当前位置:文档之家› 可变进气歧管在发动机中的应用

可变进气歧管在发动机中的应用

可变进气歧管在发动机中的应用
可变进气歧管在发动机中的应用

可变进气歧管

技术在汽车发动机中的应用

V ariable intake manifold technology applications in the automotive engine

摘要

进气系统最重要的部分就是进气歧管,它就是一支引导气流的管子,空气经过滤清器之后,在此进行油气混合,并输送到汽缸进行燃烧。由于混合气是具有质量的流体,在进气管中的流动千变万化,工程上往往要运用流体力学来优化进气管的内部设计,例如将进气歧管内壁打磨光滑减少阻力,或者刻意制造粗糙面营造汽缸内的涡流运动。但是,正如前面所说,汽车发动机的工作转速高达每分钟数千转,各工作状态下的进气需求不尽相同。于是,天才的工程师们对进气歧管进行了深层次的开发——让它也能“变”起来。

关键词:进气系统进气歧管汽车发动机

Abstract

The most important part of the intake system is the intake manifold, it is a guide tube flow of air through the filter, the oil and gas in this mixture, and transported to the cylinder for combustion. As the mixture is a mass of fluid flow in the intake manifold of the ever-changing, often on a project to optimize the use of fluid into the pipe interior design, such as intake manifold wall polished smooth to reduce resistance, or deliberately created to create a rough surface vortex motion within the cylinder. But, as I said before, the car engine working speed of up to several thousand per minute switch, the working conditions of the intake needs vary. Thus, the genius of the engineers on the intake manifold for the development of deep level - it can "change" them.

Keywords: Intake Air intake manifold Automotive engine

目录

摘要...........................................................I Abstract.......................................................II 1 可变进气歧管技术在汽车发动机中的应用. (1)

结束语 (8)

致谢 (9)

参考文献 (10)

1 可变进气歧管技术在汽车发动机中的应用

传统发动机的进气歧管的进气通道长度是不变的,只能保证发动机在某一工况下具有良好的性能。无法在运行过程中进行调节,使发动机在两种极端工况下性能下降。研究表明,采用进气管长度可变技术(VGIS-V ariable Geometric Intake System)是改善发动机燃油经济性。提高动力性、减少有害排放的一种有效途径。

采用VGIS系统,电控单元(ECU)可根据发动机转速和负荷的变化而改变进气通道的长度,在高转速时使进气通道变短,减少进气流动损失,提高高速功率,在低转速和低负荷及启动工况下使进气通道变长,管内空气流动的动能增加,导致进气流速加快,充气效率提高,在同样的燃烧条件下会获得更大的输出功率,增加转矩。由此改善了发动机的动力性,对提高发动机的低速转矩和高速输出功率非常有效。

可变进气歧管技术包括可变进气歧管长度和可变进气共振技术,它们都是通过进气歧管的集合设计实现的。

而这种技术主要分为两种:一、可变进气歧管长度系统;二、下面主要说明可变进气歧管长度系统在福特Duratec 2.5L V6发动机的应用。

可变进气歧管长度系统(VGIS)系统可分为两大部分:一是进气歧管本身,即在进气歧管内部有一个控制进气通道长短的阀门;二是控制系统,它是由固化在ECU中的程序和系统执行部件组成。真空罐的一个管接头与进气歧管连接,另一管接头通过一段软管与电磁控制阀的借口A连接,电磁控制阀的接口B由一段软管接在阀门控制器上。阀门控制器伸出的拉杆与阀门连接。真空罐是一个有2个管接头的密闭容器,汽车起动后即处于真空状态,并起到稳压作用。电磁控制阀有三个接口,由ECU控制3个接口的接通关系,从而控制阀门的开启和关闭动作。

电磁控制阀在通电和断电控制状态下的流量特性如下:

1)通电状态。接口1施加(34+/-0.68)kPa的真空压力,接口B在标准工况下的空气流量为0.85-1.00m*3/h,接口A、B合在一起后,施加(34+/-0.68)kPa的真空压力,接口C在标准工况下的空气流量为"0",也就是接通状态切换可接口A与B之间。

2)断电状态,接口B施加(34+/-0.68)kPa的真空压力,接口C在标准工况下的空气流量为0.85-1.00m*3/h;接A施加(34+/-0.68)kPa的真空压力,接口B、C合在一起后,

测量其在标准工况下的空气流量为"0",也就是接通状态切换到B 与C 之间。

阀门控制器由带拉杆的隔膜、隔膜腔、摇臂、复位弹簧及限位块构成。通常状态,隔膜腔无真空,在复位弹簧的作用下,隔膜腔中的隔膜下沉,拉杆处于伸展状态;当隔膜腔中形成真空室,隔膜上浮使拉杆处于收缩状态。下图(图一)为VGIS 系统的控制框图,汽车启动后,通过各种传感器采集发动机的转速、负荷、车速、冷却液的温度和进气温度等信号,首先送到ECU 的信号处理模块,转换成可识别的数据与相应的预存数据做比较,预存的数据包括发动机转速4400r/min 、节气门开度17%、车速30km/h 、冷却液温度和进气温度为27度,信号大于预存的数据时,输出结果为“1”,否则,输出结果为“0”,然后把每一种信号的比较结果进行“逻辑与”运算,ECU 根据运算结果给电磁控制阀发出控制信号。调节进气通道的长度。

(图一)

“逻辑与”运算结果为“0”时,ECU 接电磁控制阀处于通电状态,接口A 与B 接通,

切断接口C 与B 的连通。真空被引入隔膜腔中,在真空作用下,隔膜上浮带动拉杆收缩,拉杆牵动摇臂使进气歧管内的阀门关闭,进气道中的气流沿着阀弧通道流入燃烧室,

曲轴转速

传感器

节气门位

置传感器

车速传感

冷却液温

度传感器

ECU

信号处理模块

信号比较模块

逻辑判断模块

电磁控制阀

阀门控制器

进气温度

传感器

从而实现了进气道变长的目的。

逻辑与”运算结果为“1”时,ECU接电磁控制阀处于断电状态,接口B与C接通,切断接口A与B的连通。大气被引入隔膜腔中,真空被解除,由于复位弹簧的作用,隔膜下沉,拉杆伸出,拉杆牵动摇臂使进气歧管内的阀门打开,进气道中的大部分气流沿着最短的通道流入燃烧室,从而实现了进气道变短的目的。

英国Ricardo公司即开发了与上述可变进气歧管结构类似的结构,它是由两种长度的冲压管组成,可旋转件A在外壳中转动,中、低速时,空气由外侧通道单独的进气管进入一长管,实现中、低速大转矩;高速时,空气由内部通口经双进气管进入一短管,实现高速大功率。

福特Duratec 2.5L V6发动机也采用了两段长度可变进气歧管,两列气缸之间有一段长进气管和一根短进气管。丰田2.0L发动机也采用了这种可变进气歧管技术。为了更好的适应不同转速的进气需求,有一些系统采用了分三段可变进气歧管长度的设计。例如奥迪V8发动机。每列气缸都有分三段可调的进气歧管,一共24个进气歧管。事实上,奥迪并没有把进气歧管分开,它在中央转子周围布置了回旋的进气歧管,转子转到不同的位置就能获得不同的进气歧管的长度。整个系统布置在V形发动机的V形夹角内侧,结构紧凑。

2005款凯越配置1.6L和1.8L澳洲霍顿twin-tec四气门双顶置凸轮轴的发动机,也采用VGIS技术,使其具有良好的低转速时的高转矩性能。

现价段可变进气歧管技术在越来越多的汽车上逐步使用,该技术在为汽车动力性和其排放性做出了不可磨灭的卓越贡献。

结束语

本文主要描述发动机可变进气歧管技术在汽车发动机上的使用,具体介绍了其中的工作原理,具体应用于何种汽车发动机,另外讲述了该技术的含义和意义,及其在其它车型发动机上的应用。

致谢

光阴似箭,日月如梭,不知不觉中我已在沈阳理工大学度过了美好的四年大学时光。期间,在老师和同学们的关怀和帮助下,我丰富了知识、扩大了视野、提高了能力,为今后的学习与发展奠定了基础。

在此我要特别的感谢我的发动机原理苌转老师。她给予我学业上的无私教诲,生活上的深切关怀。同时,感谢所有教导过、关心过、帮助过我的沈阳理工大学汽车学院的老师教授们,是他们使我有更多的机会尝试着站在理论和实践的新起点上进行思考。

在此,还要感谢在求学期间认识的所有同学和朋友们给予的帮助。

最后,我要感谢我的父母,是他们一直在背后默默地支持我。

参考文献

[1]、刘玉梅主编汽车节能技术与原理2010年5月第二版[107~110]

[2]、吴建华主编汽车发动机原理2011年1月第一版[33~35]

发动机进气歧管真空度及其故障诊断技术

发动机进气歧管真空度及其故障诊断技术 1进气歧管真空度△P定义 现代汽车四冲程发动机的进气行程在极其有限的时间内吸入混合汽,同时因结构及工作原理的需要,空气又必须通过空气滤清器、节气门、进气门等层层“路障”而进入汽缸,时间有限和道路阻塞二者作用使得进气管内的压力低于外界大气压力。进气管内的进气压力与外界大气压力之差,称为发动机进气歧管真空度△P。 △P是各汽缸交替进气时共同作用所形成的。事实上,发动机运行中,空气滤清器之后直至汽缸,进气管内的真空度以空气滤清器、节气门、进气门为分界点,分三段逐次增大。通常若无特殊说明,发动机进气歧管真空度△p约定为“掐头去尾讲中段”,即自节气门至各缸进气门之前该段进气管内的真空度,并且设定该段内的真空度各处相等(微小差异可忽略)。 2△P故障诊断原理 首先,△P取决于发动机的工作状态。汽油机负荷采用“量”调节,即依靠节气门开度α的变化控制进入汽缸混合气的量,改变发动机输出功率。以满足汽车行驶时的负荷要求。△P随α增大(减小)而减小(增大),随发动机转速n 升高(降低)而增大(减小)。技术状态良好的发动机,△P与α和n具有确定的函数关系:△P=f(α,n)。 其次,△P还与发动机技术状况有关。与之有关的技术状况一般可归纳为4类。其一,进气管道(包括在其上取用真空的真空管路)和汽缸的气密性;其二。空气滤清器和排气系统的“通顺性”;其三,点火正时和配气正时控制的准确性;其四。混合气的燃烧性(即完全燃烧、不完全燃烧、未燃烧)。 至此,不难推知,以上所述的气密性、通顺性、准确性和燃烧性等4性,无论何者变差。都会破坏发动机△P固有的函数关系△P=f(α,n),即4性变差△P必失常。发动机△P故障诊断技术就是利用此原理,反其道而行之。通过实测发动机△P,以及与发动机固有的变化规律△P=f(α,n)进行对比分析,可以对进气管道和汽缸的气密性、空气滤清器和排气系统的堵塞程度、点火正时和配气正时的控制精度以及混合汽的燃烧质量等做出技术状况判断,进而根据△P 的实测值与标准(经验)参考值之差大小,对发动机相应部位或系统进行较为准

汽车发动机进气系统的故障与维修毕业论文

汽车发动机进气系统的故障与维修毕业论文 第一章发动机电喷系统概述 1.1电喷系统综述 1.1.1电喷系统的新概念 电喷系统的实质就是一种新型的汽油供给系统。化油器利用空气流动时在节气门上方的喉管处产生负压,将浮子室的汽油连续吸出,经过雾化后输送给发动机,汽油喷施系统则是通过采用大量的传感器受各种工况,根据直接或间接检测的进气信号,经过计算机判断和处理,计算出燃烧时所需的汽油量,然后将加一定压力的汽油经喷油器喷出,供发动机使用。 1.1.2 电喷系统的优缺点 电控发动机系统取消了化油器供油系统中的喉管,喷油位置在节气门的下方或缸,有计算机控制喷油器的精准喷射量。与化油器式发动机比,电喷系统有以下优点: 1)提高了发动机的充气系数,从而提高了发动机的输出功率和扭矩。这是因为电喷系统当中没有了喉管,减少了进气压力损失;汽油喷射是在进气歧管附近,只有通过进气歧管,这样可以增加进气歧管的直径,增加进气歧管的惯性作用,提高进气效率。 2)根据发动机负荷的变化,精准控制混合气的空燃比,适应各种工况,使燃烧更充分,降低油耗,减少排气污染,而且响应速度快。 3)可均匀分配到各缸燃油,减少了爆震现象,提高了发动机工作的稳定性,同时也降低了废气排放和噪声污染。

4)提高了汽车的使用性能。在寒冷的冬季,化油器主喷油管易结冰上冻,而电喷系统没有结冰上冻现象,所以提高了冷启动性能。另外电喷系统提供的是高压供油,喷出的气雾滴较小,能与空气同时进入燃烧室混合,因而响应速度快,加速性能好。 电喷系统与传统系统相比可以使油耗降低5%-15%,废气排放量减少20%左右发动机功率提高5%-10%。电控系统无论从燃油经济性发动机动力性,还是排气和噪声等方面都具有传统系统无法比拟的优越性。电喷发动机系统的缺点就是在于价格偏高,维修要求高。 1.1.3 电喷系统的组成和工作原理 按其部件功用来看,电喷系统的组成主要有:空气供给系统(气路)、燃油供给系统(油路)和电子控制系统(电路)三大部分。 1.2空气供给系统 作用:为发动机提供清洁的空气并控制发动机的正常工作时的进气量。 组成:由空气滤清器、空气流量计、进气压力传感器、节气门体、怠速空气调整体、谐振腔、动力腔、进气歧管等。 工作原理:发动机工作时,空气经空气滤清器后,通过空气流量计(L 型)节气门体进入近期总管,在通过进气歧管分配给各缸。节气门体中设置有节气门,从而控制进入发动机的空气量,进而控制发动机的输出功率。在节气门的外部或部设有与主进气道并联的旁通带速进气通道,并由怠速控制阀控制怠速时进气量。 L型——流经怠速控制阀的空气首先经过空气流量计测量。 D型——进气歧管压力传感器测量的是进气歧管的绝对压力,流经怠速控制阀的空气也在此检测围之。怠速控制阀由ECU直接控制。 1.3 燃油供给系统 作用:向汽缸提供燃烧所需的燃油。 组成:汽油泵、汽油滤清器、压力调节器、喷油器等。

马自达6发动机进气系统可变进气歧管工作原理

马自达6轿车在进气系统上为了保证最大的进气量,共有五大先进装备,称之为“VAD+VIS +VTCS+ETC+S-VT”,这是马自达6轿车独有的先进技术。 (一)VAD-Variable Air Duct可变进气道 功能:可在PCM的控制下,在发动机大功率输出时适时打开VAD气道(多打开一个气道,相当于气道口径变大),可以最大程度地保证发动机空气量的需求充分发挥发动机的动力性能。 (二)VIS- Variable Intake-air System可变进气歧管 功能:在PCM的控制下,在小负荷低转速到大负荷高转速范围内都保持高的扭矩。 工作原理:改变有效进气歧管的长度,有效控制进气气流在进气道中的流动惯性,使气流的流动压力波的频率和进气门的频率在不同工况下适时吻合,进而最大程度保证发动机在任何工况的进气量。实质是利用的中惯性谐波增压的原理来实现发动机的最大进气量。当发动机转速低于4400转时,VIS不起作用,VIS阀门是关闭的,气流的路径较长;当发动机转速大于4400转时,VIS起作用,VIS阀门是打开的,气流的路径是较短;这样满足不同工况的空气量的需求。 (三)VTCS- Variable Tumble Control System可变涡流控制 功能:在不同的水温和转速下将进气歧管的开度打开不同的开度,以满足发动机各个工况空气的需求。 原理:在同一工况下,不同的VTCS阀门开度,使得进入发动机的气流流速发生改变,形成涡旋,涡流即是我们常说的旋涡,使得发动机的油气混合达更加充分。特别是发动机在低温冷起动 和发动机处于低负荷时,混合气的雾化不好,燃烧不充分,排放不良,为了改善低温时汽油的雾化水平,提高发动机的排放水平,使马自达6的排放水平达到和超过欧Ⅲ标准。工作过程:当水温低于62度左右,并且发动机的转速低于3750转时,使进气管的通道面积减小;随着水温的进一步提高,转速进一步上升,VTCS阀的开度完全打开,进气管的面积达到最大。 (四)ETC-Electronic Controi Throttle Valve电子节气门 顾名思义它不是由油门拉线控制进气总管的开度而是利用直流电机通过减速机构来自动实现的。 功能和工作过程:它具有普通节气门的基本功能,其作用是打开进气歧管在总管上的通道,不同工况打开不同的开度,一般轿车的节气门都是由脚踏板带动的油门拉线控制。但这种拉线控制的节气门在急加速等特殊工况时有进气迟滞现象,也就是说在急加速等特殊工况时,节气门的开度信号通过节所气门位置传感器已送出,但实际进入气缸的空气并没有及时跟进,而且节气门处在气流扰动下并不是很平稳,因此空气量并不稳定,加速不理想和不稳定。而电子节气门可根据节气门位置信号,PCM直接驱动直流电动机快速作响应,及时地将节气门打开所需的开度,而且电子节气门在自身减速机构的自锁作用下,不会因为气流的

可变进气歧管在发动机中的应用

可变进气歧管 技术在汽车发动机中的应用 V ariable intake manifold technology applications in the automotive engine

摘要 进气系统最重要的部分就是进气歧管,它就是一支引导气流的管子,空气经过滤清器之后,在此进行油气混合,并输送到汽缸进行燃烧。由于混合气是具有质量的流体,在进气管中的流动千变万化,工程上往往要运用流体力学来优化进气管的内部设计,例如将进气歧管内壁打磨光滑减少阻力,或者刻意制造粗糙面营造汽缸内的涡流运动。但是,正如前面所说,汽车发动机的工作转速高达每分钟数千转,各工作状态下的进气需求不尽相同。于是,天才的工程师们对进气歧管进行了深层次的开发——让它也能“变”起来。 关键词:进气系统进气歧管汽车发动机

Abstract The most important part of the intake system is the intake manifold, it is a guide tube flow of air through the filter, the oil and gas in this mixture, and transported to the cylinder for combustion. As the mixture is a mass of fluid flow in the intake manifold of the ever-changing, often on a project to optimize the use of fluid into the pipe interior design, such as intake manifold wall polished smooth to reduce resistance, or deliberately created to create a rough surface vortex motion within the cylinder. But, as I said before, the car engine working speed of up to several thousand per minute switch, the working conditions of the intake needs vary. Thus, the genius of the engineers on the intake manifold for the development of deep level - it can "change" them. Keywords: Intake Air intake manifold Automotive engine

有关汽车发动机可变技术的综述

论文题目:有关汽车发动机可变技术的综述 一、摘要 近几十年来,基于提高汽车发动机动力性、经济性和降低排污的要求,许多国家和发动机厂商、科研机构投入了大量的人力、物力进行新技术的研究与开发,例如可变气门技术、可变气缸技术、可变进气歧管技术。目前,这些新技术和新方法,有的已在内燃机上得到应用,有些正处于发展和完善阶段,有可能成为未来内燃机技术的发展方向。 二、关键词:可变气门技术、可变气缸技术、可变进气歧管技术 三、引言 可变进气系统分为两类:(1)多气门分别投入工作;(2)可变进气道系统。其目的都是为了改变进气涡流强度、提高充气效率;或者为了形成谐振及进气脉冲惯性效应,以适应低速及中高速工况都能提高性能的需要。 1.多气门分别投入工作 实现多气门分别投入工作的结构方案有如下两种:第一,通过凸轮或摇臂控制气门按时开或关;第二,在气道中设置旋转阀门,按需要打开或关闭该气门的进气通道,这种结构比用凸轮、摇臂控制简单。 2.可变进气道系统 可变进气道系统是根据发动机不同转速,使用不同长度及容积的进气管向气缸内充气,以便能形成惯性充气效应及谐振脉冲波效应,从而提高充气效率及发动机动力性能。 惯性可变进气系统,是通过改变进气歧管的形状的长度,低转速用长进气管,保证空气密度,维持低转的动力输出效率;高转用短进气歧管,加速空气进入汽缸的速度,增强进气气流的流动惯性,保证高转下的进气量,以此来兼顾各段转速发动机的表现。加装VIS后,发动机进气气流的流动惯性和进气效率都有所加强,从而提高了扭矩,并降低了油耗。 四、可变气门技术 可变气门正时技术几乎已成为当今发动机的标准配置,为了进一步挖掘传统内燃机的潜力,工程人员又在此基础上研发出可变气门升程技术,当二者有效的结合起来时,则为发动机在各种工况和转速下提供了更高的进、排气效率。提升动力的同时,也降低了油耗水平。 (一)配气相位机构的原理和作用

什么是可变进气系统

什么是可变进气系统 近年来环保意识抬头,加上全球车辆法规日趋严格,所以各车厂纷纷投入以环保为导向的技术领域发展新动力、新能源之现代车辆,并针对传统引擎做最佳化之设计及调整;由于引擎进气效率是影响引擎性能的关键,所以如何提升进气效率,是一个重要的议题。 往复式引擎基本的热机循环,主要是将活塞反复进行进气、压缩、膨胀(动力)、排气这几个步骤,引擎的马力是根据汽缸内吸入的空气量来决定,而动力的产生为引擎进气循环时所吸入的新鲜空气与燃料的混合气,加以压缩后点火燃烧,并将此动能转换成机械能,以作为车辆行驶的动力,最终将燃烧后的废气排出。 引擎进气量是车辆动力来源的根本,在进气系统中装有一节气门(图1、图2)及空气流量计,节气门是负责控制引擎进气量多寡用的,当它开度大时进气量变多,开度小时进气量变少,而车辆电脑会根据流经空气流量计的空气量来计算出正确的喷油量,让引擎产生动力;所以,引擎进气系统在车辆动力输出上扮演着相当重要的角色。 进气歧管 进气歧管(图3)主要是负责每一汽缸的进气需求,设

计的好坏决定了引擎的性能,因此,进气歧管应具备的机能有: ?在各种运转范围皆具备良好的容积效率。 ?新鲜空气及混合气,要可以均分配到各汽缸。 ?车辆加速时新鲜空气及燃料可以快速的供给。 空气在进气歧管流动时是有惯性力的,而当进气阀门关闭时,会阻断进气流动的惯性力,造成空气的回弹,为了减少这个问题,进气歧管必须做的细长,让回弹的空气因细长的歧管阻力而降低空气回弹力;假设引擎的惰转转速为600转时,引擎汽缸每秒有5次的进气循环,这时可以使用较细长的进气歧管来降低空气回弹力,如果引擎转速高达6000转,此时引擎汽缸每秒会有50次的进气循环,此时则希望进气歧管又粗又短,以降低进气阻力,有助于进气效率;所以在进气回弹力与进气阻力的两个议题下,引擎在低转速时进气歧管需要是细长的,而引擎在高转速时因为此时进气循环快速、进气量大增,歧管就需要粗而短。 可变进气歧管 一般自然进气引擎容积效率为85~95%,有:吸入时间短、在吸入通路中有气流之障碍物(如气门、气门导管、弯曲孔等)、在燃烧室内有剩佘之残留废气及吸入空气之惯性迟滞等原因;如果能有效利用进排气系统的形状及管道的流动效率,就可以大大的改善容积效率。可变进气歧管是为了

进气歧管设计

本文件所有内容及图片,其所有权归奇瑞汽车有限公司拥有,未经奇瑞汽车有限公 司许可,不得以任何形式复制此文件(包括其中部分或整体),以及提供给第三 方,否则奇瑞汽车有限公司有权追究其法律责任 进气歧管总成设计指南 Part Design Guideline of Intake Manifold 编 制: 郭 栋 审 核: 江 雪 峰 批 准: 杨 俊 伟 日 期: 2007.9

本文件所有内容及图片,其所有权归奇瑞汽车有限公司拥有,未经奇瑞汽车有限公 司许可,不得以任何形式复制此文件(包括其中部分或整体),以及提供给第三 方,否则奇瑞汽车有限公司有权追究其法律责任 目录 一 进气歧管概述 (3) 1.1 进气歧管的功用................................................................................................................3 1.2适用范围.............................................................................................................................3 1.3 进气歧管的总成结构以及组成. (3) 二、进气歧管开发流程 (6) 2.1开发流程.............................................................................................................................6 2.2概念设计.............................................................................................................................7 2.3布置设计.............................................................................................................................7 2.4详细设计.. (8) 三、进气歧管设计 (9) 3.1 设计原则............................................................................................................................9 3.2 分析计算..........................................................................................................................10 3.3 参数选定..........................................................................................................................11 3.4 设计方案的选定..............................................................................................................16 3.5 材料的选择......................................................................................................................16 3.6 技术要求..........................................................................................................................17 3.7 试验验证.. (17) 四、进气歧管建模.....................................................................................................17 五、进气歧管的一些先进技术 (19) 5.1 我公司应用的一些先进技术..........................................................................................19 5.2 目前在世界上应用的一些先进技术 (22) 六、进气歧管开发过程中的问题和解决措施 (26) 6.1 进气歧管支架断裂..........................................................................................................26 6.2 摆臂脱落..........................................................................................................................27 6.3 金属进气管和支架断裂..................................................................................................27 6.4 进气歧管总成装配干涉.. (28)

发动机进气系统的改装详细解说

发动机进气系统的改装详细解说 发动机进气系统包括空气滤清器、进气歧管、进气门机构等。空气经空气滤清器过滤掉杂质后,流过空气流量计,经过进气道进入进气歧管,与喷油器喷出的汽油混合后形成比例适当的可燃混合气。通过进气门进入气缸点火燃烧,产生动力。 一、容积效率与充气效率 发动机运转时,每一循环所能获得空气量的多少,是决定发动机动力大小的基本因素。发动机的进气能力是用发动机的容积效率及充气效率来衡量的。 1、容积效率 容积效率是指每一个进气行程中,气缸所吸入的空气在标准大气压力下所占的体积与气缸活塞行程容积的比值。 由于空气进入气缸时,气缸内的压力比外面的大气压力低,而且压力值会有所变化,所以采用标准大气压的状态下的体积作为共通的标准。由于进气阻力及气缸内的高温作用,将吸入气缸的空气体积换算成标准大气压下的状态时,一定小于气缸的体积,因此自然吸气发动机的容积效率一定小于1。降低进气阻力、提高进气压力、降低进气温度、降低排气回压、加大进气门面积都可提高容积效率,而发动机在高转速运转时则会降低容积效率。 进气歧臂的长度对容积效率也有影响,因为进气歧管长度的变化引发了与容积效率有关的脉动及惯性效应。较长的进气歧管有利于提高发动机低转速时的容积效率,最大扭矩也会提高,但随着转速的提高,容积效率及扭矩都会急剧降低,不利于高速运转。较短的进气歧管则可提高发动机高转速时的容积效率,但会降低发动机的最大扭矩及其出现时机。因此,若要兼顾发动机高低转速的动力输出,维持在各转速下均有较高的容积效率,就要采用可变长度的进气歧管。 2、充气效率 充气效率是指每一个进气行程所吸入的空气质量与标准状态下(1个大气压、20℃、密度为

进气歧管 的分类.

汽车发动机进气歧管的结构研究

目录 一、对进气歧管的认识 (2) 二、进气歧管的设计原则 (4) 三、对化油器、喷油嘴、单点喷射、多点喷射的认识 (5) 3.1 化油器 (5) 3.2 喷油嘴 (6) 3.3 单点电喷 (6) 3.4 多点喷射 (7) 四、可变排气歧管原理 (8) 4.1 变长度 (10) 4.2 变截面 (10) 五、可变进气歧管的分类 (11) 5.1 可变长度进气歧管 (11) 5.1.1 可变长度进气歧管原结构方案 (11) 5.1.2 可变长度进气歧管新方案结构 (12) 5.2 双通道可变进气歧管 (12) 5.3 主副通道式可变进气歧管 (13) 5.4.1 旋转式无级可变进气歧管 (15) 5.4.2 伸缩式无级可变进气歧管 (16) 5.4.3 活动插接可变进气歧管 (16) 5.5 共鸣进气系统的结构 (16) 一、对进气歧管的认识

海狮发动机进气歧管上下体汽车发动机配件-4G22D4进气歧管 在谈到进气歧管之前,先来想想空气是怎样进入引擎的。通过学习活塞在汽缸内的运作,当引擎处于进气行程时,活塞往下运动使汽缸内产生真空,与外界空气产生压力差,让空气能进入汽缸内。举例来说,就像护士小姐将药水吸入针桶内的过程一样,假想针桶就是引擎,那么当针桶内的活塞向外抽出时,药水就会被吸入针桶内,而引擎就是这样把空气吸到汽缸内的。 进气歧管位于节气门与引擎进气门之间,之所以称为歧管,是因为空气进入节气门后,经过歧管缓冲后,空气流道就在此分歧了,对应引擎汽缸的数量,如四缸引擎就有四道,五缸引擎则有五道,将空气分别导入各汽缸中。以自然进气引擎来说,由于进气歧管位于节气门之后,所以当引擎油门开度小时,汽缸内无法吸到足量的空气,就会造成歧管真空度高;而当引擎油门开度大时,进气歧管内的真空度就会变小。因此,喷射供油引擎都会在进气歧管上装设一个压力计,供给ECU(ECU(Electronic Control Unit)电子控制单元,又称“行车电脑”、“车载电脑”等。从用途上讲则是汽车专用微机控制器,也叫汽车专用单片机。电控单元的功用是根据其内存的程序和数据对空气流量计及各种传感器输入的信息进行运算、处理、判断,然后输出指令,向喷油器提供一定宽度的电脉冲信号以控制喷油量。电控单元由微型计算机、输入、输出及控制电路等组成)判定引擎负荷,而给予适量的喷油。 再次通过区分进气管、进气歧管和进气道三者来认识进气歧管。进气管是指空气从进气口进入,通过空气滤清器,直到要进入各个气缸前的这一段管道,是发动机的主要进气管路,也是总的进气管路。进气歧管是指空气从进气管进入各个气缸,空气往各个气缸分配的这一段管子,每个气缸有一个进气歧管。进气歧管的设计保证了各个气缸进气分配合理均匀。进气道则是

发动机可变气门原理解析

原创图解汽车(2)发动机可变气门原理解析【太平洋汽车网技术频道】前面已经了解过发动机的基本构造和动力来源。 其实发动机的实际运转速度并不是一成不变的,而是像人跑步一样,时而急促, 时而平缓,那么调节好自己的呼吸节奏尤其重要,下面我们就来了解一下发动机 是怎样“呼吸”的。 ●凸轮轴的作用

简单来说,凸轮轴是一根有多个圆盘形凸轮的金属杆。这根金属杆在发动机工作中起到什么作用?它主要负责进、排气门的开启和关闭。凸轮轴在曲轴的带动下不断旋转,凸轮便不断地下压气门(摇臂或顶杆),从而实现控制进气门和排气门开启和关闭的功能。 ●OHV、OHC、SOHC、DOHC代表什么意思? 在发动机外壳上经常会看到SOHC、DOHC这些字母,这些字母到底表示的是什么意思?OHV是指顶置气门底置凸轮轴,就是凸轮轴布置在气缸底部,气门布置气缸顶部。OHC是指顶置凸轮轴,也就是凸轮轴布置在气缸的顶部。 如果气缸顶部只有一根凸轮轴同时负责进、排气门的开、关,称为单顶置凸轮轴(SOHC)。气缸顶部如果有两根凸轮轴分别负责进、排气门的开关,则称为双顶置凸轮轴(DOHC)。

底置凸轮轴的凸轮与气门摇臂间需要采用一根金属连杆连接,凸轮顶起连杆从而推动摇臂来实现气门的开合。但过高的转速容易导致顶杆折断,因此这种设计多应用于大排量、低转速、追求大扭矩输出的发动机。而凸轮轴顶置可省略顶杆简化了凸轮轴到气门的传动机构,更适合发动机高速时的动力表现,顶置凸轮轴应用比较广泛。 ●配气机构的作用 配气机构主要包括正时齿轮系、凸轮轴、气门传动组件(气门、推杆、摇臂等),主要的作用是根据发动机的工作情况,适时的开启和关闭各气缸的进、排气门,以使得新鲜混合气体及时充满气缸,废气得以及时排出气缸外。 ●什么是气门正时?为什么需要正时? 所谓气门正时,可以简单理解为气门开启和关闭的时刻。理论上在进气行程中,活塞由上止点移至下止点时,进气门打开、排气门关闭;在排气行程中,活塞由下止点移至上止点时,进气门关闭、排气门打开。

别克凯越可变进气歧管故障诊断与排除

别克凯越可变进气歧管故障诊断与排除 摘要:08款别克凯越轿车,行驶52000公里出现仪表盘内故障灯亮,通过诊断,发现是可变进气歧管电磁阀控制电路故障,通过了解可变进气歧管的工作原理,诊断与排除可变进气歧管故障。 关键词:凯越;可变进气歧管;电磁阀 1.故障现象 一辆2008款别克凯越轿车来店维修,行驶里程为52000公里。根据车主反应,车辆在行驶过程中发现仪表盘内发动机故障灯点亮。通过使用KT600诊断,读出两个故障码,分别是P1109和P0443。记录以后进行消码处理,重新着车并试运行一段距离以后,重新读取故障,发现只剩下P1109。经过查验维修手册,P1109是可变进气歧管电磁阀控制电路。 该车发动机装备发动机F16D3直列4缸、双顶置凸轮轴,采用多点式喷射和自然进气。为增加发动机动力输出采用可变进气歧管装置。 2.可变进气歧管工作原理 为了确定故障原因是否是由可变进气歧管电磁阀控制电路造成的,首先需要了解可变进气歧管工作原理: 可变进气岐管(VGIS)控制阀系统采用可变进气技术使发动机在不同运转速率下达到工作性能和效率的最大化。发动机的扭矩输出曲线特性主要取决于一定速率下的平均压力变化。当进气阀门闭合时,缸内平均压力的变化和进气量成一定的比例。 当发动机速率一定时,进气量的大小则与进气阀门系统的设计有关。VGIS 控制阀常用来改善进气岐管的腔体结构。当VGIS控制阀断开时,进气岐管内形成一个较大的腔体。当VGIS控制阀闭合时,进气岐管内形成两个较小的腔体。两种腔体尺寸导致了不同的扭矩曲线,以此来改善发动机处于低速或高速时的工作性能。 在低速、高负载情况下,VGIS控制阀闭合,此时腔体内形成一个较长的进气通道,以此增加扭矩。在高速、高负载情况下,VGIS控制阀断开,此时腔体内形成一个较短的进气通道,以此增加马力。 当点火开关点着时,在保险丝保护下,点火电压向VGIS控制阀线圈供电。VGIS控制阀线圈常闭时空气无法通过阀体。当发动机的速度和负载增加至设定的阈值时,VGIS控制阀线圈通过发动机控制模块(ECM)接地,同时被触发,并通过控制阀执行器向控制阀的气腔进气。随后,执行器将进气岐管打开至预期

可变进气系统

可变配气正时控制机构的主要目的是在维持发动机怠速性能情况下,改善全负荷性能。这种机构是保持进气门开启持续角不变,改变进气门开闭时刻来增加充气量。 (1)凌志LS400汽车可变配气正时控制机构(VVT-i) VVT-i系统用于控制进气门凸轮轴在50°范围内调整凸轮轴转角,使配气正时满足优化控制发动机工作状态的要求,从而提高发动机在所有转速范围内的动力性、经济性和降低尾气的排放。 VVT-i系统由VVT-i控制器、凸轮轴正时机油控制阀和传感器三部分组成,如下图所示。其中传感器有曲轴位置传感器、凸轮轴位置传感器和VVT传感器。 LS400汽车的发动机是8缸V型排列4气门式的,有两根进气凸轮轴和两根排气凸轮轴。在工作过程中,排气凸轮轴由凸轮轴齿形带轮驱动,其相对于齿形带轮的转角不变。曲轴位置传感器测量曲轴转角,向ECU 提供发动机转速信号;凸轮轴位置传感器测量齿形带轮转角;VVT传感器测量进气凸轮轴相对于齿形带轮的转角。它们的信号输入ECU,ECU 根据转速和负荷的要求控制进气凸轮轴正时控制阀,控制器根据指令使

进气凸轮轴相对于齿形带旋转一个角度,达到进气门延迟开闭的目的,用以增大高速时的进气迟后角,从而提高充气效率。 1)结构 VVT-i控制器的结构如下图所示,它包括由正时带驱动的外齿轮和与进气凸轮轴刚性连接的内齿轮,以及一个内齿轮、外齿轮之间的可动活塞。活塞的内、外表面上有螺旋形花键。活塞沿轴向的移动,会改变内、外齿轮的相对位置,从而产生配气相位的连续改变。 VVT外壳通过安装在其后部的剪式齿轮驱动排气门凸轮轴。 凸轮轴正时控制阀根据ECU的指令控制阀轴的位置,从而将油压施加给凸轮轴正时带轮以提前或推迟配气正时。发动机停机时,凸轮轴正时控制阀处于最延迟的位置,如下图(b)所示。 2)工作原理

发动机进气系统作业指导

发动机进气系统设计作业指导书 编制:日期: 审核:日期: 批准:日期: 发布日期:年 月 日 实施日期:年 月 日

前言 为使本中心进气系统设计设计规范化,参考国内外汽车设计的技术规范,结合公司标准和已开发车型的经验,编制本作业指导书。意在对本公司设计人员在设计过程中起到一种指导操作的作用,让一些相关设计经验不够丰富的员工有所依据,提高设计的效率和成效。本作业指导书将在本中心所有车型开发设计中贯彻,并在实践中进一步提高完善。 本标准于201X年XX月XX日起实施。 本标准由 研究院第五中心提出。 本标准由 技术标准分院负责归口管理。 本标准主要起草人:

目 录 一、进气系概述 (4) 1.1 进气系功能概述 (4) 1.2 进气系构成 (4) 1.3 主要零部件介绍 (5) 二、进气系的设计流程 (8) 2.1 进气系的设计主要流程及输出内容 (8) 2.2 进气系统的设计要求 (10) 2.3 进气系统数模的构建 (15) 2.4 设计参考文件及标准 (15) 三.进气系统的设计过程 (15) 3.1 设计输入及标杆对比 (16) 3.2 系统设计方案 (18) 3.3 厂家分析 (19) 3.4 参数设计计算 (21) 3.5 技术文件的编制 (21) 3.6 输出内容检查项目 ........................... 错误!未定义书签。四.试制装车及生产中经常出现的问题 .. (22) 五.参考文献 (23)

一、进气系概述 1.1 进气系功能概述 进气系统主要作用是降低噪声、为发动机提供充足新鲜的空气。对于增压型发动机,需要增加中冷系统,其作用对发动机涡轮增压后的热空气进行强制冷却。 1.2 进气系构成 进气系统包括引气管、谐振腔、空气滤清器、进气软管、曲轴箱通风管以及发动机总成所附带的进气歧管、进气门机构等。对于增压型发动机,进气系统除包括传统意义上的进气系统组件,还包括中冷器、中冷器进出气管以及压力温度传感器等组件。下面以JZ08和JZ16车型为例,分别以自然吸气式发动机和增压型发动机进气系构成。 图 1 自然吸气式发动机(JZ08)进气系统

发动机进气设计

发动机进气设计 进气部分认识: Plenum:稳压箱Cylinder Runner:进气歧管 我们主要研究方向是稳压箱体积和进气歧管长度,进气总管的长度与布置有关。总的来说稳压箱体积影响着扭矩和功率还有发动机响应,进气歧管长度影响着平均有效压力,当然对扭矩和功率是有直接影响的。 1稳压箱体积选择: 由于缺乏实验装置,只好借鉴国外的实验。这个实验是在进气总管和进气歧管一定的情况下(进气总管长度符合动态效应),改变稳压箱 体积,通过一系列测试来探 究不同稳压箱体积下发动机 的表现。(F4I发动机) 扭矩与功率 这附图是稳压箱体积1.2L时

与6.0L时发动机的扭矩曲线,可以看到在7000之前,较小的稳压箱有比较小的一个扭矩优势,但是超过7000转之后,较大的稳压箱可以保证扭矩持续输出。图中可以明显看到较大的稳压箱的引擎扭矩远 大于小稳压箱。由于赛车的 加速与扭矩有着直接关系并 且FSAE比赛对车速要求不 高对加速要求很高,所以要 在扭矩提升上下很大功夫才 行。作图时最大功率的对比。 稳压箱压力 左边这幅图则是稳压箱压 力与凸轮轴角度变化的关 系图,其中TC是上止点, BC是下止点。IVO/IVC分 别指气门开启与关闭。可以 看出较大的稳压箱在进气 时可以提供很好的稳定压 力,而小的稳压箱在上止点与下止点时压力波动很大。有可能是因为稳压箱体积太小会影响到每个进气歧管的动态效应,歧管里不同时段的compression wave 受到了削弱,这可以从下图的2.4L的稳压箱的充气效率急剧下降看出。原因可能是因为小稳压箱里的膨胀波比大稳压箱要大,所以互相影响

很大,导致充气效率下降。 Transient Response瞬时响 应 这里用到了一个方法就是 60ms throttle transient 大 概就是油门瞬间开启吧。 这幅图是平均有效压力 (平均有效压力越大引擎 做工能力越强)与cycle就 是冲程的关系。可以看到 6.0L的平均有效压力在6 个冲程之后才达到平均水 平。最小的稳压箱有最好的 响应,其他体积则差不多。这里值得注意的一点是,6个cycle的延时,就算最有经验的车手能感觉的出来么?所以不要用太大的稳压箱都是可以的。

汽车可变技术..

汽车可变技术 一、汽车可变汽缸技术 可变气缸技术一般适用于多气缸大排量车型,如V6、V8、V12发动机,因为日常行驶,大多数情况下并不需要大功率的输出,所以大排量多汽缸就显得有点浪费,于是可变汽缸技术应运而生,它可以在不需要大功率的输出时,控制关闭一部分汽缸,以减少燃油的消耗。 (1)VCM,全称V ariable Cylinder Management,它是本田所拥有的一种可变汽缸管理技术,它可以在行驶时将车辆的个别汽缸关闭,让一台3.5升V6发动机在3、4、6缸之间变化,排量则在1.75升至3.5升之间变化。 这套可变汽缸技术可以很智能的管理车辆发动机,当车辆进行爬坡、加速、起步等全负荷工作时,发动机的六个汽缸会全部投入工作,而当车辆以中速巡航状态行驶时,工作的汽缸数会减半,即只工作三个汽缸,而在高速巡航时,为了保证车辆的动力输出,运行汽缸的数量会增加至四个。 借助三种工作模式,VCM系统能够细致地确定发动机的工作排量,使其随时与行车要求保持一致。由于系统会自动关闭非工作缸的进气门和排气门,所以可避免与进、排气相关的吸排损失,并进一步提高了燃油经济性。VCM系统综合实现了最高的性能和最高的燃油经济性-这两种特性在常规发动机上通常无法共存。 非工作缸的火花塞会继续点火,以尽量降低火花塞的温度损失,防止气缸重新投入工作时因不完全燃烧造成火花塞油污。本田的这套

系统采用电子控制,并采用专用的一体式滑阀,这些滑阀与缸盖内的摇臂轴支架一样起着双重作用。根据系统电子控制装置发出的指令,滑阀会有选择地将油压导向特定气缸的摇臂。然后,该油压会推动同步活塞,实现摇臂的连接和断开。 VCM系统对节气门开度、车速、发动机转速、自动变速箱档位选择及其它因素进行监测,以针对各种工作状态确定适宜的气缸启用方案。此外,该系统还会确定发动机机油压力是否适合VCM进行工作模式的切换,以及催化转化器的温度是否仍会保持在适当范围内。为了使气缸启用或停用时的过渡能够平稳进行,系统会调整点火正时、线控节气门的开度,并相应地启用或解除变矩器锁定。最终,3缸、4缸和6缸工作模式间的过渡,会在驾驶员觉察不到的状态下完成。 (2)MDS,全称Multi-Displacement System,克莱斯勒的汽缸可变技术。 MDS就是依靠关闭相应的汽缸来达到节油的效果。但与本田不同,由于克莱斯勒的HEMI发动机采用的是OHV结构,凸轮轴上布满了凸轮,所以其无法像本田那样通过比较复杂的副摇臂和液压控制的连接结构来实现关闭汽缸的作用。 克莱斯科HEMI发动机的挺柱有一个独特的滑块结构,该结构与气门推杆相连,滑块下方有一个卡销,卡销可以使滑块与挺柱链接,推动气门推杆,或使滑块滑动,让挺柱无法推动气门推杆。当挺住推动推杆驱动气门摇臂,气门全部打开,此时HEMI发动机的八个汽缸

进气岐管铸造与加工过程

进气岐管铸造与加工过程 目录: 1进气岐管介绍 2进气岐管的铸造 3震动焊接 4组装 5检测 (1)进气岐管 基础知识 在谈到进气歧管之前,我们先来想想空气是怎样进入引擎的。在引擎概论中我们曾提到活塞在气缸内的运作,当引擎处于进气行程时,活塞往下运动使汽缸内产生真空(也就是压力变小),好与外界空气产生压力差,让空气能进入汽缸内。举例来说,大家都应该有被打过针,也看过护士小姐如何将药水吸入针桶内吧!假想针桶就是引擎,那么当针桶内的活塞向外抽出时,药水就会被吸入针桶内,而引擎就是这样把空气吸到汽缸内的。由于进气端的温度较低,复合材料开始成为热门的进气歧管材质,其质轻则内部光滑,能有效减少阻力,增加进气的效率。 进气歧管介绍 得名原因 进气歧管位于节气门与引擎进气门之间,之所以称为「歧管」,是因为空气进入节气门后,经过歧管缓冲统后,空气流道就在此「分歧」了,对应引擎汽缸的数量,如四缸引擎就有四道,五缸引擎则有五道,将空气分别导入各汽缸中。以自然进气引擎来说,由于进气歧管位于节气门之后,所以当引擎油门开度小时,汽缸内无法吸到足量的空气,就会造成歧管真空度高;而当引擎油门开度大时,进气歧管内的真空度就会变小。因此,喷射供油引擎都会在进气歧管上装设一个压力计,供给ECU判定引擎负荷,而给予适量的喷油。 不同用处 歧管真空不只可用来供给判定引擎负荷的压力讯号,还有许多用处呢!如刹车也需要利用引擎的真空来辅助,所以当引擎发动后刹车踏板会轻盈许多,就是因为有真空辅助的缘故。还有某些形式的定速控制机构也会利用到歧管真空。而这些真空管一旦有泄漏或者不当改装,会造成引擎控制失调,也会影响煞车的作动,所以奉劝读者尽量不要于真空管上作不当的改装,以维护行车的安全。 设计巧妙 进气歧管的设计也是大有学问的,为了引擎每一汽缸的燃烧状况相同,每一缸的歧管长度和弯曲度都要尽可能的相同。由于引擎是由四个行程来完成运转程序,所以引擎每一缸会以脉冲方式进气,依据经验,较长的歧管适合低转速运转,而较短的歧管则适合高转速运转。所以有些车型会采用可变长度进气歧管,或连续可变长度进气歧管,使引擎在各转速域都能发挥较佳的性能。 不同定义

POWER-CHIP 改装实例 帕萨特1.8T 刷ECU+MS-R可变进气歧管,低调的奢华

帕萨特作为大众最经典车型之一,相信大家是再熟悉不过了,而帕萨特B5中d的1.8T 发动机尤为经典,用在帕萨特,宝来,奥迪,TT,就连四代高尔夫GTI也同样采用了这款发动机,可想而知该发动机的普及程度。由于车厂对ECU 调校的不同,所以同款发动机确有不同动力的输出。该发动机电脑使用BOSCH ME 7.5发动机管理系统,原装参数: 发动机形式: 1.8升涡轮增压发动机(A WL) 供油方式排气量:1781 最大扭矩:(N·m/rpm) 210/1750-4600 压缩比9.3:1 最大功率[Kw/rpm] 110/5700 150匹/5400转 欧系车型安全系数相对较高,车身底盘较重,原装150匹的马力对于帕萨特来说不为十分理想,要知道目前很多2.0发动机输出参数已经超过改发动机,所以起步较肉,不过该车在涡轮介入后提速还是不错的,但毕竟美中不足。欧系车型带涡轮发动机车型一般会对发动机和其它部件有相应的强化,所以,还有足够的空间去发挥这台车应有的本色。 再来看看这台车改装参数吧: 1.8 Turbo 原装150 PS / 110 KW 改装后205 PS / 150 KW 增加扭矩75 NM

仅仅通过刷ECU 即可获得55匹的马力,多于原车30%,即使你进气及全段排气改完,也无非得到20匹左右的马力,价格对于刷ECU 起码多于2倍。所以刷ECU 对这款发动机是超具性价比。 闲话少说,这台车可以通过免拆调校,找到车载OBD2诊断接口在手刹旁边的胶垫下,与车连接设备和电脑: 开始读取原车数据:

经过90分钟左右的等待,德国终于将改装后的数据发送过来,下载后,开始写入: 来个大图,整个写入过程约8分钟左右:

进气歧管真空度

进气歧管真空度的利用与空气供给系统的维护 空气供给系统是电控汽车发动机的一个重要组成部分,它的功用不仅仅为发动机提供所需的清洁空气,而且通过传感器对进气的数量、压力和温度等进行准确测量,作为电控单元(ECU)对发动机的喷油时刻、喷油量以及点火提前角等进行闭环控制的重要依据,从而达到提高汽车动力性、经济性和降低排放的目的。因此,在排除发动机故障时,不但要检查电路和油路,而且还要检查气路。! 从整体上来说,电控汽车发动机空气供给系统由两大部分组成,一是纯气道部件,包括空气滤清器、进气连接管、节气门体、进气总管和进气歧管等;二是电子测量装置或者执行机构,包括空气流量计(或者进气压力传感器)、进气温度传感器、怠速控制阀等。 进气歧管真空度的利用 当发动机运转以后,在进气歧管内便形成了一定的真空度。进气歧管真空度的大小随着发动机负荷和转速的变化而变化(在不同工况下进气歧管真空度的变化量一般为50KPa)。也就是说,进气歧管真空度的变化意味着发动机负荷和转速的变化。正是巧妙地利用这一特性,现代汽车最大限度地实现了功能的扩展。 ⑴利用进气歧管真空度的变化作为传感器或者执行器的“动力源”,对汽车进行自动控制。例如:燃油压力调节器、真空膜盒式进气压力传感器、曲轴箱强制通风装置(PCV)、汽油蒸发回收装置(EVAP)等。除此以外,底盘部分的自动变速器真空式节气门阀、真空制动助力器、汽车巡航控制中的真空式节气门开度控制装置等,都是利用进气歧管真空度的变化实现控制的。 ⑵可以方便地模拟进气歧管真空度的变化,有利于汽车故障的判断。例如,通过堵住空气滤清器的进气口,人为地制造富燃状态;拔下一根发动机的真空软管,人为地制造稀薄燃烧状态,同时利用示波器或者数字式万用表检测氧传感器的不同反应。如果在富燃状态时氧传感器输出电压为800mv以上,而在稀薄燃烧状态下输出电压为200mv以下,则表示氧传感器正常,能够正确反应尾气中的残留氧;如果氧传感器信号电压不发生这种变化,说明氧传感器有故障。 ⑶用真空表测量进气歧管真空度的变化,也可以方便地分析不少故障,而且它对故障的诊断范围比采用测量气缸压缩压力的方法更加广泛。通过进气歧管真空度的变化情况,可以判断有一个或者几个气缸密封不良,因而造成气缸压力下降等故障。 因此,凡是发动机出现怠速不良,发动机震抖,排气管产生冲动;怠速过高,无法调低;混合气过稀等故障时,都要检查空气流量计、节气门体、辅助空气阀、怠速稳定阀、废气再循环阀等进气系统的软管及其接头是否松动、破损或者漏气。 空气供给系统的维护 对于电控燃油喷射发动机来说,进气系统的漏气对发动机工作性能的影响远比化油器式发动机的影响大。因为在电喷发动机上,这部分漏气是不经过空气流量计计量的,它对空燃比的影响非常明显。 由于电喷发动机对进气歧管的真空度极其敏感,因此现代汽车发动机对于进气管路极其重视,从空气滤清器的空气进口,一直到消声器的排气出口,都控制得十分严密,容不得有丝毫的泄漏现象。如果进气系统密封不严或者出现漏气时,电控系统将获得错误的信号,并由此带来一系列的负面影响。例如一辆帕

相关主题
文本预览
相关文档 最新文档