第5讲 导数及其应用答案
- 格式:doc
- 大小:2.03 MB
- 文档页数:21
第5讲指数与指数函数[考纲解读]1。
理解有理指数幂的含义,掌握指数幂的运算,并能通过具体实例了解实数指数幂的意义.2。
理解指数函数的概念,理解指数函数的单调性并掌握指数函数的图象及其通过的特殊点.(重点、难点)3。
通过具体实例,了解指数函数模型的实际背景,并体会指数函数是一类重要的函数模型.[考向预测] 从近三年高考情况来看,本讲是高考中的命题热点.预测2020年高考主要与函数的图象、最值、比较大小、指数函数图象过定点为命题方向;也有可能与其他知识相结合进行考查.1.根式2.有理数指数幂(1)幂的有关概念①正数的正分数指数幂:a错误!=错误!(a>0,m,n∈N*且n〉1).②正数的负分数指数幂:a-错误!=错误!=错误!(a〉0,m,n∈N*且n〉1).③0的正分数指数幂等于错误!0;0的负分数指数幂错误!没有意义.(2)有理数指数幂的性质①a r a s=错误!a r+s(a>0,r,s∈Q);②(a r)s=错误!a rs(a>0,r,s∈Q);③(ab)r=错误!a r b r(a〉0,b〉0,r∈Q).3.指数函数的图象与性质y=a x(a〉0且a≠1)a>10〈a〈1图象1.概念辨析(1)错误!与(错误!)n都等于a(n∈N*).()(2)[(-2)6] 错误!=(-2)6×错误!=(-2)3=-8.()(3)函数y=3·2x与y=2x+1都不是指数函数.( )(4)若a m〈a n(a〉0,且a≠1),则m〈n.( )答案(1)×(2)×(3)√(4)×2.小题热身(1)函数y=a x-a(a〉0,且a≠1)的图象可能是( )答案C解析函数y=a x-a的图象过点(1,0),排除A,B,D。
(2)化简错误!的结果是________.答案-错误!解析由题意得x〈0,所以错误!=错误!=错误!=错误!=-错误!。
g (x ) ⎥导数及其应用一、知识点梳理1. 导数:当∆x 趋近于零时,f (x 0 + ∆x ) - f (x 0 )趋近于常数 c 。
可用符号“ → ”记作:∆x当∆x → 0 时, f (x 0 + ∆x ) - f (x 0 ) → c 或记作 lim f (x 0 + ∆x ) - f (x 0 ) = c ,符号∆x∆x →0∆x“ → ”读作“趋近于”。
函数在 x 0 的瞬时变化率,通常称作 f (x ) 在 x = x 0 处的导数,并记作 f '(x 0 ) 。
即 f ' (x ) = lim f (x 0 + ∆x ) - f (x 0 )∆x →0 ∆x2. 导数的几何意义是曲线在某一点处的切线的斜率;导数的物理意义,通常是指物体运动在某一时刻的瞬时速度。
即若点 P (x 0 , y 0 ) 为曲线上一点,则过点 P (x 0 , y 0 ) 的切线的斜率k = f ' (x ) = lim f (x 0 + ∆x ) - f (x 0 ) 切 0∆x →0 ∆x由于函数 y = f (x ) 在 x = x 0 处的导数,表示曲线在点 P (x 0 , f (x 0 )) 处切线的斜率, 因此,曲线 y = f (x ) 在点 P (x 0 , f (x 0 )) 处的切线方程可如下求得:(1)求出函数 y = f (x ) 在点 x = x 0 处的导数,即曲线 y = f (x ) 在点 P (x 0 , f (x 0 )) 处 切线的斜率。
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为:y - y 0 = f ' (x 0)(x - x )03. 导数的四则运算法则:1) ( f (x ) ± g (x ))' = f '(x ) ± g '(x )2)[ f (x )g (x )]' = f '(x )g (x ) + f (x )g '(x )3) ⎢⎡ f (x ) ⎤'= g (x ) f '(x ) - f (x )g '(x ) ⎣ ⎦4. 几种常见函数的导数:g 2 (x )(1) C'= 0(C为常数) (2)(x n)'=nx n-1(n ∈Q) (3)(sin x)'= cos x (4)(cos x)'=-sin x (7)(e x )'=e x (5) (ln x)'=1x(8)(a x )'=a x ln a(6) (log ax)'=1log ex a5.函数的单调性:在某个区间(a, b) 内,如果f ' (x) > 0 ,那么函数y = f (x) 在这个区间内单调递增;如果f ' (x) < 0 ,那么函数y =6.函数的极值求函数f (x) 极值的步骤:①求导数f '(x) 。
专题一 第5讲 导数及其应用课时训练提能[限时45分钟,满分75分]一、选择题(每小题4分,共24分)1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)= A .-eB .-1C .1D .e解析 f ′(x )=2f ′(1)+1x,令x =1,得f ′(1)=2f ′(1)+1,∴f ′(1)=-1.故选B. 答案 B2.(2012·泉州模拟)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为A .3B .2C .1D.12解析 设切点为(x 0,y 0). ∵y ′=12x -3x ,∴12x 0-3x 0=12, 解得x 0=3(x 0=-2舍去). 答案 A3.(2012·聊城模拟)求曲线y =x 2与y =x 所围成图形的面积,其中正确的是 A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y解析 两函数图象的交点坐标是(0,1),(1,1), 故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故求曲线y =x 2与y =x 所围成图形的面S =⎠⎛01(x -x 2)d x .答案 B4.函数f (x )=32231,0,e , 0ax x x x x ⎧++≤⎪⎨>⎪⎩在[-2,2]上的最大值为2,则a 的取值范围是A.⎣⎢⎡⎭⎪⎫12ln 2,+∞B.⎣⎢⎡⎦⎥⎤0,12ln 2C .(-∞,0]D.⎝ ⎛⎦⎥⎤-∞,12ln 2 解析 当x ≤0时,f ′(x )=6x 2+6x ,函数的极大值点是x =-1,极小值点是x =0,当x =-1时,f (x )=2,故只要在(0,2]上e ax≤2即可,即ax ≤ln 2在(0,2]上恒成立,即a ≤ln 2x在(0,2]上恒成立,故a≤12ln 2.答案 D5.设函数f (x)=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x的一个极值点,则下列图象不可能为y =f (x )图象的是解析 设h (x )=f (x )e x,则h ′(x )=(2ax +b )e x+(ax 2+bx +c )e x =(ax 2+2ax +bx +b +c )e x .由x =-1为函数f (x )e x 的一个极值点,得当x =-1时,ax 2+2ax +bx +b +c =c -a =0,∴c =a .∴f (x )=ax 2+bx +a .若方程ax 2+bx +a =0有两根x 1、x 2,则x 1x 2=aa=1,D 中图象一定不满足该条件.答案 D6.设a ∈R ,若函数f (x )=e ax+3x (x ∈R )有大于零的极值点,则a 的取值范围是 A .(-3,2)B .(3,+∞)C .(-∞,-3)D .(-3,4)解析 由已知得f ′(x )=3+a e ax,若函数f (x )在x ∈R 上有大于零的极值点,则f ′(x )=3+a e ax =0有正根.当3+a e ax=0成立时,显然有a <0,此时x =1a ln ⎝ ⎛⎭⎪⎫-3a ,由x >0得到参数a 的取值范围为a <-3.答案 C二、填空题(每小题5分,共15分)7.(2012·济南三模)曲线y =e x +x 2在点(0,1)处的切线方程为________. 解析 y ′=e x +2x ,∴所求切线的斜率为e 0+2×0=1, ∴切线方程为y -1=1×(x -0),即x -y +1=0. 答案 x -y +1=08.(2012·枣庄市高三一模)⎠⎛014-x 2d x =________.解析 ⎠⎛014-x 2d x 表示圆x 2+y 2=4中阴影部分的面积的大小,易知∠AOB =π6,OC =1,∴⎠⎛014-x 2d x =S △OBC +S 扇形AOB=12×1×3+12×π6×22=32+π3. 答案32+π39.(2012·泉州模拟)若函数f (x )=x -a x +ln x (a 为常数)在定义域上是增函数,则实数a 的取值范围是________.解析 ∵f (x )=x -a x +ln x 在(0,+∞)上是增函数, ∴f ′(x )=11x +≥0在(0,+∞)上恒成立,即a ≤2x而2x4, 当且仅当x, 即x =1时等号成立,∴a ≤4. 答案 (-∞,4]三、解答题(每小题12分,共36分)10.(2012·泉州模拟)已知函数f (x )=x 3+ax 2+bx +a 2(a ,b ∈R ). (1)若函数f (x )在x =1处有极值为10,求b 的值;(2)若对任意a ∈[-4,+∞),f (x )在x ∈[0,2]上单调递增,求b 的最小值. 解析 (1)f ′(x )=3x 2+2ax +b ,则⎩⎪⎨⎪⎧f ′1=3+2a +b =0f 1=1+a +b +a 2=10⇒⎩⎪⎨⎪⎧a =4b =-11或⎩⎪⎨⎪⎧a =-3b =3.当⎩⎪⎨⎪⎧a =4b =-11时,f ′(x )=3x 2+8x -11,Δ=64+132>0,所以函数有极值点;当⎩⎪⎨⎪⎧a =-3b =3时,f ′(x )=3(x -1)2≥0,所以函数无极值点.则b 的值为-11.(2)解法一 f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立, 则F (a )=2xa +3x 2+b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立. ∵x ≥0,F (a )在a ∈[-4,+∞)单调递增或为常数函数,所以得F (a )min =F (-4)=-8x +3x 2+b ≥0对任意的x ∈[0,2]恒成立,即b ≥(-3x 2+8x )max ,又-3x 2+8x =-3⎝ ⎛⎭⎪⎫x -432+163≤163,当x =43时,(-3x 2+8x )max =163,得b ≥163,所以b 的最小值为163.解法二 f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立, 即b ≥-3x 2-2ax 对任意的a ∈[-4,+∞),x ∈[0,2]都成立,即b ≥(-3x 2-2ax )max ,令F (x )=-3x 2-2ax =-3⎝ ⎛⎭⎪⎫x +a 32+a23.①当a ≥0时,F (x )max =0,∴b ≥0; ②当-4≤a <0时,F (x )max =a 23,∴b ≥a 23.又∵⎝ ⎛⎭⎪⎫a 23max =163,∴b ≥163.综上,b 的最小值为163.11.已知函数f (x )=ex ln x.(1)求函数f (x )的单调区间; (2)设x >0,求证:f (x +1)>e2x -1;(3)设n ∈N +,求证:ln(1×2+1)+ln(2×3+1)+…+ln[n (n +1)+1]>2n -3.解析 (1)由题知,函数f (x )的定义域为(0,+∞), 由f ′(x )=ex ln x(ln x +1).令f ′(x )>0,解得x >1e ;令f ′(x )<0,解得0<x <1e.故f (x )的增区间为⎝ ⎛⎭⎪⎫1e ,+∞,减区间为⎝ ⎛⎭⎪⎫0,1e . (2)证明 要证f (x +1)>e 2x -1,即证(x +1)ln(x +1)>2x -1⇔ln(x +1)>2x -1x +1⇔ln(x +1)-2x -1x +1>0.令g (x )=ln(x +1)-2x -1x +1,则g ′(x )=1x +1-3x +12=x -2x +12,令g ′(x )=0,得x =2, 且g (x )在(0,2)上单调递减, 在(2,+∞)上单调递增, 所以g (x )min =g (2)=ln 3-1,故当x >0时,有g (x )≥g (2)=ln 3-1>0, 即f (x +1)>e2x -1得证.(3)证明 由(2)得ln(x +1)>2x -1x +1,即ln(x +1)>2-3x +1, 所以ln[k (k +1)+1]>2-3k k +1+1>2-3k k +1, 所以ln(1×2+1)+ln(2×3+1)+…+ln[n (n +1)+1] >⎝ ⎛⎭⎪⎫2-31×2+⎝ ⎛⎭⎪⎫2-32×3+…+⎣⎢⎡⎦⎥⎤2-3n n +1=2n -3+3n +1>2n -3.12.设函数f (x )=-a x 2+1+x +a ,x ∈(0,1],a ∈R *(1)若f (x )在(0,1]上是增函数,求a 的取值范围; (2)求f (x )在(0,1]上的最大值. 解析 (1)当x ∈(0,1]时,f ′(x )=-a ·xx 2+1+1. 要使f (x )在x ∈(0,1]上是增函数,需使f ′(x )=-axx 2+1+1≥0在(0,1]上恒成立. 即a ≤x 2+1x=1+1x2在(0,1]上恒成立.而1+1x2在(0,1]上的最小值为2,又a ∈R *,∴0<a ≤2为所求. (2)由(1)知:①当0<a ≤2时,f (x )在(0,1]上是增函数. ∴[f (x )]max =f (1)=(1-2)a +1; ②当a >2时,令f ′(x )=0,得x = 1a 2-1∈(0,1]. ∵0<x < 1a 2-1时,f ′(x )>0; ∵1a 2-1<x ≤1时,f ′(x )<0. ∴[f (x )]max =f ⎝ ⎛⎭⎪⎫1a 2-1=a -a 2-1. 综上,当0<a ≤2时,[f (x )]max =(1-2)a +1; 当a >2时,[f (x )]max =a -a 2-1.。
导数在函数中的应用一、知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数形如山峰形如山谷3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) (3)函数的极大值一定大于其极小值.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 解析 (1)f (x )在(a ,b )内单调递增,则有f ′(x )≥0. (3)函数的极大值也可能小于极小值.(4)x 0为f (x )的极值点的充要条件是f ′(x 0)=0,且x 0两侧导函数异号. 答案 (1)× (2)√ (3)× (4)× (5)√2.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A.1B.2C.3D.4解析 由题意知在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正. 答案 A3.函数f (x )=2x -x ln x 的极值是( ) A.1eB.2eC.eD.e 2解析 因为f ′(x )=2-(ln x +1)=1-ln x ,令f ′(x )=0,所以x =e ,当f ′(x )>0时,解得0<x <e ;当f ′(x )<0时,解得x >e ,所以x =e 时,f (x )取到极大值,f (x )极大值=f (e)=e. 答案 C4.(2019·青岛月考)函数f (x )=cos x -x 在(0,π)上的单调性是( ) A.先增后减 B.先减后增 C.单调递增D.单调递减解析易知f′(x)=-sin x-1,x∈(0,π),则f′(x)<0,所以f(x)=cos x-x在(0,π)上递减.答案D5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.答案D6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为()A.4B.2或6C.2D.6解析函数f(x)=x(x-c)2的导数为f′(x)=3x2-4cx+c2,由题意知,在x=2处的导数值为12-8c+c2=0,解得c=2或6,又函数f(x)=x(x-c)2在x=2处有极小值,故导数在x=2处左侧为负,右侧为正,而当e=6时,f(x)=x(x-6)2在x=2处有极大值,故c=2.答案C考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值. (1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间. 解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=12x (x +1)(x +4)e x . 令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 规律方法 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间. 2.若所求函数的单调区间不止一个时,用“,”与“和”连接.【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在⎝ ⎛⎭⎪⎫0,1e 上递增 D.在⎝ ⎛⎭⎪⎫0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.解析 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e .(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.答案 (1)D (2)⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.解 因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax .(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).考点三 函数单调性的简单应用 角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝ ⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( ) A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6(2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e 2的解集为( ) A.(-∞,1) B.(1,+∞) C.(1,e)D.(e ,+∞)解析 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x .由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增,又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cos π4, 即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4.(2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减.由F (x )<1e 2=F (1),得x >1, 所以不等式F (x )<1e 2的解集为(1,+∞).答案 (1)B (2)B角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x . (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x -ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解. 设G (x )=1x 2-2x ,所以只要a >G (x )min . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x , 所以a ≥G (x )max . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4],因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12解析 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x ≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 答案 (1)B (2)B三、课后练习1.(2017·山东卷)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x B.f (x )=x 2 C.f (x )=3-xD.f (x )=cos x解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确.对于C ,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x ·cos x ,则g ′(x )=2e x cos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确. 答案 A2.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ).则原不等式可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1). 又f ′(x )=x cos x +2x =x (2+cos x ), 由2+cos x >0,得x >0时,f ′(x )>0.所以f (x )在(0,+∞)上单调递增. ∴|ln x |<1⇔-1<ln x <1⇔1e <x <e. 答案 D3.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.解析 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13. 答案 ⎣⎢⎡⎦⎥⎤-13,134.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x, 当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a 2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点.由于g ′(0)=-2,∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9;由g ′(3)>0,即m >-373. ∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.。
导数及其应用专题五:利用导数研究函数零点问题一、知识储备1、利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数. 2、利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解; (2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解. 二、例题讲解1.(2022·重庆市秀山高级中学校高三月考)已知函数()e e x x f x x =+. (1)求函数()f x 的单调区间和极值;(2)讨论函数()()()g x f x a a =-∈R 的零点的个数.【答案】(1)单调递减区间是(,2)-∞-,单调递增区间是(2,)-+∞,极小值为21e -,无极大值;(2)详见解析. 【分析】(1)利用导数求得()f x 的单调区间,进而求得极值.(2)由(1)画出()f x 大致图象,由此对a 进行分类讨论,求得()g x 的零点个数. 【详解】(1)函数()f x 的定义域为R ,且()(2)e x f x x '=+, 令()0f x '=得2x =-,则()'f x ,()f x 的变化情况如下表示:(2,)-+∞.当2x =-,()f x 有极小值为21(2)e f -=-,无极大值. (2)令()0f x =有1x =-:当1x <-时,()0f x <;当1x >-时,()0f x >,且()f x 经过212,e A ⎛⎫-- ⎪⎝⎭,(1,0)B -,(0,1)C .当x →-∞,与一次函数相比,指数函数e x y -=增长更快,从而1()0e xx f x -+=→;当x →+∞时,()f x →+∞,()f x '→+∞,根据以上信息,画出大致图象如下图所示.函数()()()g x f x a a =-∈R 的零点的个数为()y f x =与y a =的交点个数. 当2x =-时,()f x 有极小值21(2)e f -=-. ∴关于函数()()()g x f x a a =-∈R 的零点个数有如下结论: 当21e a <-时,零点的个数为0个; 当21e a =-或0a ≥,零点的个数为1个; 当210ea -<<时,零点的个数为2个. 【点睛】求解含参数零点问题,可利用分离常数法,结合函数图象进行求解.感悟升华(核心秘籍)本题讨论()()()g x f x a a =-∈R 零点的个数,将问题分解为()y f x =与y a =交点的个数,注意在利用导函数求()f x 单调性,极值后,画出草图,容易出错,本题利用极限x →-∞时,()0f x →,从而将草图画的更准确;三、实战练习1.(2022·河南高三开学考试(文))若函数()34f x ax bx =+-,当2x =时,函数()f x 有极值43-.(1)求函数的递减区间;(2)若关于x 的方程()0f x k -=有一个零点,求实数k 的取值范围. 【答案】(1)递减区间为()2,2-;(2)428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)对函数进行求导,利用()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩,解方程即可得1,34.a b ⎧=⎪⎨⎪=⎩,对函数求导,根据导数的性质列表,即可得答案;(2)作出函数的图象,直线与函数图象需有1个交点,即可得答案; 【详解】(1)()23f x ax b '=-,由题意知()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩解得1,34.a b ⎧=⎪⎨⎪=⎩ 故所求的解析式为()31443f x x x =-+,可得()()()2422f x x x x '=-=-+,令()0f x '=,得2x =或2x =-,由此可得所以函数的递减区间为2,2-.(2)由(1)知,得到当2x <-或2x >时, ()f x 为增函数; 当22x -<<时, ()f x 为减函数,∴函数()31443f x x x =-+的图象大致如图,由图可知当43k <-或283k >时, ()f x 与y k =有一个交点,所以实数k 的取值范围为428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点睛:根据函数的单调性做出该函数的大致图像,进而利用数形结合求解,考查利用导数研究函数的极值、单调性、零点,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力、运算求解能力.2.(2022·陕西西安中学高三月考(理))已知函数()()1xf x e ax a R =--∈.(1)试讨论函数()f x 的零点个数;(2)若函数()()ln 1ln xg x e x =--,且()()f g x f x <⎡⎤⎣⎦在()0,x ∈+∞上恒成立,求实数a 的取值范围.【答案】(1)当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)(],1-∞【分析】(1)通过求解函数的单调性,然后根据零点存在定理,通过讨论求解得出函数零点的个数;(2)根据(1)中结论,得到函数()f x 在(0,)+∞上单调递增,将不等式转换为自变量的比较,最后得出结论. 【详解】解:(1)根据题意,可得()x f x e a '=-,则有:①若0a ,则()0x f x e a '=->,此时可得函数()f x 在R 上单调递增, 又因为(0)0f =,所以函数只有一个零点; ②若0a >,令()0f x '=,则有ln x a =,所以()0ln f x x a '>⇒>,此时函数()f x 在(ln ,)a +∞上单调递增;()0ln f x x a '<⇒<,此时函数()f x 在(,ln )a -∞上单调递减;即()(ln )1ln min f x f a a a a ==--,则有:()i 当ln 01a a =⇒=时,则()0f x ,此时函数()f x 只有一个零点;()ii 当ln 0a ≠时,即1a ≠时,则(ln )(0)0f a f <=,又因为x →-∞时,()f x →+∞;x →+∞时,()f x →+∞, 根据零点存在定理可得,此时函数()f x 在R 上有两个零点. 综上可得,当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)下面证明:0x ∀>,有()0g x x <<,先证:0x ∀>,有()0g x >,由(1)可知当1a =时,()()00min f x f ==,即当0x >时,1x e x ->,故0x ∀>,()()()1ln 1ln ln ln10x xe g x e x g x x ⎛⎫-=--==>= ⎪⎝⎭,再证0x ∀>,()g x x <;要证0x ∀>,()g x x <,只需证明0x ∀>,1x xe e x-<,即证0x ∀>,1x x e xe -<,即证0x ∀>,10x x xe e -+> 令()1(0)x x H x xe e x =-+>()0x H x xe '=>在(0,)+∞上恒成立,即得函数()H x 在(0,)+∞上单调递增,故有()(0)0H x H >=,即0x ∀>,10x x xe e -+>恒成立,即0x ∀>,有()0g x x <<,当1a ≤时,由(1)得,()f x 在(0,)+∞上单调递增,则由上结论可知,[()]()f g x f x <在(0,)x ∈+∞上恒成立,符合题意;当1a >时,由(1)得,()f x 在(0,ln )a 上单调递减,在(ln ,)a +∞上单调递增, 此时当0ln x a <<时,0()ln [()]()g x x a f g x f x <<<⇔>,不合题意, 综上可得,1a ,即(],1a ∈-∞. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;(2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)()0,1. 【分析】(1)求出导函数()212121ax x f x ax x x-'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)把()f x 有两个零点,转化为2ln x xa x +=有两个解,令()2ln x x h x x+=,二次求导后得到函数()h x 的单调性和极值,即可求出实数a 的取值范围. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)若()f x 有两个零点,即2ln 0ax x x --=有两个解,2ln x x a x +=.设()2ln x x h x x +=,()312ln x h x xx '-=-, 设()12ln F x x x =--,因为函数()F x 在()0,∞+上单调递减,且()10F =, 所以当01x <<时,()0F x >,()0h x '>,当1x >时,()0F x <,()0h x '<. 以函数()h x 在()0,1上单调递增,在()1,+∞上单调递减, 且 x →+∞时,()0h x →,()11h =, 所以01a <<.即实数a 的取值范围为()0,1.4.(2022·沙坪坝·重庆南开中学)已知函数()e 1xf x x a -=++(R a ∈).(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)()20,e -.【分析】(1)对函数求导,进而讨论a 的符号,进而得到函数的单调区间;(2)由(1)可以判断0a >,根据(1)可知()()min ln 0f x f a =<,进而根据零点存在定理结合放缩法得到答案. 【详解】(1)()f x 的定义域为R ,()1e xf x a -'=-,①当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增; ②当0a >时,令()0f x '=得ln x a =, 当ln x a <时,()0f x '<,()f x 单调递减, 当ln x a >时,()0f x '>,()f x 单调递增,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增综上所述,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)由(1)可知,0a ≤时,()f x 在R 上单调递增,函数至多有一个零点,不合题意.0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,因为函数有2个零点,所以()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=.记()()e 0x g x x x =-<,则()e 1xg x '=-,所以(),0x ∈-∞时,()0g x '<,()g x 单调递减,所以()()010g x g >=>,则e xx >,于是2e2x x ->-,则x <0时,2e 4xx ->. 所以当x <0时,()214ax f x x >++,限定1x <-,则()()212844ax f x x x ax >+=+, 所以当1x <-且8x a<-时,()0f x >.于是,若函数有2个零点,则()20,e a -∈.【点睛】在“()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=”这一步之后,另一个特值不太好找,这时候需要利用e xx >得到2e2x x->-,进而根据放缩法得到结论. 5.(2022·赣州市第十四中学高三月考(文))已知函数()e 2xf x x =+. (1)求函数()y f x =的单调区间;(2)若函数()()()g x f x ax a =-∈R ,在定义域内恰有三个不同的零点,求实数a 的取值范围.【答案】(1)()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数;(2)⎛⎫+∞⎪⎪⎭. 【分析】(1)求出函数()f x 的定义域,利用导数与函数单调性的关系可求得函数()f x 的增区间和减区间;(2)分析可知,直线y a =与函数()22xeh x x x=+(0x ≠且2x ≠-)的图象有三个交点,利用导数分析函数()22xe h x x x=+的单调性与极值,数形结合可得出实数a 的取值范围.【详解】(1)因为()e 2xf x x =+的定义域为{}2x x ≠-,且()()()212x e x f x x +'=+,则当2x <-时,()0f x '<,()f x 为减函数; 当21x -<<-时,()0f x '<,()f x 为减函数; 当1x >-时,()0f x '>,()f x 为增函数,综上可得:()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数; (2)令函数()()0g x f x ax =-=,因为0x =不是方程的解,所以可得22xe a x x=+,构造函数()22xeh x x x =+(0x ≠且2x ≠-),则()()()22222x e x h x x x -'=+,由()0h x '=可得x =作出函数()h x 的图象如下图所示:由图可知,当a >时,函数y a =与函数()y h x =的图象有三个不同的交点,因此实数a 的取值范围是⎛⎫+∞⎪⎪⎭.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.(2022·天津静海一中高三月考)已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 【答案】(1)-9,单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-;(2)1,12⎛⎫⎪⎝⎭.【分析】(1)根据(1)0f '-=即可求得a 的值,利用导函数求解单调区间;(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,转化为()g x 有三个不同的零点.【详解】(1)由已知得2()36f x x x a '=-+, ∵在1x =-处的切线与x 轴平行 ∴(1)0f '-=,解得9a =-.这时2()3693(1)(3)f x x x x x ==+'--- 由()0f x '>,解得3x >或1x <-; 由()0f x '<,解13x .∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-. (2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点. ∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <; 由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-.依题意得10210b b ⎧->⎪⎨⎪-<⎩,解得112b <<.故b 的取值范围为1,12⎛⎫⎪⎝⎭.7.(2022·沙坪坝·重庆南开中学高三月考)已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围.【答案】(1)3()=ln 24min f x +,()2max f x =;(2)10,2e ⎛⎫⎪⎝⎭.【分析】(1)当1a =时,求出导函数,求出函数得单调区间,即可求出()f x 在区间1[,1]3上的最值;(2)由()()0g x f x x =-=,分离参数得2ln ()x a h x x ==,根据函数2ln ()xh x x =得单调性作图,结合图像即可得出答案. 【详解】解:(1)当1a =时,()2ln f x x x x =+-,(21)(1)()x x f x x-+'=,∴()f x 在11[,)32单调递减,在1(,1]2单调递增,11114ln ln 339339f ⎛⎫=+-=+ ⎪⎝⎭,()414112ln 993f e f ⎛⎫==+> ⎪⎝⎭,∴13()()ln 224min f x f ==+,()(1)2max f x f ==.(2)()()0g x f x x =-=2ln ()x a h x x ⇔==,则312ln ()xh x x -'=,∴()h x在单调递增,在)+∞单调递减,12h e=,当0x →时,()h x →-∞,当x →+∞时,()0h x →, 作出函数2ln ()x h x x =和y a=得图像, ∴由图象可得,1(0,)2a e∈.8.(2022·全国高三专题练习)已知函数()ln f x a x bx =+的图象在点(1,3)-处的切线方程为21y x =--. (1)若对任意1[,)3x ∈+∞有()f x m 恒成立,求实数m 的取值范围;(2)若函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,求实数k 的范围. 【答案】(1)[ln31--,)+∞;(2)3(ln2,0)4-.【分析】(1)()af x b x'=+,(0)x >,根据函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--.可得f '(1)2=-,f (1)3=-,解得a ,b ,利用导数研究函数的单调性极值与最值即可得出实数m 的取值范围. (2)由(1)可得:2()ln 32g x x x x k =-+++,利用导数研究函数的单调性极值与最值,根据函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,可得最值满足的条件,进而得出实数k 的取值范围.【详解】解:(1)()a f x b x'=+,(0)x >.函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--. f '∴(1)2=-,f (1)3=-,∴23a b b +=-⎧⎨=-⎩,解得3b =-,1a =.()ln 3f x x x ∴=-.13()13()3x f x x x --=-=',1[,)3x ∈+∞,()0f x '∴.∴当13x =时,函数()f x 取得最大值,1()ln313f =--.对任意1[,)3x ∈+∞有()f x m 恒成立,所以()max m f x ,1[,)3x ∈+∞.ln31m ∴--.∴实数m 的取值范围是[ln31--,)+∞.(2)由(1)可得:2()ln 32g x x x x k =-+++,∴1(21)(1)()23x x g x x x x--'=+-=, 令()0g x '=,解得12x =,1. 列表如下:由表格可知:当1x =时,函数()f x 取得极小值g (1)k =;当2x =时,函数()g x 取得极大值13()ln224g k =-++.要满足函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点, 3ln2040k k ⎧-++>⎪⎨⎪<⎩, 解得3ln204k -<<, 则实数k 的取值范围3(ln2,0)4-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力于计算能力,属于难题.9.(2022·全国高三开学考试)已知函数()()()21102f x x a x x =-+>. (1)若()()ln g x f x a x =+,讨论函数()g x 的单调性;(2)已知()()()2ln 222m x f x x x a x a =-++-+,若()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,求a 的取值范围.【答案】(1)答案见解析;(2)9ln 21,105⎛⎤+ ⎥⎝⎦ 【分析】(1)求出导函数,对a 进行分类讨论:①0a ≤;②01a <<;③a =1;④a >1,利用导数研究单调性. (2)把()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点转化为关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭利用导数判断单调性,求出值域,即可求出a 的范围. 【详解】(1)()f x 的定义域为(0,+∞),()()()()11x x a a f x x a x x--'=-++=. ①当0a ≤时,令()0f x '<,得到01x <<;令()0f x '>,得到1x >,此时()f x 在(0,1)上为减函数,在(1,+∞)上为增函数;②当01a <<时,令()0f x '<,得到1<<a x ;令()0f x '>,得到0x a <<或1x >,此时()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数;③当a =1时,显然()0f x '≥恒成立,此时()f x 在0,+∞)上为增函数;④当a >1时,令()0f x '<,得到1x a <<;令()0f x '>,得到01x <<或x a >.此时()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.综上:①当0a ≤时, ()f x 在(0,1)上为减函数,在(1,+∞)上为增函数; ②当01a <<时, ()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数; ③当a =1时,()f x 在0,+∞)上为增函数;④当a >1时,()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.(2)()()()22ln 222ln 22m x f x x x a x a x ax x x a =-++-+=---+在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,即关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭则()()2232ln 4=2x x x h x x +--'+, 令()2132ln 4,2p x x x x x ⎡⎫=+--∈+∞⎪⎢⎣⎭,,则()()()212x x p x x-+'=,显然()0p x '≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,故()p x 在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.因为p (1)=0,所以当1,12x ⎡⎫∈⎪⎢⎣⎭,有()0p x <,即()0h x '<所以()h x 单调递减;当()1x ∈+∞,,有()0p x >,即()0h x '>所以()h x 单调递增; 因为()()9ln 24=,1,0111423ln 21532h h h h ⎛⎫⎛⎫+==-> ⎪ ⎪⎝⎭⎝⎭,所以a 的取值范围9ln 21,105⎛⎤+ ⎥⎝⎦ 10.(2022·贵州贵阳一中(文))已知函数3211()()32f x x ax a =-∈R 在[0,1]上的最小值为16-.(1)求a 的值;(2)若函数()()2()g x f x x b b =-+∈R 有1个零点,求b 的取值范围. 【答案】(1)1a =;(2)76b <-或103b >.【分析】(1)利用导数分0a ,01a <<,1a =和1a >四种情况求出函数的最小值,然后列方程可求出a 的值; (2)由(1)3211()232g x x x x b =--+,可得3211232b x x x =-++,构造函数3211()232h x x x x =-++,利用导数求出函数的单调区间和极值,结合函数图像可得答案 【详解】解:(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=,当0a 时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增, min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减; [,1]x a ∈时,()0f x '>,()f x 单调递增,所以333min 111()()326f x f a a a a ==-=-,31166a -=-,所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意;当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >;综上,1a =. (2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++,令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+',所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<; 当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以 117()(1)2326h x h =-=+-=-极小, 1110()(2)844323h x h ==-⨯+⨯+=极大,如图:函数()g x 有1个零点,所以76b <-或103b >.。
第5讲 指数与指数函数, )1.根式 (1)根式的概念①若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,xn 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,n >1).②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a mn=1(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a >0,r ,s ∈Q );②(a r )s =a rs(a >0,r ,s ∈Q ); ③(ab )r=a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象与性质1.辨明三个易误点(1)指数幂的运算容易出现的问题是误用指数幂的运算法则,或在运算变换中方法不当,不注意运算的先后顺序等.(2)指数函数y =a x(a >0,a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.(3)在解形如a 2x+b ·a x +c =0或a 2x +b ·a x+c ≥0(≤0)的指数方程或不等式时,常借助换元法解决,但应注意换元后“新元”的范围.2.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .1.教材习题改编 化简12-(-1)0的结果为( ) A .-9 B .7 C .-10 D .9B2.教材习题改编 设x +x -1=3,则x 2+x -2的值为( ) A .9 B .7 C .5D .3B 因为x +x -1=3.所以(x +x -1)2=9,即x 2+x -2+2=9, 所以x 2+x -2=7. 3.函数f (x )=ax -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x-1 D .y =log 2(2x )A 由f (x )=ax -1(a >0,a ≠1)的图象恒过点(1,1),又0=1-1,知(1,1)不在y =1-x 的图象上.4.教材习题改编 若a >1且a3x +1>a-2x,则x 的取值范围为________.因为a >1,所以y =a x为增函数, 又a3x +1>a-2x,所以3x +1>-2x ,即x >-15.⎝ ⎛⎭⎪⎫-15,+∞ 5.若指数函数y =(a 2-1)x在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. (-2,-1)∪(1,2)指数幂的运算化简下列各式:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-12-(0.01)0.5; (2)56a 13·b -2·⎝ ⎛⎭⎪⎫-3a -12b -1÷⎝ ⎛⎭⎪⎫4a 23·b -312. 【解】 (1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+14×23-110=1+16-110=1615.(2)原式=-52a -16b -3÷⎝ ⎛⎭⎪⎫4a 23·b -312 =-54a -16b -3÷⎝ ⎛⎭⎪⎫a 13b -32=-54a -12·b -32=-54·1ab 3=-5ab 4ab 2.指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100. (2)原式=2(4ab -1)3210a 32b -32=16a 32b-3210a 32b -32=85.指数函数的图象及应用(1)函数f (x )=ax -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0(2)若方程|3x-1|=k 有一解,则k 的取值范围为________. 【解析】 (1)由f (x )=a x -b的图象可以观察出函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=ax -b的图象是在f (x )=a x的基础上向左平移得到的,所以b <0.(2)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点, 所以方程有一解.【答案】 (1)D (2){0}∪上单调递减,则k 的取值范围如何?由本例(2)作出的函数y =|3x-1|的图象知,其在(-∞,0]上单调递减,所以k ∈(-∞,0].指数函数的图象及应用(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.1.函数f (x )=1-e |x |的图象大致是( )A 将函数解析式与图象对比分析,因为函数f (x )=1-e |x |是偶函数,且值域是(-∞,0],只有A 满足上述两个性质.2.若关于x 的方程|a x-1|=2a (a >0,且a ≠1)有两个不等实根,则a 的取值范围是________.方程|a x-1|=2a (a >0,且a ≠1)有两个不等实根转化为函数y =|a x-1|与y =2a 有两个交点.(1)当0<a <1时,如图①,所以0<2a <1,即 0<a <12;(2)当a >1时,如图②,而y =2a >1不符合要求.所以0<a <12.⎝⎛⎭⎪⎫0,12指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下四个命题角度: (1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质;(4)求解指数型函数中参数的取值范围.(1)(2016·高考全国卷丙)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b(2)(2017·福州模拟)已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.(3)若偶函数f (x )满足f (x )=2x-4(x ≥0),则不等式f (x -2)>0的解集为________. 【解析】 (1)因为a =243=1613,b =425=1615,c =2513,且幂函数y =x 13在R 上单调递增,指数函数y =16x在R 上单调递增,所以b <a <c .(2)当a <1时,41-a=21,所以a =12;当a >1时,代入不成立. (3)f (x )为偶函数,当x <0时,f (x )=f (-x )=2-x-4.所以f (x )=⎩⎪⎨⎪⎧2x-4,x ≥0,2-x -4,x <0,当f (x -2)>0时,有⎩⎪⎨⎪⎧x -2≥0,2x -2-4>0 或⎩⎪⎨⎪⎧x -2<0,2-x +2-4>0, 解得x >4或x <0.所以不等式的解集为{x |x >4或x <0}. 【答案】 (1)A (2)12(3){x |x >4或x <0}有关指数函数性质的问题类型及解题思路(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.角度一 比较指数幂的大小1.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <cD .b <c <aC 因为指数函数y =0.6x在(-∞,+∞)上为减函数, 所以0.60.6>0.61.5,即a >b ,又0<0.60.6<1,1.50.6>1,所以a <c ,故选C.角度二 解简单的指数方程或不等式 2.(2015·高考江苏卷)不等式2x 2-x<4的解集为________.因为2x 2-x<4,所以2x 2-x<22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. {x |-1<x <2}(或(-1,2))角度三 研究指数型函数的性质3.(2017·太原模拟)函数y =2x -2-x是( ) A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减A 令f (x )=2x -2-x ,则f (-x )=2-x -2x=-f (x ),所以函数f (x )是奇函数,排除C 、D.又函数y =-2-x,y =2x 均是R 上的增函数,故y =2x -2-x在R 上为增函数.角度四 求解指数型函数中参数的取值范围4.已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是,则a +b =________.当a >1时,函数f (x )=a x+b 在上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0无解.当0<a<1时,函数f (x )=a x+b 在上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b=-32.-32, )——利用换元法求解指数型函数的值域问题函数f (x )=⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在x ∈上的值域是________. 【解析】 因为x ∈,若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤34,57.【答案】 ⎣⎢⎡⎦⎥⎤34,57(1)此题利用了换元法,把函数f (x )转化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,将问题转化为求二次函数在闭区间上的最值(值域)问题,从而减少了运算量.(2)对于同时含有a x 与a 2x (log a x 与log 2a x )(a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x(t =log a x )进行换元巧解,但一定要注意新元的范围.已知函数f (x )=2a ·4x-2x-1.(1)当a =1时,求函数f (x )在x ∈上的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围. (1)当a =1时,f (x )=2·4x-2x-1=2(2x )2-2x-1, 令t =2x,x ∈,则t ∈⎣⎢⎡⎦⎥⎤18,1. 故y =2t 2-t -1=2⎝ ⎛⎭⎪⎫t -142-98,t ∈⎣⎢⎡⎦⎥⎤18,1,故值域为⎣⎢⎡⎦⎥⎤-98,0. (2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2am 2-m -1=0在(0,+∞)上有解.记g (m )=2am 2-m -1, 当a =0时,解为m =-1<0,不成立. 当a <0时,开口向下,对称轴m =14a <0,过点(0,-1),不成立,当a >0时,开口向上, 对称轴m =14a >0,过点(0,-1)必有一个根为正, 所以a >0.综上所述,a 的取值范围是(0,+∞)., )1.化简(a 23·b -1)-12·a -12·b 136a ·b 5(a >0,b >0)的结果是( )A .aB .abC .a 2bD .1aD 解析] 原式=a -13b 12·a -12b 13a 16b 56=a-13-12-16·b 12+13-56=1a. 2.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )A .B .C .D . 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9,可知C 正确.3.函数y =a x-1a(a >0,a ≠1)的图象可能是()D 当a >1时函数单调递增,且函数图象过点⎝ ⎛⎭⎪⎫0,1-1a ,因为0<1-1a<1,故A ,B均不正确;当0<a <1时,函数单调递减,且函数图象恒过点⎝ ⎛⎭⎪⎫0,1-1a ,因为1-1a<0,所以选D.4.(2017·德州模拟)已知a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <aD 因为y =⎝ ⎛⎭⎪⎫25x为减函数,所以b <c ,又因为y =x 25在(0,+∞)上为增函数,所以a >c , 所以b <c <a ,故选D.5.设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)C 当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1). 6.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .B 由f (1)=19得a 2=19,所以a =13或a =-13(舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在上递增,在,则实数a =________. 当a >1时,f (x )=a x-1在上为增函数,则a 2-1=2,所以a =±3,又因为a >1,所以a = 3. 当0<a <1时,f (x )=a x-1在上为减函数, 又因为f (0)=0≠2,所以0<a <1不成立. 综上可知,a = 3.38.已知函数f (x )=e x-e -xe x +e -x ,若f (a )=-12,则f (-a )=________.因为f (x )=e x -e -xe x +e -x ,f (a )=-12,所以e a -e -ae a +e -a =-12.所以f (-a )=e -a -e a e -a +e a =-e a -e -ae a +e -a =-⎝ ⎛⎭⎪⎫-12=12.129.(2017·济宁月考)已知函数f (x )=(a -2)a x(a >0,且a ≠1),若对任意x 1,x 2∈R ,f (x 1)-f (x 2)x 1-x 2>0,则a 的取值范围是________.当0<a <1时,a -2<0,y =a x单调递减,所以f (x )单调递增;当1<a <2时,a -2<0,y =a x单调递增,所以f (x )单调递减;当a =2时,f (x )=0;当a >2时,a -2>0,y =a x单调递增,所以f (x )单调递增.又由题意知f (x )单调递增,故a 的取值范围是(0,1)∪(2,+∞).(0,1)∪(2,+∞)10.(2017·安徽江淮十校第一次联考)已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.由于f (x )=max{e |x |,e|x -2|}=⎩⎪⎨⎪⎧e x,x ≥1,e 2-x ,x <1. 当x ≥1时,f (x )≥e ,且当x =1时,取得最小值e ; 当x <1时,f (x )>e. 故f (x )的最小值为f (1)=e. e11.已知函数f (x )=b ·a x(其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x-m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.把A (1,6),B (3,24)代入f (x )=b ·a x,得⎩⎪⎨⎪⎧6=ab ,24=b ·a 3, 结合a >0,且a ≠1,解得⎩⎪⎨⎪⎧a =2,b =3.所以f (x )=3·2x.要使⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ≥m 在x ∈(-∞,1]上恒成立,只需保证函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上的最小值不小于m 即可.因为函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上为减函数,所以当x =1时,y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x有最小值56. 所以只需m ≤56即可.即m 的取值范围为⎝⎛⎦⎥⎤-∞,56.12.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( ) A .1个 B .2个 C .3个D .4个B 函数y 1=⎝ ⎛⎭⎪⎫12x 与y 2=⎝ ⎛⎭⎪⎫13x的图象如图所示.由⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b得,a <b <0或0<b <a 或a =b =0.故①②⑤可能成立,③④不可能成立. 13.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值为1. 14.已知定义在R 上的函数f (x )=2x-12|x |,(1)若f (x )=32,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈恒成立,求实数m 的取值范围. (1)当x <0时,f (x )=0,无解; 当x ≥0时,f (x )=2x-12x ,由2x -12x =32,得2·22x -3·2x-2=0,将上式看成关于2x的一元二次方程, 解得2x =2或2x =-12,因为2x>0,所以x =1.(2)当t ∈时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t-1)≥-(24t-1),因为22t-1>0, 所以m ≥-(22t+1), 因为t ∈,所以-(22t+1)∈, 故实数m 的取值范围是[-5,+∞).。
第5讲 指数与指数函数1.根式 (1)根式的概念①若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,xn 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1).②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1);②负分数指数幂:a -m n=1a m n=1(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a >0,r ,s ∈Q );②(a r )s =a rs(a >0,r ,s ∈Q ); ③(ab )r=a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象及性质1.辨明三个易误点(1)指数幂的运算容易出现的问题是误用指数幂的运算法则,或在运算变换中方法不当,不注意运算的先后顺序等.(2)指数函数y =a x(a >0,a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.(3)在解形如a 2x+b ·a x +c =0或a 2x +b ·a x+c ≥0(≤0)的指数方程或不等式时,常借助换元法解决,但应注意换元后“新元”的范围.2.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .1.教材习题改编有下列四个式子:①3(-8)3=-8;② (-10)2=-10;③4(3-π)4=3-π;④2 017(a -b )2 017=a -b . 其中正确的个数是( )A .1B .2C .3D .4B ①④正确,(-10)2=|-10|=10,②错误; 4(3-π)4=|3-π|=-(3-π)=π-3,③错误,故选B.2.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3xD 根据各选项知,选项C 、D 中的指数函数满足f (x +y )=f (x )·f (y ).又f (x )=3x是增函数,所以D 正确.3.(2017·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x-1 D .y =log 2(2x )A 由f (x )=ax -1(a >0,a ≠1)的图象恒过点(1,1),又0=1-1,知(1,1)不在y=1-x 的图象上.4.(2017·皖北协作区联考)函数f (x )=1-e x的值域为________. 由1-e x ≥0,e x≤1,故函数f (x )的定义域为{x |x ≤0}. 所以0<e x ≤1,-1≤-e x <0,0≤1-e x<1,函数f (x )的值域为 由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. (-2,-1)∪(1,2)指数幂的运算化简下列各式:(1)0.027-13-⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫27912-(2-1)0;(2)⎝ ⎛⎭⎪⎫56a 13b -2·(-3a -12b -1)÷(4a 23b -3)12·ab .【解】 (1)原式=⎝ ⎛⎭⎪⎫271 000-13-72+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45. (2)原式=⎝ ⎛⎭⎪⎫-52a -16b -3÷(2a 13b -32)·a 12b 12=-54a -12b -32·a 12b 12=-54b -1=-54b.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100.(2)原式=2(4ab -1)3210a 32b -32=16a 32b -3210a 32b-32=85.指数函数的图象及应用(1)函数f (x )=21-x的大致图象为()(2)若方程|3x-1|=k 有一解,则k 的取值范围为________.【解析】 (1)函数f (x )=21-x=2×⎝ ⎛⎭⎪⎫12x,单调递减且过点(0,2),选项A 中的图象符合要求.(2)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解.【答案】 (1)A (2){0}∪上单调递减,则k 的取值范围如何?由本例(2)作出的函数y =|3x-1|的图象知,其在(-∞,0]上单调递减,所以k ∈(-∞,0].指数函数的图象及应用(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.)1.函数f (x )=a x -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 D 由f (x )=a x -b 的图象可以观察出函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.2.若函数y =21-x+m 的图象不经过第一象限,求m 的取值范围.y =⎝ ⎛⎭⎪⎫12x -1+m ,函数y =⎝ ⎛⎭⎪⎫12x -1的图象如图所示,则要使其图象不经过第一象限,则m ≤-2.指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下三个命题角度: (1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质.(1)已知a =⎝ ⎛⎭⎪⎫1223,b =2-43,c =⎝ ⎛⎭⎪⎫1213,则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c(2)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3. ①若a =-1,求f (x )的单调区间; ②若f (x )有最大值3,求a 的值; ③若f (x )的值域是(0,+∞),求a 的值.【解】 (1)选B.把b 化简为b =⎝ ⎛⎭⎪⎫1243,而函数y =⎝ ⎛⎭⎪⎫12x在R 上为减函数,43>23>13,所以⎝ ⎛⎭⎪⎫1243<⎝ ⎛⎭⎪⎫1223<⎝ ⎛⎭⎪⎫1213,即b <a <c . (2)①当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).②令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.③令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ) 故f (x )的值域为(0,+∞)时,a 的值为0.有关指数函数性质的问题类型及解题策略(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.角度一 比较指数幂的大小 1.下列各式比较大小正确的是( ) A .1.72.5>1.73B .0.6-1>0.62C .0.8-0.1>1.250.2D .1.70.3<0.93.1BA 中,因为函数y =1.7x在R 上是增函数,2.5<3,所以1.72.5<1.73. B 中,因为y =0.6x在R 上是减函数,-1<2, 所以0.6-1>0.62. C 中,因为0.8-1=1.25,所以问题转化为比较1.250.1与1.250.2的大小. 因为y =1.25x在R 上是增函数,0.1<0.2, 所以1.250.1<1.250.2,即0.8-0.1<1.250.2.D 中,因为1.70.3>1,0<0.93.1<1,所以1.70.3>0.93.1.角度二 解简单的指数方程或不等式2.(2015·高考江苏卷)不等式2x 2-x <4的解集为________. 因为2x 2-x <4,所以2x 2-x <22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. {x |-1<x <2}(或(-1,2))角度三 研究指数型函数的性质 3.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在 因为f (x )=2|x -a |,所以f (x )的图象关于x =a 对称.又由f (1+x )=f (1-x ),知f (x )的图象关于直线x =1对称,故a =1,且f (x )的增区间是 1——换元法解决指数型函数的值域问题函数f (x )=⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在x ∈上的值域是________. 【解析】 因为x ∈,若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤34,57.【答案】 ⎣⎢⎡⎦⎥⎤34,57(1)此题利用了换元法,把函数f (x )转化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,将问题转化为求二次函数在闭区间上的最值(值域)问题,从而减少了运算量.(2)对于同时含有a x与a 2x(log a x 与log 2a x )(a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x(t =log a x )进行换元巧解,但一定要注意新元的范围.已知函数y =9x+m ·3x-3在区间上单调递减,则m 的取值范围为________.设t =3x ,则y =9x +m ·3x -3=t 2+mt -3.因为x ∈,所以t ∈⎣⎢⎡⎦⎥⎤19,9.又函数y =9x+m ·3x -3在区间上单调递减,即y =t 2+mt -3在区间⎣⎢⎡⎦⎥⎤19,9上单调递减, 故有-m2≥9,解得m ≤-18.所以m 的取值范围为(-∞,-18]. (-∞,-18]1.下列函数中值域为正实数的是( )A .y =-5xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x-1 D .y =1-2xBA 中,y =-5x<0,B 中,因为1-x ∈R ,y =⎝ ⎛⎭⎪⎫13x的值域是正实数,所以y =⎝ ⎛⎭⎪⎫131-x的值域是正实数,C 中,y =⎝ ⎛⎭⎪⎫12x-1≥0,D 中,y =1-2x ,由于2x >0,故1-2x <1,又1-2x≥0,故0≤y <1,故符合条件的只有B.2.化简4a 23·b -13÷⎝ ⎛⎭⎪⎪⎫-23a -13b 23的结果为( ) A .-2a3bB .-8a bC .-6a bD .-6abC 原式=4÷⎝ ⎛⎭⎪⎫-23a 23-(-13)b -13-23=-6ab -1=-6a b,故选C.3.函数y =a x-1a(a >0,a ≠1)的图象可能是( )D 函数y =a x -1a 的图象由函数y =a x的图象向下平移1a个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a>1,平移距离大于1,所以C 项错误.4.已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >cB .a >c >bC .c >a >bD .b >c >aA 由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .5.(2017·莱芜模拟)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .B 由f (1)=19得a 2=19.又a >0,所以a =13,因此f (x )=⎝ ⎛⎭⎪⎫13|2x -4|. 因为g (x )=|2x -4|在 当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1).7.指数函数y =f (x )的图象经过点(m ,3),则f (0)+f (-m )=________. 设f (x )=a x(a >0且a ≠1),所以f (0)=a 0=1. 且f (m )=a m =3.所以f (0)+f (-m )=1+a -m=1+1a m =43.438.614-(π-1)0-⎝ ⎛⎭⎪⎫33813+⎝ ⎛⎭⎪⎫164-23=________. 原式=52-1-⎝ ⎛⎭⎪⎫27813+(4-3)-23=32-32+42=16. 169.(2015·高考山东卷)已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是,则a +b =________.①当a >1时,函数f (x )=a x+b 在上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.②当0<a <1时,函数f (x )=a x+b 在上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.-3210.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是________.原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x, 因为函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数, 所以⎝ ⎛⎭⎪⎫12x≥⎝ ⎛⎭⎪⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x恒成立等价于m 2-m <2,解得-1<m <2.(-1,2)11.求下列函数的定义域和值域. (1)y =⎝ ⎛⎭⎪⎫122x -x 2;(2)y = 32x -1-19. (1)显然定义域为R .因为2x -x 2=-(x -1)2+1≤1,且y =⎝ ⎛⎭⎪⎫12x 为减函数.所以⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12. 故函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为⎣⎢⎡⎭⎪⎫12,+∞.(2)由32x -1-19≥0,得32x -1≥19=3-2, 因为y =3x为增函数,所以2x -1≥-2,即x ≥-12,此函数的定义域为⎣⎢⎡⎭⎪⎫-12,+∞, 由上可知32x -1-19≥0,所以y ≥0. 即函数的值域为 (1)因为f (x )为偶函数, 所以对任意的x ∈R ,都有f (-x )=f (x ), 即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间 因为函数f (x )=⎝ ⎛⎭⎪⎫13x+a 的图象经过第二、三、四象限,所以a <-1.则g (a )=f (a )-f (a +1)=⎝ ⎛⎭⎪⎫13a+a -⎝ ⎛⎭⎪⎫13a +1-a =⎝ ⎛⎭⎪⎫13a ⎝ ⎛⎭⎪⎫1-13=23·⎝ ⎛⎭⎪⎫13a.因为a <-1,所以⎝ ⎛⎭⎪⎫13a>3,则23·⎝ ⎛⎭⎪⎫13a>2,故g (a )的取值范围是(2,+∞). 14.(2017·济南模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是________.画出函数图象如图所示,由图象可知要使a >b ≥0,f (a )=f (b )同时成立,则12≤b <1. b ·f (a )=b ·f (b )=b (b +1)=b 2+b =⎝ ⎛⎭⎪⎫b +122-14,所以34≤b ·f (a )<2.⎣⎢⎡⎭⎪⎫34,215.已知函数y =2-x 2+ax +1在区间(-∞,3)内递增,求a 的取值范围. 函数y =2-x 2+ax +1是由函数y =2t 和t =-x 2+ax +1复合而成.因为函数t =-x 2+ax +1在区间 (-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减,且函数y =2t在R 上单调递增,所以函数y =2-x 2+ax +1在区间(-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减. 又因为函数y =2-x 2+ax +1在区间(-∞,3)上单调递增,所以3≤a2,即a ≥6.16.已知函数f (x )=1-42a x+a(a >0且a ≠1)是定义在(-∞,+∞)上的奇函数. (1)求a 的值; (2)求函数的值域;(3)当x ∈(0,1]时,tf (x )≥2x-2恒成立,求实数t 的取值范围. (1)因为f (x )是定义在(-∞,+∞)上的奇函数, 所以f (0)=0,即1-42a 0+a =0.解得a =2.(2)因为y =f (x )=2x-12x +1,所以2x=1+y 1-y .由2x>0知1+y 1-y >0,所以-1<y <1.即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x -2等价于t (2x -1)2x+1≥2x -2,即(2x )2-(t +1)2x+t -2≤0.令2x =u ,因为x ∈(0,1],所以u ∈(1,2]. 又u ∈(1,2]时,u 2-(t +1)u +t -2≤0恒成立.所以⎩⎪⎨⎪⎧12-(t +1)+t -2≤0,22-2(t +1)+t -2≤0,解得t ≥0.故所求t 的取值范围为[0,+∞).。
第五讲导数及其应用A 组一、选择题 1.【答案】C【解析】设()()()R x e x f e x g xx∈-=,,则()()()()()[]1-'+=-'+='x f x f e e x f e x f e x g x x x x ,∵()()1f x f x >-',∴()()01>-'+x f x f ,∴()x g ',∴()x g y =在定义域上单调递增,∵()1+>xxe xf e ,∴()1>xg ,又∵()()1000=-=e f e g ,∴()()0g x g >,∴0>x ,∴不等式的解集为()0,+∞故选:C. 2.【答案】D.【解析】'()4xf x e a =-,由题意得,()f x 的单调性为先递减后递增,故0a >,即()f x 在(,ln )4a-∞上单调递减,在(ln ,)4a+∞上单调递增, 又∵(1)20f e =>,(0)10f a =-<,∴只需42(1)20f a a e e-=-≥⇒≥,即实数a 的取值范围是2[,1)e,故选D.3.【答案】A【解析】因x e y 31/31=,故切线的斜率231e k =,切线方程)6(3122-=-x e e y ,令0=x 得2e y -=;令0y =得3x =,故围成的三角形的面积为2223||321e e S =-⨯⨯=,应选A 。
4.【答案】A【解析】()sin y f x x π==,()'sin cos f x x x π=+,()'f ππ=-,曲线sin y x x =在点(,0)P π处的切线方程是()2y x x ππππ=--=-+,故选A.二、填空题5.【答案】1 【解析】依题意()'x x f x ae e -=-关于原点对称,1a =时()'f x 为奇函数,符合题意。
6.【答案】10,2⎛⎫ ⎪⎝⎭【解析】1'()ln ()1ln 2f x x ax x a x ax x=-+-=+-,由题意1ln 20x ax +-=在(0,)+∞上有两个根,设()1ln 2g x x ax =+-,若0a ≤,则()g x 在(0,)+∞为增函数,()0g x =最多只能有一解,不合题意,故0a >,当0x →或者x →+∞时,()g x →-∞,1'()2g x a x =-,当1(0,)2x a ∈时,'()0g x >,1(,)2x a∈+∞时,'()0g x <,因此1()()2g x g a =最大,由题意111()1ln 20222g a a a a =+-⨯>,所以102a <<.三、解答题7.【答案】(1)30y +=;(2)当0a <时,()f x 的增区间为()0,1,()f x 的减区间为()1,)+∞,当21=a 时, ()f x 的增区间为),0(+∞,当210<<a 时,()f x 的增区间为()0,1,),21(+∞a,()f x 的减区间为)1,21(a ,当21>a 时,()f x 的增区间为)21,0(a ,),1(+∞,()f x 的减区间为)1,21(a ;(3)当0a >时,零点的个数为1.【解析】(1)先求(1)0f '=,然后点斜式求解;(2)讨论四种情况0a <,21=a ,210<<a ,21>a 分别令0)(>'x f 得增区间,0)(<'x f 得减区间;(3)当0a >时,零点的个数为1.试题解析: (1)当2=a 时,x x x x f 52ln )(2-+=,541)(-+='x x x f ,0)1(,3)1(='-=f f ,所以切线方程为30y +=.(2))(x f 的定义域:{}0>x x ,xx a x x x a ax a ax x x f )2)(1(1)12(2)12(21)(2--=++-=+-+=',令0)(='x f ,ax x 21,121==, 当0a <时,令0)(>'x f ,得01x <<,令0)(<'x f ,得1x >,)(x f 的增区间为()0,1,)(x f 的减区间为),1(+∞.当21=a 时,0)(≥'x f 恒成立,)(x f 在),0(+∞上单调递增, 当210<<a 时,0)(>'x f ,01x <<或a x 21>;0)(<'x f ,121<<x a,所以)(x f 的增区间为()0,1,),21(+∞a ,)(x f 的减区间为)1,21(a. 当21>a 时,0)(>'x f ,1x >或ax 210<<,0)(<'x f ,121<<x a ,所以)(x f 的增区间为)21,0(a ,),1(+∞,)(x f 的减区间为)1,21(a.(3)当0a >时,零点的个数为1.8.【答案】(Ⅰ)b e =;(Ⅱ)()2212,21e e e ⎛⎤- ⎥-∞ +⎥⎝⎦. 【解析】(Ⅰ)由()ln ab xf x x=,得()()21ln ab x f x x -'=, 由题意得()1f ab ae '==, ∵0a ≠,∴b e =;(Ⅱ)令()()()()()21ln 2h x x f x g x x a e x ae x =-=-++,则任意1,x e ⎡⎫∈+∞⎪⎢⎣⎭,()f x 与()g x 有且只有两个交点,等价于函数()h x 在1,e⎡⎫+∞⎪⎢⎣⎭有且只有两个零点,由()()21ln 2h x x a e x ae x =-++,得()()()x a x e h x x --'=, ①当1a e ≤时,由()0h x '>得x e >,由()0h x '<得1x e e<<, 此时()h x 在1,e e⎛⎫ ⎪⎝⎭上单调递减,在(),e +∞上单调递增, ∵()()2211ln 022h e e a e e ae e e =-++=-<, ()()()()()242221112ln 2220222h e e a e e ae e e e e a e e e e ⎛⎫=-++=---≥--> ⎪⎝⎭,(或当x →+∞时,()0h x >亦可),∴要使得()h x 在1,e⎡⎫+∞⎪⎢⎣⎭上有且只有两个零点,则只需()()22221221111ln 022e e e a a eh ae e e e e e --++⎛⎫=-+=≥ ⎪⎝⎭,即()221221e a e e -≤+, ②当1a e e <<时,由()0h x '>得1x a e<<或x e >,由()0h x '<得a x e <<,此时()h x在(),a e 上单调递减,在1,a e ⎛⎫ ⎪⎝⎭和(),e +∞上单调递增. 此时()222111ln ln 0222h a a ae ae a a ae ae e a =---<--+=-<, ∴此时()h x 在1,e⎡⎫+∞⎪⎢⎣⎭至多只有一个零点,不合题意, ③当a e >时,由()0h x '>得1x e e<<或x a >,由()0h x '<得e x a <<,此时()h x 在1,e e ⎛⎫⎪⎝⎭和(),a +∞上单调递增,在(),e a 上单调递减,且()2102h e e =-<, ∴()h x 在1,e ⎡⎫+∞⎪⎢⎣⎭至多只有一个零点,不合题意,综上所述,a 的取值范围为()2212,21e e e ⎛⎤- ⎥-∞ +⎥⎝⎦. 9.【答案】(1)1;(2)[1,)+∞;(3)24(,)1ee +∞-.【解析】(1)由题意,0x >,'22111()+x g x x x x-=-=,所以01x <<时,'()0g x <;当1x >时,'()0g x >.所以()g x 在(0,1)上是减函数,在(1,)+∞上是增函数,故()(1)1g x g ==极小值.(2)因为()()2ln m f x g x mx x x-=--,所以2'22[()()]mx x m f x g x x -+-=,由于()()f x g x -在[1,)+∞内为单调递增函数, 所以220mx x m -+≥在[1,)+∞上恒成立,即221xm x ≥+在[1,)+∞上恒成立, 故max22()11xm x≥=+,所以m 的取值范围是[1,)+∞. (3)构造函数2()()()()2ln m eF x f x g x h x mx x x x=--=---,当0m ≤时,由[1,]x e ∈得0m mx x -≤,22ln 0ex x--<,所以在[1,]e 上不存在一个0x ,使得000()()()f x g x h x ->.当0m >时,2'2222222()m e mx x m eF x m x x x x -++=+-+=.因为[1,]x e ∈,所以220e x -≥,20mx m +>,所以'()0F x >在[1,)+∞上恒成立, 故()F x 在[1,]e 上单调递增,max ()()4mF x F e me e==--, 所以要在[1,]e 上存在一个0x ,使得()0F x >,必须且只需40mme e-->, 解得241e m e >-,故m 的取值范围是24(,)1ee +∞-.另外:(3)当1x =时,(1)(1)(1)f g h -<, 当(1,]x e ∈时,由()()()f x g x h x ->,得222ln 1e x xm x +>-. 令222ln ()1e x x G x x +=-,则22'22(22)ln (242)()0(1)x x x ex G x x --+--=<-, 所以()G x 在(1,]e 上递减,min 24()()1eG x G e e ==-. 综上,要在[1,]e 上存在一个0x ,使得000()()()f x g x h x ->,必须且只需241em e >-. 10.【答案】(1)11y x e ⎛⎫=-⎪⎝⎭;(2)(23,12,4e e⎛⎤⎤ ⎦⎥⎝⎦【解析】(1)1a =时,()()()1ln 0,1f x x x x f x x '=->=-,则()11f e e'=-, ∴函数()f x 在(),1e e -处的切线方程为()()111y e x e e ⎛⎫--=-- ⎪⎝⎭,即11y x e ⎛⎫=-⎪⎝⎭. (2)()())()1000ax xf x a x ⎧->⎪⎪'=>⎨<,列表如下:设函数()f x 存在“K 区间”是[],m n(i )当0m n <≤时,由上表可知a na m==,n m =-=,1=,代入a n a m ==,得11a n a m ⎧=--⎪⎨=-⎪⎩,欲使此关于,m n 的方程组在0m n <≤时有解,需使y a =与()210y x x x =-+≥的图象有两个交点,21y x x =-+在10,2⎡⎫⎪⎢⎣⎭是减函数,在1,2⎛⎫+∞⎪⎝⎭是增函数,且1023,14x x yy ====,所以此时满足()f x 存在“H 区间”的a 的取值范围是3,14⎛⎤ ⎥⎝⎦. (ii )当0m n a <<≤时,由上表可知,ln ln a m m m a n n n -=⎧⎨-=⎩,即1ln 21ln 2ma mna n⎧=⎪⎪⎨⎪=⎪⎩,设()()2ln 1ln ,22x xg x g x x x -'==,当()0,x e ∈时,()0g x '>,()g x 为增函数, 当(),x e ∈+∞时,()0g x '<,()g x 为减函数,欲使此关于,m n 的方程1ln 21ln 2ma mn a n⎧=⎪⎪⎨⎪=⎪⎩有两解,需使1y a =与ln 2x y x =在(]0,a 有两个交点,所以有()()1a eg a g e a >⎧⎪⎨≤<⎪⎩,解得22e a e <≤. 所以此时满足()f x 存在“H 区间”的a 的取值范围是(22,e e ⎤⎦. (iii )当a m n <<时,由上表可知,ln ln a m m ma n n n-=⎧⎨-=⎩,两式相减得,()ln ln 0a m n -=,此式不可能成立,所以此时()f x 不存在“H 区间”. 综上所述,函数()f x 存在“H 区间”的a 的取值范围是(23,12,4e e⎛⎤⎤⎦⎥⎝⎦.B 组一、 选择题1.【答案】D【解析】因k a S S k a a S k a S +=+=+=+=+==4,2,132321211,即2,1,1321==+=a a k a ,故题设21,1)1(2-==+k k ,所以1221)(23+-+=x x x x f ,由于)1)(23(23)(2/+-=-+=x x x x x f ,因此当)1,(--∞∈x 时,)(,0)(/x f x f >单调递增;当)32,1(-∈x 时,)(,0)(/x f x f <单调递减,所以函数)(x f 在1-=x 处取极大值2512211)1(=+++-=-f ,应选D.2.【答案】A【解析】令()()()()()()()(),''1'1x x x x g x e f x x g x e f x f x e e f x f x ----=-=-+-=--,由()()x f x f x e '->得()'0g x >,所以()g x 在定义域上递增,()2x x f x xe e >+即是()()()20x g x e f x x g -=->=,可得0x >,使得()2x x f x xe e >+成立的x 的取值范围是()0,+∞,故选A 。