高分子物理聚合物的分子运动
- 格式:ppt
- 大小:1.59 MB
- 文档页数:66
聚合物的结构(计算题:均方末端距与结晶度)1.简述聚合物的层次结构。
答:聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构(一级结构)和远程结构(二级结构)。
一级结构包括化学组成、结构单元链接方式、构型、支化与交联。
二级结构包括高分子链大小(相对分子质量、均方末端距、均方半径)和分子链形态(构象、柔顺性)。
三级结构属于凝聚态结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。
构型:是指分子中由化学键所固定的原子在空间的几何排列。
(要改变构型,必须经过化学键的断裂和重组。
)高分子链的构型有旋光异构和几何异构两种类型。
旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。
)。
全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。
构象:原子或原子基团围绕单键内旋转而产生的空间分布。
链段:把若干个键组成的一段链作为一个独立运动的单元链节(又称为重复单元):聚合物中组成和结构相同的最小单位高分子可以分为线性、支化和交联三种类型。
其中支化高分子的性质与线性高分子相似,可以溶解,加热可以熔化。
但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。
交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。
高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。
单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。
第七章聚合物的分子运动与转变一、选择答案1、高分子热运动是一个松弛过程,松弛时间的大小取决于(D )。
A、材料固有性质B、温度C、外力大小D、以上三者都有关系。
2、示差扫描量热仪(DSC)是高分子材料研究中常用的方法,常用来研究( B )。
⑴T g,⑵T m和平衡熔点,⑶分解温度T d,⑷结晶温度T c,⑸维卡软化温度,⑹结晶度,⑺结晶速度,⑻结晶动力学A、⑴⑵⑶⑷⑸⑹⑺⑻B、⑴⑵⑶⑷⑹⑺⑻C、⑴⑵⑶⑷⑸D、⑴⑵⑷⑹3、非晶态聚合物的玻璃化转变即玻璃-橡胶转变,下列说法正确的是(A)。
A、T g是塑料的最低使用温度,又是橡胶的最高使用温度。
B、玻璃态是高分子链段运动的状态。
C、玻璃态可以看作是等自由体积分数状态。
D、玻璃化转变是热力学平衡的一级相转变,不是一个松驰过程。
4、下列四种聚合物中,熔点最高的是( C )。
A、聚乙烯,B、聚丙烯,C、聚己内酰胺,D、聚己二酸乙二醇酯5、T g是表征聚合物性能的一个重要指标。
( D )因素会使T g降低。
A、引入刚性基团B、引入极性基团C、交联D、加入增塑剂6、下列四种方法中,测定T g比其它方法得到的高,并且灵敏度较高的是(B )。
A、热分析(DSC),B、动态力学分析仪(DMA),C、热机械法(TMA),D、膨胀计法7、差示扫描量热仪(DSC)是高分子材料研究中常用的方法,可得到很多信息,如研究结晶度、结晶速度、固化反应等,但下面的温度( D )不用它来测量。
A、玻璃化转变温度B、熔点C、分解温度D、维卡软化温度8、非晶聚合物的分子运动,(A)对应主级松弛。
A、链段运动,B、曲柄运动,C、侧基运动,D、局部松弛9、下列各组聚合物的T g高低比较正确的是(A)。
A、聚二甲基硅氧烷>顺式聚1,4-丁二烯,B、聚丙稀>聚己内酰胺,C、聚己二酸乙二醇酯>聚对苯二甲酸乙二醇酯,D、聚氯乙烯>聚偏二氯乙烯10、下列高聚物中,使用温度下限为Tg的是( C )A聚乙烯;B聚四氟乙烯;C聚二甲基硅氧烷;D环氧塑料11、中等分子量HDPE随温度升高,可依次呈现( B ):A)玻璃态、橡胶态、粘流态:B晶态、粘流态:C)晶态、橡胶态、粘流态。
高分子物理——聚合物的转变与松弛不仅具有运动单元的多样性,而且具有运动方式的多样性。
1(1)大尺寸运动单元:分子链。
(2)小尺寸运动单元:链段、链节、支链、侧基等。
2例如:振动、转动、平动、取向等。
1在一定的温度和外力作用下,高分子链的构象从一种平衡态通过分子热运动过渡到另一种与外界相适应的平衡态所需要的时间。
2高聚物分子运动时,由于运动单元所受到内摩擦阻力一般是很大的,这个过程常常是缓慢完成的,因此这个过程叫做“松弛过程”,也叫做“速度过程”。
3运动单元运动时,均需要克服各自的内摩擦阻力;也就是说,分子运动需要一定的时间,不可能瞬间完成,即依赖时间。
4凡与时间有依赖关系的性质,叫做“松弛性质”。
5(1)回缩曲线(2)回缩关系式可以通过后续的蠕变回复,推导如下关系式:Δx(t)=Δxτ-t/ e0式中,Δx是外力除去后t时刻塑料丝增加的长度值(与塑料丝拉伸前的长度相比),Δx是外力除去前塑料丝增加的长度值。
0(3)讨论由上可得:t =τ时,Δx(t)=Δx/e,也就是说,Δx(t)变化到等于Δx的1/e00倍时所需要的时间,叫做松弛时间τ。
τ越小,则Δx(t)越小,故变化(回缩)得快,即松弛过程快和运动快。
τ越大,则Δx(t)越小,故变化(回缩)得慢,即松弛过程慢和运动慢。
综上所述,τ是用来描述松弛过程快慢的物理量。
6(1)低分子物的松弛时间低分子物也具有松弛时间,只不过很短,τ=10--910~10S,即一般认为是瞬时的。
(2)高分子物的松弛时间高分子物具有松弛时间,τ比较大,且是多分散性的。
1(1)定性分析温度升高,则分子热运动能增大并且聚合物内的空隙(自由体积)增大,松弛过程加快,故松弛时间缩短。
也就是说,松弛时间τ与温度T是有一定关系的。
(2)定量分析根据Arrehnius公式,可得:τ=τexp(ΔE/RT) 0式中,ΔE为运动单元的活化能,可通过?τ-1/T直线的斜率求出。
第二章(P255)1.简述聚合物的分子运动特点。
答:聚合物的分子运动的特点是:运动单元的多重性:聚合物的运动单元可以是侧基、支链、链节、链段和整个分子等。
高分子热运动是一个松弛过程:在一定的外界条件下,聚合物从一种平衡状态通过热运动达到与外界条件相适应的新的平衡态,这个过程不是瞬间完成的,需要一定的时间。
高分子热运动与温度有关:随着温度的升高,高分子热运动的松弛时间缩短。
2.试用自由体积理论解释聚合物的玻璃化转变。
答:根据自由体积理论,液体或固体物质的体积是由两部分组成的:一部分是被分子占据的体积,称为已占体积,另一部分是未被占据的以“孔穴”形式分散于整个物质之中的自由体积。
正是由于自由体积的存在,分子链才可能通过转动和位移而调整构象。
自由体积理论认为,当高聚物冷却时,起先自由体积逐渐减少,到某一温度时,自由体积将达到最低值,这时高聚物进入玻璃态。
在玻璃态下,由于链段运动被冻结,自由体积也被冻结,并保持一恒定值。
因此,对任何高聚物,玻璃化温度就是自由体积达到某一临界值时的温度,高聚物的玻璃态可视为等自由体积状态。
3.何谓玻璃化转变温度?简述一种测量聚合物玻璃化温度的方法。
答:聚合物玻璃态与高弹态之间的转变称为玻璃化转变,对应的转变温度为玻璃化转变温度。
玻璃化转变温度可以用膨胀计法测定,即直接测量高聚物的体积或比容随温度的变化。
从体积或比容对温度曲线两端的直线部分外推,其交点对应的温度作为T;g T也可以用差热分析测量,其基本原理是在等速升温的条件下,连续测定被测试g样与惰性基准物之间的温度差△T,并以△T对试样T作图,即得差热曲线,曲线上出现一台阶,台阶处所对应的温度即为T。
g4.试从分子运动的观点说明非晶聚合物的三种力学状态和两种转变。
答:在玻璃态下(T<Tg ),由于温度较低,分子运动的能量很低,不足以克服主链内旋转的位垒,因此不足以激发起链段的运动,链段处于被冻结的状态,只有那些较小的运动单元,如侧基、支链和小链节能运动。
第五章 聚合物的分子运动和转变1.聚合物分子运动的特点: ①.运动单元的多重性 ②.分子运动的时间依赖性 ③.分子运动的温度依赖性2.运动单元的多重性: A.具有多种运动模式 B.具有多种运动单元A.具有多种运动模式:由于高分子的长链结构,分子量不仅高,还具有多分散性,此外,它还可以带有不同的侧基,加上支化,交联,结晶,取向,共聚等,使得高分子的运动单元具有多重性,或者说高聚物的分子运动有多重模式B.具有多种运动单元:如侧基、支链、链节、链段、整个分子链等* 各种运动单元的运动方式①.链段的运动: 主链中碳-碳单键的内旋转, 使得高分子链有可能在整个分子不动,即分子链质量中心不变的情况下, 一部分链段相对于另一部分链段而运动②.链节的运动: 比链段还小的运动单元③.侧基的运动: 侧基运动是多种多样的, 如转动, 内旋转, 端基的运动等④.高分子的整体运动: 高分子作为整体呈现质量中心的移动⑤.晶区内的运动: 晶型转变,晶区缺陷的运动,晶区中的局部松弛模式等3.分子运动的时间依赖性: 在一定的温度和外力作用下, 高聚物分子从一种平衡态过渡到另一种平衡态需要一定时间的,这种现象即为分子运动的时间依赖性; 因为各种运动单元的运动都需克服内摩擦阻力, 不可能瞬时完成4.松弛现象:除去外力,橡皮开始回缩,其中的高分子链也由伸直状态逐渐过渡到卷曲状态,即松弛状态。
故该过程简称松弛过程。
5.松弛时间τ : 形变量恢复到原长度的1/e 时所需的时间 6.分子运动的温度依赖性:①.温度升高,使分子的内能增加:运动单元做某一模式的运动需要一定的能量, 当温度升高到运动单元的能量足以克服的能垒时,这一模式的运动被激发。
②.温度升高使聚合物的体积增加:分子运动需要一定的空间, 当温度升高到使自由空间达到某种运动模式所需要的尺寸后, 这一运动就可方便地进行。
7.黏弹行为的五个区域: ①.玻璃态 ②.玻璃化转变区 ③.高弹态(橡胶-弹性平台区) ④.粘弹转变区 ⑤.粘流态8.图- -:模量-温度曲线----各区的运动单元、特点、名字、描述玻璃化转变为高弹态,转变温度称为玻璃化温度Tg高弹态转变为粘流态,转变温度称为粘流温度Tf* 非晶聚合物:()()t -τΔx t =Δx 0e①.从相态角度来看,玻璃态,高弹态,粘流态均属液相,即分子间的相互排列均是无序的。
分子运动是联系结构与性能的桥梁:聚合物物分子运动的规律,研究聚合物在不同条件下的力学状态和相应的热转变。
高分子的结构层次微观结构特征要在材料的宏观性质上表现出来,则必须通过材料内部分子的运动。
为了研究高聚物的宏观性质(力学、电子、光子等方面性能),只了解高聚物的结构还不行,还必须弄清高聚物分子运动的规律,才能将微观结构与宏观结构性能相结合,才能了解高聚物结构与性能的内在联系。
不同物质,结构不同,在相同外界条件下,分子运动不同,从而表现出的性能不同。
相同物质,在不同外界条件下,分子运动不同,从而表现出的性能也不同。
(1)分子运动的多样性分子运动单元的多重性①链段的运动——主链中碳-碳单键的内旋转,使得高分子链有可能在整个分子不动,即分子链质量中心不变的情况下,一部分链段相对于另一部分链段而运动。
由于分子内旋转是导致分子链柔顺性的根本原因,而高分子链的内旋转又受其分子结构的制约,因而分子链的柔顺性与其分子结构密切相关。
高分子链能够通过内旋转作用改变其构象的性能称为高分子链的柔顺性。
高分子链能形成的构象数越多,柔顺性越大。
②链节的运动——比链段还小的运动单元③侧基的运动——侧基运动是多种多样的,如转动,内旋转,端基的运动等④高分子的整体运动——高分子作为整体呈现质量中心的移动⑤晶区内的运动——晶型转变,晶区缺陷的运动,晶区中的局部松弛模式等多种运动方式小尺寸运动单元(链段尺寸以下)大尺寸运动单元(链段尺寸以上)分子运动的时间依赖性——聚合物从一种平衡态通过分子运动到另一种新的平衡态总是需要时间的。
松弛过程:τ/0t ex x -∆=∆△x0——橡皮在外力作用下的长度增量 △x ——除去外力后t 时间橡皮长度的增量 t ——观察时间 τ——松弛时间,形变量恢复到原长度的1/e 时所需的时间.取决于材料固有性质和温度、外力大小,不是单一值。
低分子10-8~10-10s, 可以看着是无松弛的瞬时过程。
高分子, 10-1~10+4 s 或更大, 可明显观察到松弛过程。
第三章 高聚物的分子运动3.1 高聚物的分子热运动1. 高分子热运动的特点1. 运动单元的多重性。
除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).2. 运动时间的依赖性。
高分子热运动是一个松驰过程。
在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作τ./0t x x e τ-= 当t=τ时, 10x x e -=式中0x 是外力未除去时塑料丝增加的长度,x (t)是外力除去后,在t 时间内测出塑料丝增加的长度,τ为常数。
因而松驰时间定义为: x 变到等于0x 的1e -时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小, τ不是单一值而是一个分布,称为”松弛时间谱”.3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。
②温度升高使高聚物发生体积膨胀。
升高温度加快分子运动,缩短松驰时间,即有/0E RT e ττ= 式中E 为活化能, 0τ为常数.如果高聚物体系的温度较低,运动单元的松驰时间τ就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间τ,就能在较短的时间内观察到松驰现象。
2. 高聚物的力学状态和热转变在一定的力学负荷下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)①线型非晶态高聚物的温度-形变曲线.线形非晶态聚合物的形变-温度曲线玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复.这种形变称为普弹形变.玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t 称为玻璃态转变温度(T g ).高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变.高弹态是高分子所特有的力学状态.流动温度:链段沿作用力方向的协同运动导致大分子的重心发生相对位移,聚合物呈现流动性,转变温度称为流动温度(T f ).粘流态:与小分子液体的流动相似,聚合物呈现粘性液体状,流动产生了不可逆变形.②交联高聚物的温度-形变曲线 交联度较小时,存在T g , 但T f 随交联度增加而逐渐消失.交联度较高时, T g 和T f 都不存在.③晶态聚合物的温度-形变曲线. 一般相对分子质量的晶态聚合物只有一个转变,即结晶的熔融,转变温度为熔点T m .当结晶度不高(X c <40%)时,能观察到非晶态部分的玻璃化转变,即有T g 和T m 两个转变.相对分子质量很大的晶态高聚物达到T m 后,先进入高弹态,在升温到T g 后才会进入粘流态,于是有两个转变.④增塑聚合物的温度-形变曲线 加入增塑剂一般使聚合物的T g 和T f 都降低,但对柔性链和刚性链,作用有所不同.对柔性链聚合物, T g 降低不多而T f 降低较多,高弹区缩小;对刚性链聚合物, T g 和T f 都显著降低,在增塑剂达到一定浓度时,由于增塑剂分子与高分子基团间的相互作用,使刚性链变为柔性链,此时T g 显著降低而T f 降低不大,即扩大了高弹区,称”增弹作用”,这点对生产上极为有用(如PVC 增塑后可作为弹性体用).3. 高聚物的松驰转变及其分子机理在T g 以下,链段是不能运动了,但较小的运动单元仍可运动,这些小运动单体从冻结到运动的变化过程也是松弛过程,称为次级松弛。
第三章 高聚物的分子运动3.1 高聚物的分子热运动1. 高分子热运动的特点1. 运动单元的多重性。
除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).2. 运动时间的依赖性。
高分子热运动是一个松驰过程。
在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作τ./0t x x e τ-= 当t=τ时, 10x x e -=式中0x 是外力未除去时塑料丝增加的长度,x (t)是外力除去后,在t 时间内测出塑料丝增加的长度,τ为常数。
因而松驰时间定义为: x 变到等于0x 的1e -时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小, τ不是单一值而是一个分布,称为”松弛时间谱”.3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。
②温度升高使高聚物发生体积膨胀。
升高温度加快分子运动,缩短松驰时间,即有/0E RT e ττ= 式中E 为活化能, 0τ为常数.如果高聚物体系的温度较低,运动单元的松驰时间τ就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间τ,就能在较短的时间内观察到松驰现象。
2. 高聚物的力学状态和热转变在一定的力学负荷下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)①线型非晶态高聚物的温度-形变曲线.线形非晶态聚合物的形变-温度曲线玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复.这种形变称为普弹形变.玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t称为玻璃态转变温度(T g).高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变.高弹态是高分子所特有的力学状态.流动温度:链段沿作用力方向的协同运动导致大分子的重心发生相对位移,聚合物呈现流动性,转变温度称为流动温度(T f).粘流态:与小分子液体的流动相似,聚合物呈现粘性液体状,流动产生了不可逆变形.②交联高聚物的温度-形变曲线 交联度较小时,存在T g , 但T f 随交联度增加而逐渐消失.交联度较高时, T g 和T f 都不存在.③晶态聚合物的温度-形变曲线. 一般相对分子质量的晶态聚合物只有一个转变,即结晶的熔融,转变温度为熔点T m .当结晶度不高(X c <40%)时,能观察到非晶态部分的玻璃化转变,即有T g 和T m 两个转变.相对分子质量很大的晶态高聚物达到T m 后,先进入高弹态,在升温到T g 后才会进入粘流态,于是有两个转变.④增塑聚合物的温度-形变曲线 加入增塑剂一般使聚合物的T g 和T f 都降低,但对柔性链和刚性链,作用有所不同.对柔性链聚合物, T g 降低不多而T f 降低较多,高弹区缩小;对刚性链聚合物, T g 和T f 都显著降低,在增塑剂达到一定浓度时,由于增塑剂分子与高分子基团间的相互作用,使刚性链变为柔性链,此时T g 显著降低而T f 降低不大,即扩大了高弹区,称”增弹作用”,这点对生产上极为有用(如PVC 增塑后可作为弹性体用).3. 高聚物的松驰转变及其分子机理在T g 以下,链段是不能运动了,但较小的运动单元仍可运动,这些小运动单体从冻结到运动的变化过程也是松弛过程,称为次级松弛。
⾼分⼦物理考研习题整理05聚合物的分⼦运动汇总1 形变-温度曲线(1)聚合物的分⼦运动有什么特点?①运动单元的多重性。
除整个分⼦的运动(布朗运动)外,还有链段、链节、侧基、⽀链等的运动(称为微布朗运动)。
②运动的时间依赖性。
从⼀种状态到另⼀种状态的运动需要克服分⼦间很强的次价键作⽤⼒(内摩擦),因⽽需要时间,称为松弛时间,记作τ。
τ/0t e x x -?=?。
当t=τ时,e x x /0t ?=?,因⽽松弛时间定义为:t x ?变为0x ?的1/e 时所需要的时间。
它反映某运动单元松弛过程的快慢。
由于⾼分⼦的运动单元有⼤有⼩,τ不是单⼀值⽽是⼀个分布,称为松弛时间谱。
③运动的温度依赖性。
升⾼温度加快分⼦运动,缩短了松弛时间。
RT E e /0?=ττ,式中ΔE 为活化能,τ0为常数。
在⼀定的⼒学负荷下,⾼分⼦材料的形变量与温度的关系称为聚合物的形变-温度曲线(旧称热-机械曲线)。
(2)试述线型⾮晶态聚合物的形变-温度曲线和模量-温度曲线上的各区域和转折点的物理意义。
形变-温度曲线与相应的模量-温度曲线形状正好相反,都⽤于反映分⼦运动。
【图12-2】两条曲线上都有三个不同的⼒学状态和两个转变(简称三态两转变)。
玻璃态:链段运动被冻结,此时只有较⼩的运动单元(如链节、侧基等)能运动,以及键长、键⾓的变化,因⽽此时的⼒学性质与⼩分⼦玻璃差不多,受⼒后形变很⼩(0.01%~0.1%),且遵循Hooke 定律,外⼒除去⽴即恢复。
这种形变称为普弹形变。
玻璃态转变:在3~5℃⼏乎所有物理性质都发⽣突变,链段此时开始能运动,这个转变温度称为玻璃化(转变)温度,记作Tg 。
⾼弹态:链段运动但整个分⼦链不产⽣移动。
此时受较⼩的⼒就可发⽣很⼤的形变(100%~1000%),外⼒除去后形变可完全恢复,称为⾼弹形变。
⾼弹态是⾼分⼦特有的⼒学状态。
黏流温度:链段沿作⽤⼒⽅向的协同运动导致⼤分⼦的重⼼发⽣相对位移,聚合物呈现流动性,此时转变温度称为流动温度,记作Tf 。