎦⎥⎤x y ,所以它所对应的变换矩阵为⎣⎢⎡⎦⎥⎤2 31 1. 答案:⎣⎢⎡⎦⎥⎤2 3111.矩阵的乘法对应着变换的复合,而两个变换的复合仍是一个变换,且两个变换的复合过程是有序的,易颠倒.2.矩阵乘法不满足交换律和消去律,但满足结合律. [小题纠偏]1.设A =⎣⎢⎡⎦⎥⎤1 23 4,B =⎣⎢⎡⎦⎥⎤4 2k 7,若AB =BA ,则实数k 的值为________.解析:AB =⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤4 2k 7=⎣⎢⎢⎡⎦⎥⎥⎤ 4+2k 1612+4k 34, BA =⎣⎢⎡⎦⎥⎤4 2k 7⎣⎢⎡⎦⎥⎤1 23 4=⎣⎢⎡⎦⎥⎤ 10 16k +21 2k +28,因为AB =BA ,故k =3. 答案:3 2.已知A =⎣⎢⎡⎦⎥⎤1 000,B =⎣⎢⎡⎦⎥⎤-1 0 01,C =⎣⎢⎡⎦⎥⎤-1 0 0 -1,计算AB ,AC . 解:AB =⎣⎢⎡⎦⎥⎤1 00 0⎣⎢⎡⎦⎥⎤-1 0 0 1=⎣⎢⎡⎦⎥⎤-1 0 0 0,AC =⎣⎢⎡⎦⎥⎤1 00 0⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 -1=⎣⎢⎡⎦⎥⎤-1 0 0 0.考点一 二阶矩阵的运算(基础送分型考点——自主练透)[题组练透]1.已知A =⎣⎢⎡⎦⎥⎤12 1212 12,B =⎣⎢⎡⎦⎥⎤1 1-1 -1,计算A 2,B 2.解:A 2=⎣⎢⎡⎦⎥⎤12 1212 12⎣⎢⎡⎦⎥⎤12 1212 12=⎣⎢⎡⎦⎥⎤12 1212 12.B 2=⎣⎢⎡⎦⎥⎤ 1 1-1 -1⎣⎢⎡⎦⎥⎤ 1 1-1 -1=⎣⎢⎡⎦⎥⎤0 00 0.2.(2014·江苏高考)已知矩阵A =⎣⎢⎡⎦⎥⎤-121 x,B =⎣⎢⎡⎦⎥⎤1 12 -1,向量α=⎣⎢⎡⎦⎥⎤2y ,x ,y 为实数.若Aα=Bα,求x +y 的值.解:由已知,得Aα=⎣⎢⎡⎦⎥⎤-1 21 x ⎣⎢⎡⎦⎥⎤2y =⎣⎢⎢⎡⎦⎥⎥⎤-2+2y 2+xy ,Bα=⎣⎢⎡⎦⎥⎤1 12 -1⎣⎢⎡⎦⎥⎤2y =⎣⎢⎢⎡⎦⎥⎥⎤2+y 4-y .因为Aα=Bα,所以⎣⎢⎢⎡⎦⎥⎥⎤-2+2y 2+xy =⎣⎢⎢⎡⎦⎥⎥⎤2+y 4-y , 故⎩⎪⎨⎪⎧-2+2y =2+y ,2+xy =4-y .解得⎩⎪⎨⎪⎧x =-12,y =4.所以x +y =72.3.已知矩阵A =⎣⎢⎡⎦⎥⎤1 012,B =⎣⎢⎡⎦⎥⎤-4 3 4 -2且α=⎣⎢⎡⎦⎥⎤34,试判断(AB )α与A (Bα)的关系.解:因为AB =⎣⎢⎡⎦⎥⎤1 01 2⎣⎢⎢⎡⎦⎥⎥⎤-4 3 4 -2=⎣⎢⎢⎡⎦⎥⎥⎤-4 3 4 -1, 所以(AB )α=⎣⎢⎢⎡⎦⎥⎥⎤-4 3 4 -1⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤08,因为Bα=⎣⎢⎢⎡⎦⎥⎥⎤-4 3 4 -2⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤04, A (Bα)=⎣⎢⎡⎦⎥⎤1 01 2⎣⎢⎡⎦⎥⎤04=⎣⎢⎡⎦⎥⎤08. 所以(AB )α=A (Bα).[谨记通法]1.矩阵的乘法规则两矩阵M ,N 的乘积C =MN 是这样一个矩阵; (1)C 的行数与M 的相同,列数与N 的相同;(2)C 的第i 行第j 列的元素C ij 由M 的第i 行与N 的第j 列元素对应相乘求和得到. [提醒] 只有M 的行数与N 的列数相同时,才可以求MN ,否则无意义. 2.矩阵的运算律 (1)结合律(AB )C =A (BC );(2)分配律A (B ±C )=AB ±AC ,(B ±C )A =BA ±CA ; (3)λ(AB )=(λA )B =A (λB ).考点二 平面变换的应用(重点保分型考点——师生共研)[典例引领]已知曲线C :xy =1,若矩阵M =⎣⎢⎡⎦⎥⎤22 -22 22 22对应的变换将曲线C 变为曲线C ′,求曲线C ′的方程.解:设曲线C 上一点(x ′,y ′)对应于曲线C ′上一点(x ,y ),所以⎣⎢⎡⎦⎥⎤22 -222222⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x y , 所以22x ′-22y ′=x ,22x ′+22y ′=y .所以x ′=x +y 2,y ′=y -x 2,所以x ′y ′=x +y 2×y -x 2=1, 所以曲线C ′的方程为y 2-x 2=2.[由题悟法]利用平面变换解决问题的类型及方法:(1)已知曲线C 与变换矩阵,求曲线C 在变换矩阵对应的变换作用下得到的曲线C ′的表达式,常先转化为点的对应变换再用代入法(相关点法)求解.(2)已知曲线C ′是曲线C 在平面变换作用下得到的,求与平面变换对应的变换矩阵,常根据变换前后曲线方程的特点设出变换矩阵,构建方程(组)求解.[即时应用]已知圆C :x 2+y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 00b (a >0,b >0)对应的变换作用下变为椭圆x 29+y 24=1,求a ,b 的值.解:设P (x ,y )为圆C 上的任意一点,在矩阵A 对应的变换下变为另一个点P ′(x ′,y ′),则⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 00b ⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧x ′=ax ,y ′=by .又因为点P ′(x ′,y ′)在椭圆x 29+y 24=1上,所以a 2x 29+b 2y 24=1.由已知条件可知,x 2+y 2=1,所以a 2=9,b 2=4. 因为a >0,b >0,所以a =3,b =2.考点三 变换的复合与矩阵的乘法(重点保分型考点——师生共研)[典例引领]在平面直角坐标系xOy 中,已知点A (0,0),B (-2,0),C (-2,1).设k 为非零实数,矩阵M =⎣⎢⎡⎦⎥⎤k 001,N =⎣⎢⎡⎦⎥⎤011 0,点A ,B ,C 在矩阵MN 对应的变换下得到点分别为A 1,B 1,C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求k 的值.解:由题设得MN =⎣⎢⎡⎦⎥⎤k 00 1⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤0 k 1 0, 由⎣⎢⎡⎦⎥⎤0 k 1 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0 k 1 0⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤ 0-2, ⎣⎢⎡⎦⎥⎤0 k 1 0⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ k-2,可知A 1(0,0),B 1(0,-2),C 1(k ,-2). 计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |, 则由题设知:|k |=2×1=2. 所以k 的值为2或-2.[由题悟法]矩阵的乘法对应着变换的复合,而两个变换的复合仍是一个变换,且两个变换的复合过程是有序的,不能颠倒.二阶矩阵的运算关键是记熟运算法则.[即时应用]已知圆C :x 2+y 2=1,先将圆C 作关于矩阵P =⎣⎢⎡⎦⎥⎤1 002的伸压变换,再将所得图形绕原点逆时针旋转90°,求所得曲线的方程.解:绕原点逆时针旋转90°的变换矩阵Q =⎣⎢⎡⎦⎥⎤0 -11 0,则M =QP =⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤0 -21 0.设A (x 0,y 0)为圆C 上的任意一点,在T M 变换下变为另一点A ′(x 0′,y 0′),则⎣⎢⎡⎦⎥⎤x 0′y 0′=⎣⎢⎡⎦⎥⎤0 -21 0⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x 0′=-2y 0,y 0′=x 0, 所以⎩⎪⎨⎪⎧x 0=y 0′,y 0=-x 0′2.又因为点A (x 0,y 0)在曲线x 2+y 2=1上,所以(y 0′)2+⎝⎛⎫-x 0′22=1. 故所得曲线的方程为x 24+y 2=1.1.设M =⎣⎢⎡⎦⎥⎤110,N =⎣⎢⎢⎡⎦⎥⎥⎤1 0 0 12,求MN .解:MN =⎣⎢⎡⎦⎥⎤0 11 0⎣⎢⎢⎡⎦⎥⎥⎤1 0 012=⎣⎢⎢⎡⎦⎥⎥⎤0 12 1 0.2.(2016·南京三模)已知曲线C :x 2+2xy +2y 2=1,矩阵A =⎣⎢⎡⎦⎥⎤1210所对应的变换T 把曲线C 变成曲线C 1,求曲线C 1的方程.解:设曲线C 上的任意一点P (x ,y ),P 在矩阵A =⎣⎢⎡⎦⎥⎤1 21 0对应的变换下得到点Q (x ′,y ′).则⎣⎢⎡⎦⎥⎤1 21 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 即⎩⎪⎨⎪⎧x +2y =x ′,x =y ′, 所以x =y ′,y =x ′-y ′2.代入x 2+2xy +2y 2=1,得y ′2+2y ′·x ′-y ′2+2⎝ ⎛⎭⎪⎫x ′-y ′22=1,即x ′2+y ′2=2, 所以曲线C 1的方程为x 2+y 2=2.3.(2016·南通、扬州、泰州、淮安三调)在平面直角坐标系xOy 中,直线x +y -2=0在矩阵A =⎣⎢⎡⎦⎥⎤1 a 12对应的变换作用下得到直线x +y -b =0(a ,b ∈R),求a +b 的值.解:设P (x ,y )是直线x +y -2=0上任意一点,由⎣⎢⎡⎦⎥⎤1 a 1 2⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +ay x +2y ,得(x +ay )+(x +2y )-b =0,即x +a +22y -b 2=0. 由条件得⎩⎪⎨⎪⎧a +22=1,-b 2=-2,解得⎩⎪⎨⎪⎧a =0,b =4,所以a +b =4.4.已知M =⎣⎢⎡⎦⎥⎤1 -22 3,W =⎣⎢⎡⎦⎥⎤ 2 -1-3 1,试求满足MZ =W 的二阶矩阵Z .解:设Z =⎣⎢⎡⎦⎥⎤a b c d , 则MZ =⎣⎢⎡⎦⎥⎤1 -22 3⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤a -2c b -2d 2a +3c 2b +3d . 又因为MZ =W ,且W =⎣⎢⎢⎡⎦⎥⎥⎤2 -1-3 1, 所以⎣⎢⎢⎡⎦⎥⎥⎤a -2c b -2d 2a +3c 2b +3d =⎣⎢⎢⎡⎦⎥⎥⎤ 2 -1-3 1, 所以⎩⎪⎨⎪⎧ a -2c =2,b -2d =-1,2a +3c =-3,2b +3d =1.解得⎩⎪⎨⎪⎧a =0,b =-17,c =-1,d =37.故Z =⎣⎢⎡⎦⎥⎤0 -17-137. 5.(2016·苏锡常镇一调)设矩阵M =⎣⎢⎡⎦⎥⎤1002,N =⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 1,试求曲线y =sin x 在矩阵MN 变换下得到的曲线方程.解:由题意得MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 1=⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 2. 设曲线y =sin x 上任意一点P (x ,y )在矩阵MN 变换下得到点P ′(x ′,y ′), 则⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 2⎣⎢⎡⎦⎥⎤x y , 即⎩⎪⎨⎪⎧ x ′=12x ,y ′=2y ,得⎩⎪⎨⎪⎧x =2x ′,y =12y ′.因为y =sin x ,所以12y ′=sin 2x ′,即y ′=2sin 2x ′.因此所求的曲线方程为y =2sin 2x .6.(2017·苏锡常镇调研)已知变换T 把平面上的点(3,-4),(5,0)分别变换成(2,-1),(-1,2),试求变换T 对应的矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,由题意,得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 3-4=⎣⎢⎡⎦⎥⎤ 2-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤50=⎣⎢⎡⎦⎥⎤-1 2,所以⎩⎪⎨⎪⎧3a -4b =2,3c -4d =-1,5a =-1,5c =2.解得⎩⎪⎨⎪⎧a =-15,b =-1320,c =25,d =1120.即M =⎣⎢⎡⎦⎥⎤-15 -1320251120. 7.(2016·南通、扬州、淮安、宿迁、泰州二调)在平面直角坐标系xOy 中,设点A (-1,2)在矩阵M =⎣⎢⎡⎦⎥⎤-1 0 01对应的变换作用下得到点A ′,将点B (3,4)绕点A ′逆时针旋转90°得到点B ′,求点B ′的坐标.解:设B ′(x ,y ),依题意,由⎣⎢⎡⎦⎥⎤-1 0 0 1⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤12,得A ′(1,2).则A ′B ―→=(2,2),A ′B ―→=(x -1,y -2).记旋转矩阵N =⎣⎢⎡⎦⎥⎤0 -11 0,则⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤22=⎣⎢⎢⎡⎦⎥⎥⎤x -1y -2,即⎣⎢⎡⎦⎥⎤-2 2=⎣⎢⎢⎡⎦⎥⎥⎤x -1y -2, 解得⎩⎪⎨⎪⎧x =-1,y =4,所以点B ′的坐标为(-1,4). 8.已知M =⎣⎢⎡⎦⎥⎤1 002,N =⎣⎢⎡⎦⎥⎤ 1 0-1 1,求曲线2x 2-2xy +1=0在矩阵MN 对应的变换作用下得到的曲线方程.解:MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤ 1 0-1 1=⎣⎢⎡⎦⎥⎤ 1 0-2 2, 设P (x ′,y ′)是曲线2x 2-2xy +1=0上任意一点,点P 在矩阵MN 对应的变换下变为点P ′(x ,y ),则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ 1 0-2 2⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤ x ′-2x ′+2y ′,即⎩⎪⎨⎪⎧x =x ′,y =-2x ′+2y ′, 于是⎩⎪⎨⎪⎧x ′=x ,y ′=x +y 2.代入2x 2-2xy +1=0得xy =1,所以曲线2x 2-2xy +1=0在MN 对应的变换作用下得到的曲线方程为xy =1.第二节逆变换与逆矩阵、矩阵的特征值与特征向量1.逆变换与逆矩阵(1)对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵. (2)若二阶矩阵A ,B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.(3)利用行列式解二元一次方程组. 2.逆矩阵的求法一般地,对于二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,当ad -bc ≠0时,矩阵A 可逆,且它的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤ d ad -bc -b ad -bc -c ad -bc a ad -bc .3.特征值与特征向量的定义设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.4.特征多项式的定义设A =⎣⎢⎡⎦⎥⎤ab cd 是一个二阶矩阵,λ∈R ,我们把行列式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc 称为A 的特征多项式.5.特征值与特征向量的计算设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征值,α为λ的特征向量,求λ与α的步骤为:第一步:令矩阵A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0,求出λ的值.第二步:将λ的值代入二元一次方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0,得到一组非零解⎣⎢⎡⎦⎥⎤x 0y 0,于是非零向量⎣⎢⎡⎦⎥⎤x 0y 0即为矩阵A 的属于特征值λ的一个特征向量.6.A n α(n ∈N *)的简单表示 (1)设二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,α是矩阵A 的属于特征值λ的任意一个特征向量,则A n α=λn α(n ∈N *).(2)设λ1,λ2是二阶矩阵A 的两个不同特征值,α,β是矩阵A 的分别属于特征值λ1,λ2的特征向量,对于平面上任意一个非零向量γ,设γ=t 1α+t 2β(其中t 1,t 2为实数),则A n γ=t 1λn 1α+t 2λn 2β(n ∈N *).[小题体验]1.矩阵M =⎣⎢⎡⎦⎥⎤1 6-2 -6 的特征值为__________.解析:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -6 2 λ+6=(λ+2)(λ+3),令f (λ)=0,得M 的特征值为λ1=-2,λ2=-3.答案:-2或-3 2.设⎣⎢⎡⎦⎥⎤23是矩阵M =⎣⎢⎡⎦⎥⎤a 23 2的一个特征向量,则实数a 的值为________.解析:设⎣⎢⎡⎦⎥⎤23是矩阵M 属于特征值λ的一个特征向量,则⎣⎢⎡⎦⎥⎤a 23 2⎣⎢⎡⎦⎥⎤23=λ⎣⎢⎡⎦⎥⎤23,故⎩⎪⎨⎪⎧ 2a +6=2λ,12=3λ解得⎩⎪⎨⎪⎧λ=4,a =1.答案:11.不是每个二阶矩阵都可逆,只有当⎣⎢⎡⎦⎥⎤a b cd 中ad -bc ≠0时,才可逆,如当A =⎣⎢⎡⎦⎥⎤1 00 0,因为1×0-0×0=0,找不到二阶矩阵B ,使得BA =AB =E 成立,故A =⎣⎢⎡⎦⎥⎤1 00 0不可逆. 2.如果向量α是属于λ的特征向量,将它乘非零实数t 后所得的新向量tα与向量α共线,故tα也是属于λ的特征向量,因此,一个特征值对应多个特征向量,显然,只要有了特征值的一个特征向量,就可以表示出属于这个特征值的共线的所有特征向量了.[小题纠偏] 1.矩阵A =⎣⎢⎡⎦⎥⎤2 356的逆矩阵为____________. 解析:法一:设矩阵A 的逆矩阵A -1=⎣⎢⎡⎦⎥⎤x y z w ,则⎣⎢⎡⎦⎥⎤2 35 6⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 00 1, 即⎣⎢⎢⎡⎦⎥⎥⎤2x +3z 2y +3w 5x +6z 5y +6w =⎣⎢⎡⎦⎥⎤1 00 1, 所以⎩⎪⎨⎪⎧ 2x +3z =1,2y +3w =0,5x +6z =0,5y +6w =1,解得⎩⎪⎨⎪⎧x =-2,y =1,z =53,w =-23.故所求的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-2153-23. 法二:注意到2×6-3×5=-3≠0, 故A 存在逆矩阵A -1,且A -1=⎣⎢⎢⎡⎦⎥⎥⎤6-3 -3-3-5-32-3=⎣⎢⎢⎡⎦⎥⎥⎤-2 1 53 -23.答案:⎣⎢⎢⎡⎦⎥⎥⎤-2 1 53-23 2.已知矩阵A =⎣⎢⎡⎦⎥⎤1 2a -4的一个特征值为λ,向量α=⎣⎢⎡⎦⎥⎤2-3是矩阵A 的属于λ的一个特征向量,则a +λ=_____.解析:因为Aα=λα,所以⎣⎢⎡⎦⎥⎤1 2a -4⎣⎢⎡⎦⎥⎤ 2-3=λ⎣⎢⎡⎦⎥⎤2-3,即⎩⎪⎨⎪⎧ 2-6=2λ,2a +12=-3λ,解得⎩⎪⎨⎪⎧a =-3,λ=-2,所以a +λ=-3-2=-5. 答案:-5考点一 求逆矩阵与逆变换(重点保分型考点——师生共研)[典例引领]已知矩阵A =⎣⎢⎡⎦⎥⎤-1 0 0 2,B =⎣⎢⎡⎦⎥⎤1 20 6,求矩阵A -1B . 解:设矩阵A 的逆矩阵为 ⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤-1 0 0 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 00 1,故a =-1,b =0,c =0,d =12.所以矩阵A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12. 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -2 0 3.[由题悟法]求一个矩阵A 的逆矩阵或证明一个矩阵不可逆时,常用两种解法.法一:待定矩阵法:先设出其逆矩阵,根据逆矩阵的定义AB =BA =E ,应用矩阵相等的定义列方程组求解,若方程组有解,即可求出其逆矩阵,若方程组无解,则说明此矩阵不可逆,此种方法称为待定矩阵法.法二:利用逆矩阵公式,对矩阵A =⎣⎢⎡⎦⎥⎤ab cd :①若ad -bc =0,则A 的逆矩阵不存在.②若ad -bc ≠0,则A-1=⎣⎢⎢⎡⎦⎥⎥⎤ d ad -bc -b ad -bc -c ad -bc a ad -bc .[即时应用]已知A =⎣⎢⎢⎡⎦⎥⎥⎤1 0012,B =⎣⎢⎡⎦⎥⎤1 10 1,求矩阵AB 的逆矩阵.解:法一:因为A =⎣⎢⎢⎡⎦⎥⎥⎤1 0012,且1×12-0=12≠0,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤ 1212 -012-012 112=⎣⎢⎡⎦⎥⎤1 00 2, 同理B -1=⎣⎢⎡⎦⎥⎤1 -10 1. 因此(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤1 -10 1⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤1 -20 2.法二:因为A =⎣⎢⎢⎡⎦⎥⎥⎤1 00 12,B =⎣⎢⎡⎦⎥⎤1 10 1,所以AB =⎣⎢⎢⎡⎦⎥⎥⎤1 00 12⎣⎢⎡⎦⎥⎤1 10 1=⎣⎢⎢⎡⎦⎥⎥⎤1 10 12,且1×12-0×1=12≠0,所以(AB )-1=⎣⎢⎢⎡⎦⎥⎥⎤1212 -112012 112=⎣⎢⎡⎦⎥⎤1 -20 2.考点二 特征值与特征向量的计算及应用(重点保分型考点——师生共研)[典例引领]已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a ∈R ,若点P (1,-2)在矩阵M 的变换下得到点P ′(-4,0). (1)求实数a 的值;(2)求矩阵M 的特征值及其对应的特征向量. 解:(1)由⎣⎢⎡⎦⎥⎤2 a 2 1⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,得2-2a =-4⇒a =3.(2)由(1)知M =⎣⎢⎡⎦⎥⎤2 32 1,则矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2 -3 -2 λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f (λ)=0,得矩阵M 的特征值为-1与4.把λ=-1代入二元一次方程组⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0,得x +y =0,所以矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;把λ=4代入二元一次方程组⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0,得2x -3y =0.所以矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.[由题悟法](1)求矩阵A 的特征值与特征向量的一般思路为:先确定其特征多项式f (λ),再由f (λ)=0求出该矩阵的特征值,然后把特征值代入矩阵A 所确定的二元一次方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0,即可求出特征向量. (2)根据矩阵A 的特征值与特征向量求矩阵A 的一般思路:设A =⎣⎢⎡⎦⎥⎤a b c d ,根据Aα=λα构建a ,b ,c ,d 的方程求解.[即时应用]1.(2015·江苏高考)已知x ,y ∈R ,向量a =⎣⎢⎡⎦⎥⎤ 1-1是矩阵A =⎣⎢⎡⎦⎥⎤x1y 0的属于特征值 -2的一个特征向量,求矩阵A 以及它的另一个特征值.解:由已知,得Aa =-2a , 即⎣⎢⎡⎦⎥⎤x 1y 0⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤x -1 y =⎣⎢⎡⎦⎥⎤-2 2,则⎩⎪⎨⎪⎧ x -1=-2,y =2,即⎩⎪⎨⎪⎧x =-1,y =2, 所以矩阵A =⎣⎢⎡⎦⎥⎤-1 1 2 0.从而矩阵A 的特征多项式f (λ)=(λ+2)(λ-1), 所以矩阵A 的另一个特征值为1.2.已知二阶矩阵M 有特征值λ=3及对应的一个特征向量α1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(9,15),求矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤33,故⎩⎪⎨⎪⎧a +b =3,c +d =3. 又⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤ 915,故⎩⎪⎨⎪⎧-a +2b =9,-c +2d =15.联立以上两方程组解得a =-1,b =4,c =-3,d =6,故M =⎣⎢⎢⎡⎦⎥⎥⎤-1 4-3 6. 考点三 根据A ,α计算A n α(n ∈N *)(重点保分型考点——师生共研)[典例引领]给定的矩阵A =⎣⎢⎡⎦⎥⎤12-14,B =⎣⎢⎡⎦⎥⎤32.(1)求A 的特征值λ1,λ2及对应的特征向量α1,α2;(2)求A 4B .解:(1)设A 的一个特征值为λ,由题意知:⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -21 λ-4=0,即(λ-2)(λ-3)=0,所以λ1=2,λ2=3.当λ1=2时,由⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值2的特征向量α1=⎣⎢⎡⎦⎥⎤21;当λ2=3时,由⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =3⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值3的特征向量α2=⎣⎢⎡⎦⎥⎤11. (2)由于B =⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤21+⎣⎢⎡⎦⎥⎤11=α1+α2,故A 4B =A 4(α1+α2)=24α1+34α2=16α1+81α2=⎣⎢⎡⎦⎥⎤3216+⎣⎢⎡⎦⎥⎤8181=⎣⎢⎡⎦⎥⎤113 97. [由题悟法]已知矩阵A 和向量α,求A n α(n ∈N *),其步骤为: (1)求出矩阵A 的特征值λ1,λ2和对应的特征向量α1,α2. (2)把α用特征向量的组合来表示:α=sα1+tα2.(3)应用A n α=sλn 1α1+tλn2α2表示A n α.[即时应用]已知M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,计算M 5β.解:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -2-2 λ-1=λ2-2λ-3. 令f (λ)=0,解得λ1=3,λ2=-1,令⎣⎢⎡⎦⎥⎤1 22 1⎣⎢⎡⎦⎥⎤x y =3⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x +2y =3x ,2x +y =3y , 从而求得λ1=3的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,同理得对应λ2=-1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤1-1.令β=mα1+nα2,则m =4,n =-3. M 5β=M 5(4α1-3α2)=4(M 5α1)-3(M5α2)=4(λ51α1)-3(λ52α2)=4×35⎣⎢⎡⎦⎥⎤11-3×(-1)5⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤975969.1.(2016·无锡期末)已知矩阵A =⎣⎢⎡⎦⎥⎤100 2,B =⎣⎢⎡⎦⎥⎤120 1,若矩阵AB -1对应的变换把直线l变为直线l ′:x +y -2=0,求直线l 的方程.解:由题意得B -1=⎣⎢⎡⎦⎥⎤1 -20 1,所以AB -1=⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤1 -20 1=⎣⎢⎡⎦⎥⎤1 -20 2, 设直线l 上任意一点(x ,y )在矩阵AB -1对应的变换下为点(x ′,y ′),则⎣⎢⎡⎦⎥⎤1 -20 2⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,所以⎩⎪⎨⎪⎧x ′=x -2y ,y ′=2y ,将x ′,y ′代入l ′的方程,得(x -2y )+2y -2=0,化简后得l :x =2.2.(2016·江苏高考)已知矩阵A =⎣⎡⎦⎤10 2-2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2,求矩阵AB .解:设B =⎣⎡⎦⎤a cb d ,则B -1B =⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2⎣⎡⎦⎤a c bd =⎣⎡⎦⎤10 01, 即错误!=错误!,故⎩⎪⎨⎪⎧a -12c =1,b -12d =0,2c =0,2d =1,解得⎩⎪⎨⎪⎧a =1,b =14,c =0,d =12,所以B =⎣⎢⎡⎦⎥⎤1 1412. 因此,AB =⎣⎡⎦⎤102-2⎣⎢⎡⎦⎥⎤1 14012=⎣⎢⎢⎡⎦⎥⎥⎤1540 -1. 3.(2016·南京、盐城、连云港、徐州二模)已知a ,b 是实数,如果矩阵A =⎣⎢⎡⎦⎥⎤3 a b -2所对应的变换T 把点(2,3)变成(3,4).(1)求a ,b 的值;(2)若矩阵A 的逆矩阵为B ,求B 2.解:(1)由题意得⎣⎢⎡⎦⎥⎤3 a b -2⎣⎢⎡⎦⎥⎤23=⎣⎢⎡⎦⎥⎤34,所以6+3a =3,2b -6=4, 所以a =-1,b =5.(2)由(1)得A =⎣⎢⎢⎡⎦⎥⎥⎤3 -15 -2. 由矩阵的逆矩阵公式得B =⎣⎢⎢⎡⎦⎥⎥⎤2 -15 -3. 所以B 2=⎣⎢⎢⎡⎦⎥⎥⎤2 -15 -3⎣⎢⎢⎡⎦⎥⎥⎤2 -15 -3=⎣⎢⎢⎡⎦⎥⎥⎤-1 1-5 4. 4.(2016·常州期末)已知矩阵M =⎣⎢⎡⎦⎥⎤a 24 b 的属于特征值8的一个特征向量是e =⎣⎢⎡⎦⎥⎤11,点P (-1,2)在M 对应的变换作用下得到点Q ,求Q 的坐标.解:由题意知⎣⎢⎡⎦⎥⎤a 24 b ⎣⎢⎡⎦⎥⎤11=8×⎣⎢⎡⎦⎥⎤11,故⎩⎪⎨⎪⎧ a +2=8,4+b =8,解得⎩⎪⎨⎪⎧a =6,b =4,所以⎣⎢⎡⎦⎥⎤6 24 4⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4,所以点Q 的坐标为(-2,4). 5.(2016·苏州暑假测试)求矩阵M =⎣⎢⎡⎦⎥⎤-14 26的特征值和特征向量.解:特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ+1 -4 -2 λ-6=(λ+1)(λ-6)-8=λ2-5λ-14=(λ-7)(λ+2), 由f (λ)=0,解得λ1=7,λ2=-2.将λ1=7代入特征方程组,得⎩⎪⎨⎪⎧8x -4y =0,-2x +y =0,即y =2x ,可取⎣⎢⎡⎦⎥⎤12为属于特征值λ1=7的一个特征向量.同理,λ2=-2时,特征方程组是⎩⎪⎨⎪⎧-x -4y =0,-2x -8y =0,即x =-4y ,所以可取⎣⎢⎡⎦⎥⎤4-1为属于特征值λ2=-2的一个特征向量.综上所述,矩阵M =⎣⎢⎡⎦⎥⎤-1 4 2 6有两个特征值λ1=7,λ2=-2.属于λ1=7的一个特征向量为⎣⎢⎡⎦⎥⎤12,属于λ2=-2的一个特征向量为⎣⎢⎡⎦⎥⎤ 4-1.6.矩阵M =⎣⎢⎡⎦⎥⎤3 652有属于特征值λ1=8的一个特征向量e 1=⎣⎢⎡⎦⎥⎤65,及属于特征值λ2=-3的一个特征向量e 2=⎣⎢⎡⎦⎥⎤ 1-1.对向量α=⎣⎢⎡⎦⎥⎤38,计算M 3α.解:令α=me 1+ne 2,将具体数据代入,有m =1,n =-3,所以α=e 1-3e 2.所以M 3α=M 3(e 1-3e 2)=M 3e 1-3M3e 2=λ31e 1-3λ32e 2=83⎣⎢⎡⎦⎥⎤65-3×(-3)3⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤3 1532 479. 7.(2016·泰州期末)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤-1 2 52 x 的一个特征值为-2,求M 2. 解:把λ=-2代入⎪⎪⎪⎪⎪⎪⎪⎪λ+1 -2-52 λ-x =λ2-(x -1)λ-(x +5)=0,得x =3,第 21 页 共 21 页所以矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤-1 2 52 3,所以M 2=⎣⎢⎡⎦⎥⎤6 45 14. 8.已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). 求:(1) 矩阵M;(2) 矩阵M 的另一个特征值,及对应的一个特征向量e 2的坐标之间的关系;(3) 直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤88, 故⎩⎪⎨⎪⎧ a +b =8,c +d =8.⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4,故⎩⎪⎨⎪⎧-a +2b =-2,-c +2d =4. 联立以上两方程组,解得⎩⎪⎨⎪⎧ a =6,b =2,c =4,d =4,故M =⎣⎢⎡⎦⎥⎤6 24 4. (2) 由(1)知,矩阵M 的特征多项式为f (λ)=(λ-6)(λ-4)-8=λ2-10λ+16,故其另一个特征值为λ=2. 设矩阵M 的另一个特征向量是e 2=⎣⎢⎡⎦⎥⎤x y , 则Me 2=⎣⎢⎢⎡⎦⎥⎥⎤6x +2y 4x +4y =2⎣⎢⎡⎦⎥⎤x y ,解得2x +y =0. (3) 设点(x ,y )是直线l 上的任意一点,其在矩阵M 的变换下对应的点的坐标为(x ′,y ′),则⎣⎢⎡⎦⎥⎤6 24 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即x =14x ′-18y ′,y =-14x ′+38y ′,代入直线l 的方程后并化简,得x ′-y ′+2=0,即x -y +2=0.。
选修4—2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法考点新知掌握恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换等常见的线性变换的几何表示及其几何意义,并能应用这几种常见的线性变换解决简单问题.1. 求点A(3,6)在矩阵⎣⎢⎢⎡⎦⎥⎥⎤1-1012对应的变换作用下得到的点的坐标. (-3,3) 2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m 、k 的值.(m=2.k=-4)3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用变换为(x,2x),则有⎣⎢⎡⎦⎥⎤a 0b 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 2x ,∴⎩⎪⎨⎪⎧a =1b =2,∴T =⎣⎢⎡⎦⎥⎤1020.4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程.(x =y)5. 求直线x +y =5在矩阵⎣⎢⎡⎦⎥⎤0011对应的变换作用下得到的图形.(点(0,5))1. 变换一般地,对于平面上的任意一个点(向量)(x ,y),若按照对应法则T ,总能对应唯一的一个平面点(向量)(x ′,y ′),则称T 为一个变换,简记为T :(x ,y)→(x ′,y ′)或T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′.一般地,对于平面向量的变换T ,如果变换规则为T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤ax +by cx +dy ,那么根据二阶矩阵与列向量的乘法规则,可以改写为⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y 的矩阵形式,反之亦然(a ,b ,c ,d ∈R ).2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k (k>0)确定的变换T M称为(垂直)伸压变换.(3) 反射变换是轴对称变换、中心对称变换的总称. (4) 当M =⎣⎢⎡⎦⎥⎤cosθ-sinθsinθ cosθ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 变换的复合与矩阵的乘法(1) 一般情况下,AB ≠BA ,即矩阵的乘法不满足变换律. (2) 矩阵的乘法满足结合律,即(AB )C =A (BC ). (3) 矩阵的乘法不满足消去律.题型1 求变换前后的曲线方程例1 (2011·盐城三模)求曲线C :xy =1在矩阵M =⎣⎢⎡⎦⎥⎤11-11对应的变换作用下得到的曲线C 1的方程.解:设P(x 0,y 0)为曲线C 上任意一点,它在矩阵M 对应的变换下作用得到点Q(x ,y),由⎣⎢⎡⎦⎥⎤ 11-11⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x 0+y 0=x -x 0+y 0=y ,解得⎩⎨⎧x 0=x -y2y 0=x +y 2.因为P(x 0,y 0)为曲线C上一点,所以x 0y 0=1,所以x -y 2·x +y2=1,即x 2-y 2=4,所以曲线C 1的方程为x 2-y 2=4.备选变式(教师专享) 已知矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 001,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解: MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN变换下的对应点,则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧ x =12x 0y =2y 0.所以⎩⎪⎨⎪⎧x 0=2x y 0=12y . 又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型2 根据变换前后的曲线方程求矩阵例2 (2011·南通三模)已知圆C :x 2+y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 00b (a>0,b>0)对应的变换作用下变为椭圆x 29+y 24=1,求a ,b 的值.解:设P(x ,y)为圆C 上的任意一点,在矩阵A 对应的变换下变为另一个点P ′(x ′,y ′),则⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 00b ⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧x ′=ax y ′=by .又因为点P ′(x ′,y ′)在椭圆x 29+y 24=1上,所以a 2x 29+b 2y 24=1.由已知条件可知,x 2+y 2=1,所以 a 2=9,b 2=4.因为 a>0,b>0,所以a =3,b =2. 变式训练(2011·南京一模)在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢⎡⎦⎥⎤1ab 4对应的变换作用下得到直线m :x -y -4=0,求实数a ,b 的值.解:解法1:在直线l :x +y +2=0上取两点A(-2,0),B(0,-2),A ,B 在矩阵M 对应的变换作用下分别对应于点A ′,B ′,因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤-2-2b , 所以A ′的坐标为(-2,-2b);⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎡⎦⎥⎤-2a -8,所以B ′的坐标为(-2a ,-8);由题意A ′,B ′在直线m :x -y -4=0上,所以⎩⎪⎨⎪⎧(-2)-(-2b )-4=0(-2a )-(-8)-4=0,解得a =2,b =3. 题型3 平面变换的综合应用例3 (2010·江苏)在平面直角坐标系xOy 中,已知点A(0,0),B(-2,0),C(-2,1).设k 为非零实数,矩阵M =⎣⎢⎡⎦⎥⎤k 001,N =⎣⎢⎡⎦⎥⎤0110,点A 、B 、C 在矩阵MN 对应的变换下得到点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求k 的值.解:由题设得MN =⎣⎢⎡⎦⎥⎤k 001⎣⎢⎡⎦⎥⎤0110=⎣⎢⎡⎦⎥⎤0k 10, 由⎣⎢⎡⎦⎥⎤0k 10⎣⎢⎡⎦⎥⎤0-2-20 0 1=⎣⎢⎡⎦⎥⎤0 0 k 0-2-2,可知A 1(0,0)、B 1(0,-2)、C 1(k ,-2).计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k|,则由题设知:|k|=2×1=2.所以k 的值为2或-2.1. 设T 是以Ox 轴为轴的反射变换,求变换T 的矩阵.解:∵(x ′,y ′)=(x ,-y),而⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡⎦⎥⎤x y , ∴T =⎣⎢⎡⎦⎥⎤1 00-1.2. 求圆x 2+y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤2003对应的变换下,得到的曲线的方程.解:设圆x 2+y 2=1上任意一点P(x 1,y 1)在矩阵A 作用下变为Q(x ,y),则⎣⎢⎡⎦⎥⎤2003⎣⎢⎡⎦⎥⎤x 1y 1=⎣⎢⎡⎦⎥⎤x y ,所以⎩⎪⎨⎪⎧x =2x 1y =3y 1,即⎩⎨⎧x 1=x2y 1=y 3.代入x 21 +y 21 =1可得到椭圆方程x 24+y 29=1.3. 在线性变换⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y 下,直线x +y =k(k 为常数)上的所有点都变为一个点,求此点坐标.解:⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y ,⎩⎪⎨⎪⎧ x ′=x +y y ′=2x +2y ,而x +y =k ,⎩⎪⎨⎪⎧x ′=k y ′=2k (k 为常数),所以直线x +y =k(k 为常数)上的所有点都变为一个点(k,2k).第2课时 逆变换与逆矩阵、矩阵的特征值与特征向量考点新知①理解逆矩阵的意义,掌握二阶矩阵存在逆矩阵的条件,并能进行矩阵的运算. ②会求二阶矩阵的特征值和特征向量,会利用矩阵求解方程组.会利用特征值和特征向量进行矩阵运算.1. 设M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,求MN .⎣⎢⎢⎡⎦⎥⎥⎤01210. 2. (2010·宿迁期末)已知矩阵M =⎣⎢⎡⎦⎥⎤a 273,若矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤b -2-7a ,求a ,b 的值.(a =5,b =3.)3. 求矩阵⎣⎢⎡⎦⎥⎤12-12的特征多项式.解:f(λ)=⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4.4. 求矩阵A =⎣⎢⎡⎦⎥⎤-12 34的特征值.解:f(λ)=⎪⎪⎪⎪⎪⎪λ+1-2-3λ-4=(λ+1)(λ-4)-6=λ2-3λ-10=(λ+2)(λ-5).令f(λ)=0,则λ1=5,λ2=-2.5. 求矩阵⎣⎢⎡⎦⎥⎤1 00-1的属于特征值-1的一个特征向量.解:当λ1=-1时,由⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡⎦⎥⎤x y =(-1)×⎣⎢⎡⎦⎥⎤x y ,⎩⎪⎨⎪⎧2x =0-y =-y ,x =0,令y =1,所以A 的属于特征值-1的特征向量α1=⎣⎢⎡⎦⎥⎤01.1. 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.(2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1. (3) 利用行列式解二元一次方程组. 2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变 换成零向量.题型1 求逆矩阵与逆变换例1 将曲线y =2sin4x 经矩阵M 变换后的曲线方程为y =sinx ,求变换矩阵M 的逆矩阵.解:解法1:由条件知点(x ,y)在矩阵M 作用下变换为点⎝⎛⎭⎫4x ,y 2,即M ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤4x y 2,所以M =⎣⎢⎢⎡⎦⎥⎥⎤40012,设M -1=⎣⎢⎡⎦⎥⎤a b c d ,于是有MM -1=⎣⎢⎢⎡⎦⎥⎥⎤40012⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001, 所以⎩⎪⎨⎪⎧ 4a =14b =0c 2=0d 2=1,解得⎩⎪⎨⎪⎧a =14b =0c =0d =2,所以M 的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤14002. 解法2:由于M ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤4x y 2=⎣⎢⎡⎦⎥⎤x ′y ′, ⎩⎪⎨⎪⎧4x =x ′y2=y ′,所以⎩⎪⎨⎪⎧x =x ′4y =2y ′,⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤14002⎣⎢⎡⎦⎥⎤x ′y ′, 即M 的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤14002. 备选变式(教师专享) (2010·徐州市摸底)已知M =⎣⎢⎡⎦⎥⎤2-1-43,N =⎣⎢⎡⎦⎥⎤4-1-31,求二阶方阵X ,使MX =N.解:解法1:设X =⎣⎢⎡⎦⎥⎤x y z w ,按题意有⎣⎢⎡⎦⎥⎤ 2 -1-4 3⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤4 -1-3 1,根据矩阵乘法法则有⎩⎪⎨⎪⎧2x -z =42y -w =-1-4x +3z =-3-4y +3w =1,解之得⎩⎪⎨⎪⎧x =92y =-1z =5w =-1.∴X =⎣⎢⎢⎡⎦⎥⎥⎤92-15-1 . 解法2:因为MX =N ,所以X =M -1N ,M -1=⎣⎢⎢⎡⎦⎥⎥⎤32 12 2 1.∴X =M -1N =⎣⎢⎢⎡⎦⎥⎥⎤32 12 2 1·⎣⎢⎡⎦⎥⎤4-1-3 1=⎣⎢⎢⎡⎦⎥⎥⎤92 -1 5 -1. 题型2 求特征值与特征向量 例2 (2011·南通三模)已知矩阵M =⎣⎢⎡⎦⎥⎤2a21,其中a ∈R ,若点P(1,-2)在矩阵M 的变换下得到点P ′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0, 得2-2a =-4 a =3.(2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0 x +y =0,∴矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0 2x -3y =0.∴矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.变式训练(2010·宿迁模拟)求矩阵M =⎣⎢⎡⎦⎥⎤1 00-1的特征值和特征向量,并计算M 8⎣⎢⎡⎦⎥⎤23的值. 解:矩阵M 的特征多项式f(λ)=(λ-1)(λ+1),令f(λ)=0,得到矩阵M 的特征值为λ1=1或λ2=-1,矩阵M 的属于特征值λ1=1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤10,矩阵M 的属于特征值λ2=-1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤01.又⎣⎢⎡⎦⎥⎤23=2α1+3α2.所以M ⎣⎢⎡⎦⎥⎤23=M (2α1+3α2)=2(Mα1)+3(Mα2)=2(λ1α1)+3(λ2α2),M 8⎣⎢⎡⎦⎥⎤23=M 8(2α1+3α2)=2(M 8α1)+3(M 8α2)=2·18⎣⎢⎡⎦⎥⎤10+3·(-1)8⎣⎢⎡⎦⎥⎤01=⎣⎢⎡⎦⎥⎤23. 题型3 根据特征值或特征向量求矩阵 例3 (2011·南通泰州二模)已知二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32.求矩阵A .解:由特征值、特征向量定义可知,Aα1=λ1α1, 即⎣⎢⎡⎦⎥⎤a b c d⎣⎢⎡⎦⎥⎤ 1-1=-1×⎣⎢⎡⎦⎥⎤ 1-1,得⎩⎪⎨⎪⎧a -b =-1c -d =1. 同理可得⎩⎪⎨⎪⎧3a +2b =123c +2d =8,解得a =2,b =3,c =2,d =1.因此矩阵A =⎣⎢⎡⎦⎥⎤2321.备选变式(教师专享)(2010·徐州市第三次调研)已知矩阵A =⎣⎢⎡⎦⎥⎤a b cd ,若矩阵A 属于特征值3的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值-1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤ 1-1,求矩阵A .解:由矩阵A 属于特征值3的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,可得⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11,即⎩⎪⎨⎪⎧a +b =3c +d =3 . 由矩阵A 属于特征值2的一个特征向量为α2=⎣⎢⎡⎦⎥⎤1-1,可得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=(-1)⎣⎢⎡⎦⎥⎤ 1-1, 即⎩⎪⎨⎪⎧a -b =-1c -d =1,解得⎩⎪⎨⎪⎧a =1b =2c =2d =1 ,即矩阵A =⎣⎢⎡⎦⎥⎤1221.1. 求矩阵A =⎣⎢⎡⎦⎥⎤3221的逆矩阵.A 的逆矩阵为A -1=⎣⎢⎡⎦⎥⎤-1 2 2-3.2. 若N ⎣⎢⎡⎦⎥⎤4231=⎣⎢⎡⎦⎥⎤-3 2 2-1,求矩阵N .⎣⎢⎡⎦⎥⎤ 92-7-524. 3. (2011·徐州一模)已知矩阵M =⎣⎢⎡⎦⎥⎤122x的一个特征值为3,求另一个特征值及其对应的一个特征向量.矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤1-1.4. 已知矩阵A =⎣⎢⎡⎦⎥⎤ 1a -1b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21,求矩阵A .解:∵Aα1=λα1,∴⎣⎢⎡⎦⎥⎤ 1a -1b ⎣⎢⎡⎦⎥⎤21=2⎣⎢⎡⎦⎥⎤21,∴⎩⎪⎨⎪⎧2+a =4-2+b =2⎩⎪⎨⎪⎧a =2b =4.所以A =⎣⎢⎡⎦⎥⎤12-14. 5. 求矩阵⎣⎢⎡⎦⎥⎤2 11 2的特征值及对应的特征向量.矩阵⎣⎢⎡⎦⎥⎤2 112有两个特征值λ1=1,λ2=3;属于λ1=1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1,属于λ2=3的一个特征向量为⎣⎢⎡⎦⎥⎤11.。