5.导数及其应用(单调性、极值与最值)
- 格式:doc
- 大小:430.00 KB
- 文档页数:5
导数的定义及其应用领域导数是微积分学中的重要概念,它描述了函数在某一点的变化率。
导数的定义和性质被广泛地应用在物理、工程、经济学等领域中。
本文将简要介绍导数的定义,以及它在不同领域的应用。
一、导数的定义导数可以理解为函数的瞬时变化率。
对于函数f(x),在点x处的导数表示为f'(x)或df(x)/dx。
导数的定义可以通过极限来描述,即f'(x) = lim┬(h→0)〖((f(x+h)-f(x))/h)〗,其中h是趋于0的增量。
二、导数的性质导数具有多个重要性质,其中一些常见的性质包括:1. 导数可以用于判断函数的单调性。
如果在某个区间内,函数的导数始终为正(或负),则该函数在该区间内单调增加(或减少)。
2. 导数可以用于求解函数的最大值和最小值。
函数在极值点处的导数为零或不存在。
3. 导数满足乘法规则、和差规则和链式法则等运算规则,使得我们可以方便地计算复杂函数的导数。
三、导数的应用领域1. 物理学中的运动学导数在物理学中的运动学方程中起着关键作用。
例如,速度可以定义为物体位移关于时间的导数,加速度则是速度关于时间的导数。
通过求解导数,我们可以推导出各种运动的速度、加速度和位移关系,从而更好地理解物体的运动规律。
2. 工程学中的控制系统导数在工程学中的控制系统中经常被使用。
例如,在机械工程中的控制系统中,导数可以表示速度或者加速度的变化。
这对于设计和分析各种控制系统非常重要,从而提高系统的稳定性和响应度。
3. 经济学中的边际效应导数在经济学中的边际效应分析中起着关键作用。
例如,在经济学中,边际成本和边际收益可以通过求导来计算。
这对于制定合理的经济政策和决策具有重要意义。
4. 生物学中的生态模型导数在生物学中的生态模型中也有广泛应用。
生态学家利用导数来描述物种数量的变化速率,从而研究生态系统的稳定性和动态性。
导数的计算帮助我们理解和预测生物多样性和种群变化等重要生物学现象。
5. 金融学中的风险管理导数在金融学中的风险管理中也起着重要作用。
导数及其应用知识点总结导数及其应用是微积分中的重要概念,它可以用来描述一个函数在其中一点的变化率,进而用于求解曲线的切线、求解最值、优化问题等。
在学习导数及其应用的过程中,我们需要掌握导数的定义、导数的计算法则、导数与函数性质的关系以及导数在几何和物理问题中的应用等知识点。
一、导数的定义1.函数在其中一点的导数:函数f(x)在点x=a处的导数定义为:f'(a) = lim(h→0) (f(a+h)-f(a))/h2.函数的导函数:函数f(x)在定义域上每一点的导数所构成的新函数,被称为函数f(x)的导函数,记作f'(x)。
二、导数的计算法则1.常数法则:对于常数k,有:(k)'=0。
2.幂函数法则:对于幂函数y=x^n,其中n为常数,则有:(x^n)'=n*x^(n-1)。
3.基本初等函数法则:对于基本初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数),可以通过求导法则求得其导函数。
4.乘积法则:对于函数u(x)和v(x),有:(u*v)'=u'*v+u*v'。
5.商数法则:对于函数u(x)和v(x),有:(u/v)'=(u'*v-u*v')/v^26.复合函数法则:对于复合函数y=f(g(x)),有:y'=f'(g(x))*g'(x)。
三、导数与函数性质的关系1.导函数与函数的单调性:若函数f(x)在区间I上可导,则f'(x)在I上的符号与f(x)在I上的单调性一致。
2.导函数与函数的极值:若函数f(x)的导函数在点x=a处存在,且导数的符号在x=a左侧从正数变为负数,那么函数在点x=a处取得极大值;若导数的符号在x=a左侧从负数变为正数,那么函数在点x=a处取得极小值。
3.导函数与函数的凹凸性:函数f(x)的导函数f''(x)的符号与函数f(x)的凹凸性一致。
导数与函数的单调性、极值、最值问题高考定位 高考对本内容的考查主要有:(1)导数的运算是导数应用的基础,要求是B 级,熟练掌握导数的四则运算法则、常用导数公式,一般不单独设置试题,是解决导数应用的第一步;(2)利用导数研究函数的单调性与极值是导数的核心内容,要求是B 级,对应用导数研究函数的单调性与极值要达到相等的高度.真 题 感 悟1.(2017·江苏卷)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________. 解析 f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0且f ′(x )不恒为0,所以f (x )为单调递增函数. 又f (-x )=-x 3+2x +e -x -e x =-(x 3-2x +e x-1ex )=-f (x ),故f (x )为奇函数,由f (a -1)+f (2a 2)≤0,得f (2a 2)≤f (1-a ), ∴2a 2≤1-a ,解之得-1≤a ≤12,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1,12.答案 ⎣⎢⎡⎦⎥⎤-1,122.(2017·江苏卷)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R)有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.(1)解 由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝⎛⎭⎪⎫x +a 32+b -a 23.当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝ ⎛⎭⎪⎫-a 3=-a 327+a 39-ab 3+1=0,又a >0,故b =2a 29+3a.因为f (x )有极值,故f ′(x )=0有实根, 从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1),故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.列表如下:故f (x )的极值点是x 1,x 2.从而a >3. 因此b =2a 29+3a,定义域为(3,+∞).(2)证明 由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2.当t ∈⎝ ⎛⎭⎪⎫362,+∞时,g ′(t )>0,从而g (t )在⎝ ⎛⎭⎪⎫362,+∞上单调递增.因为a >3,所以a a >33,故g (a a )>g (33)=3,即ba > 3.因此b 2>3a .(3)解 由(1)知,f (x )的极值点是x 1,x 2, 且x 1+x 2=-23a ,x 21+x 22=4a 2-6b 9.从而f (x 1)+f (x 2)=x 31+ax 21+bx 1+1+x 32+ax 22+bx 2+1=x 13(3x 21+2ax 1+b )+x 23(3x 22+2ax 2+b )+13a (x 21+x 22)+23b (x 1+x 2)+2=4a 3-6ab 27-4ab 9+2=0. 记f (x ),f ′(x )所有极值之和为h (a ), 因为f ′(x )的极值为b -a 23=-19a 2+3a ,所以h (a )=-19a 2+3a ,a >3.因为h ′(a )=-29a -3a 2<0,于是h (a )在(3,+∞)上单调递减.因为h (6)=-72,于是h (a )≥h (6),故a ≤6.因此a的取值范围为(3,6].考点整合1.导数与函数的单调性(1)函数单调性的判定方法:设函数y=f (x)在某个区间内可导,如果f ′(x)>0,则y=f (x)在该区间为增函数;如果f ′(x)<0,则y=f (x)在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.2.极值的判别方法当函数f (x)在点x0处连续时,如果在x0附近的左侧f′(x)>0,右侧f ′(x)<0,那么f (x0)是极大值;如果在x0附近的左侧f ′(x)<0,右侧f ′(x)>0,那么f (x0)是极小值.也就是说x0是极值点的充分条件是点x0两侧导数异号,而不是f ′(x)=0.此外,函数不可导的点也可能是函数的极值点,而且极值是一个局部概念,极值的大小关系是不确定的,即有可能极大值比极小值小.3.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值中的最小者.热点一利用导数研究函数的单调性[命题角度1] 求解含参函数的单调区间【例1-1】(2017·全国Ⅰ卷改编)已知函数f (x)=e x(e x-a)-a2x,其中参数a≤0.(1)讨论f (x)的单调性;(2)若f (x)≥0,求a的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0.f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为 f⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2,故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2≥0,即a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].探究提高 讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,常需依据以下标准分类讨论:(1)二次项系数为0、为正、为负,目的是讨论开口方向;(2)判别式的正负,目的是讨论对应二次方程是否有解;(3)讨论两根差的正负,目的是比较根的大小;(4)讨论两根与定义域的关系,目的是根是否在定义域内.另外,需优先判断能否利用因式分解法求出根. [命题角度2] 已知函数的单调区间求参数范围【例1-2】 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;(3)函数f (x )能否为R 上的单调函数?若能,求出a 的取值范围?若不能,请说明理由.解 (1)当a =2时,f (x )=(-x 2+2x )·e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x . 令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x < 2. 所以函数f (x )的单调递增区间是(-2,2). (2)因为函数f (x )在(-1,1)上单调递增, 所以f ′(x )≥0对x ∈(-1,1)都成立. 因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.因为e x>0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即a ≥x 2+2xx +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立.令g (x )=(x +1)-1x +1,则g ′(x )=1+1(x +1)2>0. 所以g (x )=(x +1)-1x +1在(-1,1)上单调递增. 所以g (x )<g (1)=(1+1)-11+1=32.所以a 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.(3)若函数f (x )在R 上单调递减,则f ′(x )≤0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x ≤0对x ∈R 都成立.因为e x >0,所以x 2-(a -2)x -a ≥0对x ∈R 都成立.所以Δ=(a -2)2+4a ≤0,即a 2+4≤0,这是不可能的.故函数f (x )不可能在R 上单调递减.若函数f (x )在R 上单调递增,则f ′(x )≥0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x ≥0对x ∈R 都成立,因为e x >0,所以x 2-(a -2)x -a ≤0对x ∈R 都成立.而Δ=(a -2)2+4a =a 2+4>0,故函数f (x )不可能在R 上单调递增. 综上,可知函数f (x )不可能是R 上的单调函数.探究提高 (1)已知函数的单调性,求参数的取值范围,应用条件f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f ′(x )不恒等于0的参数的范围. (2)可导函数f (x )在某个区间D 内单调递增(或递减),转化为恒成立问题时,常忽视等号这一条件,导致与正确的解法擦肩而过,注意,这里“=”一定不能省略.【训练1】 (2017·南京、盐城模拟)设函数f (x )=ln x ,g (x )=ax +a -1x-3(a ∈R).(1)当a =2时,解关于x 的方程g (e x )=0(其中e 为自然对数的底数); (2)求函数φ(x )=f (x )+g (x )的单调递增区间. 解 (1)当a =2时,方程g (e x )=0,即2e x +1e x -3=0,去分母,得2(e x )2-3e x +1=0,解得e x =1或e x =12.故所求方程的根为x =0或x =-ln 2. (2)因为φ(x )=f (x )+g (x )=ln x +ax +a -1x-3(x >0), 所以φ′(x )=1x +a -a -1x 2=ax 2+x -(a -1)x 2=[ax -(a -1)](x +1)x2(x >0), 当a <0时,由φ′(x )>0,解得0<x <a -1a;当a =0时,由φ′(x )>0,解得x >0; 当0<a <1时,由φ′(x )>0,解得x >0; 当a =1时,由φ′(x )>0,解得x >0; 当a >1时,由φ′(x )>0,解得x >a -1a. 综上所述,当a <0时,φ(x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -1a ; 当0≤a ≤1时,φ(x )的单调递增区间为(0,+∞); 当a >1时,φ(x )的单调递增区间为⎝ ⎛⎭⎪⎫a -1a ,+∞. 热点二 利用导数研究函数的极值【例2】 (2017·南通调研)设函数f (x )=x -2e x -k (x -2ln x )(k 为实常数,e =2.718 28…是自然对数的底数). (1)当k =1时,求函数f (x )的最小值;(2)若函数f (x )在(0,4)内存在三个极值点,求k 的取值范围. 解 (1)当k =1时,函数f (x )=e xx2-(x -2ln x )(x >0),则f ′(x )=(x -2)(e x -x 2)x3(x >0). 当x >0时,e x >x 2,理由如下:要使当x >0时,e x >x 2,只需使x >2ln x , 设φ(x )=x -2ln x ,则φ′(x )=1-2x =x -2x,所以当0<x <2时,φ′(x )<0;当x >2时,φ′(x )>0, 所以φ(x )=x -2ln x 在x =2处取得最小值φ(2)=2-2ln 2>0, 所以当x >0时,x >2ln x , 所以e x -x 2>0,所以当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,即函数f (x )在(0,2)上为减函数,在(2,+ ∞)上为增函数, 所以f (x )在x =2处取得最小值f (2)=e 24-2+2ln 2.(2)因为f ′(x )=(x -2)(e x -kx 2)x 3=(x -2)⎝ ⎛⎭⎪⎫e xx 2-k x,当k ≤0时,e xx2-k >0,所以f (x )在(0,2)上单调递减,在(2,4)上单调递增,不存在三个极值点,所以k >0. 令g (x )=e xx 2,得g ′(x )=e x ·(x -2)x 3,则g (x )在(0,2)上单调递减,在(2,+∞)上单调递增,在x =2处取得最小值为g (2)=e 24,且g (4)=e 416,于是可得y =k 与g (x )=e xx 2在(0,4)内有两个不同的交点的条件是k ∈⎝ ⎛⎭⎪⎫e 24,e 416.设y =k 与g (x )=e xx2在(0,4)内的两个不同交点的横坐标分别为x 1,x 2,且0<x 1<2<x 2<4,导函数f ′(x )及原函数f (x )的变化情况如下:所以 f (x )在(0,x 1)上单调递减,在(x 1,2)上单调递增,在(2,x 2)上单调递减,在(x 2,4)上单调递增,所以f (x )在(0,4)上存在三个极值点.即函数f (x )在(0,4)内存在三个极值点的k 的取值范围是⎝ ⎛⎭⎪⎫e 24,e 416.探究提高极值点的个数,一般是使f ′(x)=0方程根的个数,一般情况下导函数若可以化成二次函数,我们可以利用判别式研究,若不是,我们可以借助导函数的性质及图象研究.【训练2】(2017·苏、锡、常、镇调研节选)已知函数f (x)=ax2+cos x(a ∈R),记f (x)的导函数为g(x).(1)证明:当a=12时,g(x)在R上单调递增;(2)若f (x)在x=0处取得极小值,求a的取值范围.(1)证明当a=12时,f (x)=12x2+cos x,所以f ′(x)=x-sin x,令g(x)=x-sin x,所以g′(x)=1-cos x≥0,所以g(x)在R上单调递增.(2)解因为g(x)=f ′(x)=2ax-sin x,所以g′(x)=2a-cos x.①当a≥12时,g′(x)≥1-cos x≥0,所以函数f ′(x)在R上单调递增.当x>0时,则f ′(x)>f ′(0)=0;当x<0时,则f ′(x)<f ′(0)=0;所以f (x)的单调递增区间是(0,+∞),单调递减区间是(-∞,0),所以f (x)在x=0处取得极小值,符合题意.②当a≤-12时,g′(x)≤-1-cos x≤0,所以函数f ′(x)在R上单调递减.当x>0时,则f ′(x)<f ′(0)=0;当x<0时,则f ′(x)>f ′(0)=0,所以f (x)的单调递减区间是(0,+∞),单调递增区间是(-∞,0),所以f (x)在x=0处取得极大值,不符合题意.③当-12<a <12时,∃x 0∈(0,π),使得cos x 0=2a ,即g ′(x 0)=0,但当x ∈(0,x 0)时,cos x >2a ,即g ′(x )<0, 所以函数f ′(x )在(0,x 0)上单调递减, 所以f ′(x )<f ′(0)=0,即函数f (x )在(0,x 0)上单调递减,不符合题意. 综上所述,实数a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.热点三 利用导数研究函数的最值【例3】 (2017·浙江卷)已知函数f (x )=(x -2x -1)e -x ⎝ ⎛⎭⎪⎫x ≥12.(1)求f (x )的导函数;(2)求f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围.解 (1)f ′(x )=(x -2x -1)′e -x +(x -2x -1)(e -x )′ =⎝⎛⎭⎪⎫1-12x -1e -x -(x -2x -1)e -x =⎝ ⎛⎭⎪⎫1-12x -1-x +2x -1e -x =(1-x )⎝⎛⎭⎪⎫1-22x -1e -x ⎝ ⎛⎭⎪⎫x >12. (2)令f ′(x )=(1-x )⎝ ⎛⎭⎪⎫1-22x -1e -x =0, 解得x =1或52.当x 变化时,f (x ),f ′(x )的变化如下表:又f ⎝ ⎛⎭⎪⎫12=12e -12,f (1)=0,f ⎝ ⎛⎭⎪⎫52=12e -52,则f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的最大值为12e -12.又f (x )=(x -2x -1)e -x =12(2x -1-1)2e -x ≥0.综上,f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围是⎣⎢⎡⎦⎥⎤0,12e -12. 探究提高 含参数的函数的极值(最值)问题常在以下情况下需要分类讨论: (1)导数为零时自变量的大小不确定需要讨论;(2)导数为零的自变量是否在给定的区间内不确定需要讨论;(3)端点处的函数值和极值大小不确定需要讨论;(4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论.【训练3】 已知函数f (x )=x ln x . (1)求函数f (x )的单调区间和最小值; (2)若函数F (x )=f (x )-a x 在[1,e]上的最小值为32,求a 的值. 解 (1)因为f ′(x )=ln x +1(x >0), 令f ′(x )≥0,即ln x ≥-1=ln e -1, 所以x ≥e -1=1e ,所以x ∈⎣⎢⎡⎭⎪⎫1e ,+∞. 同理令f ′(x )≤0,可得x ∈⎝ ⎛⎦⎥⎤0,1e .所以 f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫1e ,+∞,单调递减区间为⎝ ⎛⎦⎥⎤0,1e .由此可知 f(x )min =f ⎝ ⎛⎭⎪⎫1e =-1e .(2)由F (x )=x ln x -a x ,得F ′(x )=x +ax 2,当a ≥0时,F ′(x )>0,F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32, 所以a =-32∉[0,+∞),舍去.当a <0时,f (x )在(0,-a )上单调递减,在(-a ,+∞)上单调递增. ①当a ∈(-1,0),F (x )在[1,e]上单调递增, F (x )min =F (1)=-a =32,所以a =-32∉(-1,0),舍去.②若a ∈[-e ,-1],F (x )在[1,-a ]上单调递减, 在[-a ,e]上单调递增,所以F (x )min =F (-a )=ln(-a )+1=32,a =-e ∈[-e ,-1];③若a ∈(-∞,-e),F (x )在[1,e]上单调递减,F (x )min =F (e)=1-a e=32,所以a =-e2∉(-∞,-e),舍去.综上所述,a =- e.1.如果一个函数具有相同单调性的区间不止一个,这些单调区间不能用“∪”连接,而只能用逗号或“和”字隔开.2.可导函数在闭区间[a,b]上的最值,就是函数在该区间上的极值及端点值中的最大值与最小值.3.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值;(2)对于可导函数f (x),“f (x)在x=x0处的导数f ′(x0)=0”是“f (x)在x=x处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点.4.求函数的单调区间时,若函数的导函数中含有带参数的有理因式,因式根的个数、大小、根是否在定义域内可能都与参数有关,则需对参数进行分类讨论.5.求函数的极值、最值问题,一般需要求导,借助函数的单调性,转化为方程或不等式问题来解决,有正向思维——直接求函数的极值或最值;也有逆向思维——已知函数的极值或最值,求参数的值或范围,常常用到分类讨论、数形结合的思想.一、填空题1.已知函数f (x)=4ln x+ax2-6x+b(a,b为常数),且x=2为f (x)的一个极值点,则a的值为________.解析由题意知,函数f (x)的定义域为(0,+∞),∵f ′(x)=4x+2ax-6,∴f ′(2)=2+4a-6=0,即a=1,经验证符合题意. 答案 12.(2017·苏州调研)函数f (x)=12x2-ln x的单调递减区间为________.解析 由题意知,函数的定义域为(0,+∞),又由f ′(x )=x -1x<0,解得0<x <1,所以函数f (x )的单调递减区间为(0,1). 答案 (0,1)3.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________.解析 由题意知f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10, 即⎩⎨⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎨⎧a =-2,b =1或 ⎩⎨⎧a =-6,b =9,经检验⎩⎨⎧a =-6,b =9满足题意,故a b =-23.答案 -234.(2017·南京模拟)若函数f (x )=e x (-x 2+2x +a )在区间[a ,a +1]上单调递增,则实数a 的最大值为________.解析 由f (x )在区间[a ,a +1]上单调递增,得f ′(x )=e x (-x 2+a +2)≥0,x ∈[a ,a +1]恒成立,即(-x 2+a +2)min ≥0,x ∈[a ,a +1].当a ≤-12时,-a 2+a +2≥0,则-1≤a ≤-12;当a >-12时,-(a +1)2+a +2≥0,则-12<a ≤-1+52,所以实数a 的取值范围是-1≤a ≤-1+52,a 的最大值是-1+52. 答案-1+525.(2017·浙江卷改编)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是________(填序号).解析 利用导数与函数的单调性进行验证.f ′(x )>0的解集对应y =f (x )的增区间,f ′(x )<0的解集对应y =f (x )的减区间,验证只有④符合. 答案 ④6.(2017·泰州期末)函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是________.解析 f ′(x )=3x 2-3a =3(x 2-a ).当a ≤0时,f ′(x )>0, ∴f (x )在(0,1)内单调递增,无最小值. 当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增; 当x ∈(-a ,a )时,f (x )单调递减,所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值. 答案 (0,1)7.已知函数f (x )=13x 3+ax 2+3x +1有两个极值点,则实数a 的取值范围是________.解析 f ′(x )=x 2+2ax +3.由题意知方程f ′(x )=0有两个不相等的实数根, 所以Δ=4a 2-12>0, 解得a >3或a <- 3.答案 (-∞,-3)∪(3,+∞)8.(2016·北京卷)设函数f (x )=⎩⎨⎧x 3-3x ,x ≤a ,-2x ,x >a .(1)若a =0,则f (x )的最大值为________;(2)若f (x )无最大值,则实数a 的取值范围是________. 解析 (1)当a =0时,f (x )=⎩⎨⎧x 3-3x ,x ≤0,-2x ,x >0.若x ≤0,f ′(x )=3x 2-3=3(x 2-1). 由f ′(x )>0得x <-1, 由f ′(x )<0得-1<x ≤0.∴f (x )在(-∞,-1)上单调递增,在(-1,0]上单调递减, ∴f (x )最大值为f (-1)=2.若x >0,f (x )=-2x 单调递减,所以f (x )<f (0)=0. 综上,f (x )最大值为2.(2)函数y =x 3-3x 与y =-2x 的图象如图.由(1)知,当a ≥-1时,f (x )取得最大值2.当a <-1时,y =-2x 在x >a 时无最大值.且-2a >2. 所以a <-1.答案 (1)2 (2)(-∞,-1) 二、解答题9.(2017·北京卷)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1,f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0),即y =1. (2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2sin x ·e x≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.10.(2016·全国Ⅱ卷)(1)讨论函数f (x )=x -2x +2e x的单调性,并证明当x >0时,(x -2)e x +x +2>0;(2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -ax 2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞). f ′(x )=(x -1)(x +2)e x -(x -2)e x (x +2)2=x 2e x(x +2)2≥0,且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0. (2)证明 g ′(x )=(x -2)e x +a (x +2)x3=x +2x 3(f (x )+a ). 由(1)知f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2], 使得f (x a )+a =0,即g ′(x a )=0.当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为g (x a )= e x a -a (x a +1)x 2a=e x a +f (x a )(x a +1)x 2a=e x ax a +2.于是h (a )=e xax a +2,由⎝ ⎛⎭⎪⎫e xx +2′=(x +1)e x (x +2)2>0,e x x +2单调递增.所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24. 因为e x x +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.11.设函数f (x )=e xx 2-k ⎝ ⎛⎭⎪⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 解 (1)函数y =f (x )的定义域为(0,+∞).f ′(x )=x 2e x -2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x=x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减,x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈[0,+∞). 因为g ′(x )=e x -k =e x -e ln k ,当0<k ≤1时, 当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增. 故f (x )在(0,2)内不存在两个极值点;当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减.x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ).函数f (x )在(0,2)内存在两个极值点当且仅当⎩⎨⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e <k <e 22, 综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎪⎫e ,e 22.。
利用导数研究函数的单调性及极值和最值知识集结知识元利用导数研究函数的单调性问题知识讲解1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0的根;(4)用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0得x>﹣1,即f(x)>2x+4的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【解题方法点拨】若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件.例题精讲利用导数研究函数的单调性问题例1.函数f(x)=e x-3x+2的单调减区间为__________.例2.若函数y=-x3+ax在[1,+∞)上是单调函数,则a的最大值是___.例3.函数f(x)=sin x-x,x∈(0,)的单调递增区间是_______.利用导数研究函数的极值与最值问题知识讲解1.利用导数研究函数的极值【知识点的知识】1、极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f (x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f (x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.2、极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3、判别f(x0)是极大、极小值的方法:若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.4、求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x)在这个根处无极值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.2.利用导数研究函数的最值【利用导数求函数的最大值与最小值】1、函数的最大值和最小值观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.图中f(x1)与f(x3)是极小值,f (x2)是极大值.函数f(x)在[a,b]上的最大值是f(b),最小值是f(x1).一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.说明:(1)在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值.如函数f(x)=在(0,+∞)内连续,但没有最大值与最小值;(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个2、用导数求函数的最值步骤:由上面函数f(x)的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.例题精讲利用导数研究函数的极值与最值问题例1.函数y=lnx-e x在[1,e]最大值为()A.1-e e B.C.-eD.例2.己知定义域为(1,+∞)的函数f(x)=e x+a-ax,若f(x)>0恒成立,则正实数a的取值范围为()A.(0,e2]B.(0,e2)C.[1,e2]D.(1,e2)例3.函数f(x)=x2-lnx的最小值为()A.1+ln2B.1-ln2C.D.当堂练习单选题练习1.定义在R上的函数f(x)的导函数为f'(x),且,若存在实数x使不等式f(x)≤m2-am-3对于a∈[0,2]恒成立,则实数m的取值范围为()A.(-∞,-2]∪[2,+∞)B.C.D.练习2.若函数f(x)与g(x)满足:存在实数t,使得f(t)=g'(t),则称函数g(x)为f(x)的“友导”函数.已知函数为函数f(x)=x2lnx+x的“友导”函数,则k的取值范围是()A.(-∞,1)B.(-∞,2]C.(1,+∞)D.[2,+∞)练习3.函数f(x)是定义在(0,+∞)上的可导函数,f'(x)为其导函数,若xf'(x)+f(x)=e x(x-2)且f(3)=0,则不等式f(x)<0的解集为()A.(0,2)B.(0,3)C.(2,3)D.(3,+∞)练习4.已知定义在(0,+∞)上的函数f(x)的导函数为f′(x),f(x)>0且f(e)=1,若xf′(x)lnx+f(x)>0对任意x∈(0,+∞)恒成立,则不等式<lnx的解集为()A.{x|0<x<1}B.{x|x>1}C.{x|x>e}D.{x|0<x<e}练习5.已知函数f(x)=x3-x2+ax-a存在极值点x0,且f(x1)=f(x0),其中x1≠x0,x1+2x0=()A.3B.2C.1D.0练习6.若函数f(x)=e x+axlnx(e为自然对数的底数)有两个极值点,则实数a的取值范围是()A.(-∞,-e)B.(-∞,-2e)C.(e,+∞)D.(2e,+∞)填空题练习1.已知函数f(x)=,若∃,使得f(f(x0))=x0,则m的取值范围是_________练习2.设函数f(x)=e x(2x-1)-2ax+2a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是_______.练习3.已知函数,若当x1,x2∈[1,3]时,都有f(x1)<2f(x2),则a的取值范围为______________.练习4.若函数f(x)=e-x(x2+ax-a)在R上单调递减,则实数a的值为____.练习5.已知函数,g(x)=|x-t|,t∈(0,+∞).若h(x)=min{f(x),g (x)}在[-1,3]上的最大值为2,则t的值为___.练习6.已知函数f(x)=x3-ax2在(-1,1)上没有最小值,则a的取值范围是_________.解答题练习1.'已知函数f(x)=e x-a(x+1),其中a∈R.(1)讨论f(x)的单调性;(2)若a>0时,函数f(x)恰有一个零点,求实数a的值.(3)已知数列{a n}满足a n=,其前n项和为S n,求证S n>ln(n+1)(其中n∈N).'练习2.'已知函数f(x)=(a∈R).(1)当a=1时,求f(x)的单调区间;(2)设点P(x1,y1),Q(x2,y2)是函数f(x)图象的不同两点,其中0<x1<1,x2>1,是否存在实数a,使得OP⊥OQ,且函数f(x)在点Q切线的斜率为f′(x1-),若存在,请求出a的范围;若不存在,请说明理由.'练习3.'已知函数f(x)=x2+ax-alnx(1)若函数f(x)在上递减,在上递增,求实数a的值.(2)若函数f(x)在定义域上不单调,求实数a的取值范围.(3)若方程x-lnx-m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.'练习4.'已知函数f(x)=xlnx-x2-ax+1,a>0,函数g(x)=f′(x).(1)若a=ln2,求g(x)的最大值;(2)证明:f(x)有且仅有一个零点.'练习5.'已知函数f(x)=e x-ax-b.(其中e为自然对数的底数)(Ⅰ)若f(x)≥0恒成立,求ab的最大值;(Ⅱ)设g(x)=lnx+1,若F(x)=g(x)-f(x)存在唯一的零点,且对满足条件的a,b不等式m(a-e+1)≥b恒成立,求实数m的取值集合.'。
利用导数求解函数的单调性与最值问题在微积分学中,导数是一个重要的概念,它被应用于许多实际问题的解决中。
本文将重点讨论如何利用导数来求解函数的单调性及最值问题。
1. 导数的定义导数描述了函数f(x)在某一点x处的变化率。
它的定义为:f'(x) = lim Δx→0 [f(x+Δx) - f(x)]/Δx其中Δx表示x的增量,f(x+Δx)-f(x)表示y的增量,f'(x)表示函数f(x)在点x处的导数。
2. 求解单调性问题当函数f(x)单调递增时,其导数f'(x)>0;当函数f(x)单调递减时,其导数f'(x)<0。
因此,我们可以利用导数的正负性来判断函数的单调性。
例如,对于函数f(x)=x^2,在x>0时它单调递增,而在x<0时它单调递减。
我们可以通过求导得到它的导数:f'(x) = 2x当x>0时,f'(x)>0;当x<0时,f'(x)<0。
因此,函数f(x)=x^2在x>0时单调递增,在x<0时单调递减。
3. 求解最值问题函数f(x)在x处取得最大值或最小值,等价于在点x处的导数为0,或者在点x处的导数不存在。
因此,求解函数f(x)的最值问题,我们需要先求出它的导数f'(x),然后令f'(x)=0求出x的值,即可得到函数f(x)的极值点。
最后,再对这些极值点进行比较,就可以确定函数f(x)的最大值和最小值。
例如,对于函数f(x)=x^3-3x+5,我们可以先求出它的导数:f'(x) = 3x^2-3令f'(x)=0,解得x=±1。
这两个点即为函数f(x)的极值点。
我们还需要判断它们是否是函数的最值点。
当x=1时,f''(x)=6>0,说明f(x)在x=1处取得极小值;当x=-1时,f''(x)=-6<0,说明f(x)在x=-1处取得极大值。
利用导数求函数的极值与最值内容再现1、函数的单调性与其导数正负的关系:在某个区间内,如果,那么函数在这个区间内单调递增;在某个区间内,如果,那么函数在这个区间内单调递减;若恒有,则函数在这个区间内是常函数。
2、利用函数判断函数值的增减快慢:如果一个函数在某一范围内导数的绝对值,那么函数在这个范围内变化的快,这时函数的图像比较“陡峭”(向上或向下):反之,若函数在这个范围内导数的绝对值,那么函数在这个范围内变化的比较慢,这时函数的图像比较“平缓”。
3、判断函数极大、极小值的方法: 解方程,当时:(1)如果在附近的左侧,右侧,那么是极大值,是极大值点。
(2)如果在附近的左侧,右侧,那么是极小值点。
4、(1)函数的闭区间上的最值:如果在闭区间上函数的图像是一条曲线,则该函数在上一定能取得和,并且函数的最值必在或取得。
(2)求函数在区间上的最值的步骤:求函数在的;将函数的与比较,其中最大的一个是最大值,最小的一个是最小值。
三、巩固练习1、已知函数在区间内可导,且,则( )(A) (B) (C) (D)2、函数在区间 ( )(A) 上单调递减 (B) 上单调递减(C) 上单调递减 (D) 上单调递增3、已知在上有最小值,则在上,的最大值是4、已知是函数的一个极值点,其中,(I)求与的关系式;(II)求的单调区间;(III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值五、典型例题1、一个物体的运动方程为其中S的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A、 7米/秒B、6米/秒C、 5米/秒D、 8米/秒DCxOA By 2、用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊接成铁盒,所做铁盒容积最大时,在四角截去的正方形的边长为( ) A .6cm B .8cm C .10cm D .12cm3、如图,某农场要修建3个养鱼塘,每个面积为10 000米2,鱼塘前面要留4米的运料通道,其余各边为2米宽的堤埂,则占地面积最少时,每个鱼塘的长宽分别为 ( ) A .长102米,宽米B .长150米,宽66米C .长宽均为100米D .长100米,宽米4、过抛物线y=x 2-3x 上一点P 的切线的倾斜角为45°,它与两坐标轴交于A ,B 两点,则△AOB 的面积是5、如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为_______时,其容积最大.6、6、某旅行社在暑假期间推出如下旅游团组团办法:达到100人的团体,每人收费1000元。
第6讲 导数的应用之单调性、极值和最值1.函数单调性与导函数符号的关系一般地,函数的单调性与其导数正负有以下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在该区间内单调递增;如果()0f x '<,那么函数()y f x =在该区间内单调递减.2.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数; (3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性.注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论: ()0f x '>⇒()f x 单调递增; ()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减; ()f x 单调递减()0f x '⇒≤.3.函数极值的概念设函数()y f x =在点0x 处连续且0()0y f x '==,若在点0x 附近的左侧()0f x '>,右侧()0f x '<,则0x 为函数的极大值点;若在0x 附近的左侧()0f x '<,右侧()0f x '>,则0x 为函数的极小值点.函数的极值是相对函数在某一点附近的小区间而言,在函数的整个定义区间内可能有多个极大值或极小值,且极大值不一定比极小值大.极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 4.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x ';(3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点. 5.函数的最大值、最小值若函数()y f x =在闭区间[],a b 上的图像是一条连续不间断的曲线,则该函数在[],a b 上一定能够取得最大值与最小值,函数的最值必在极值点或区间端点处取得.6.求函数的最大值、最小值的一般步骤设()y f x =是定义在区间[],a b 上的函数,()y f x =在(,)a b 可导,求函数()y f x =在[],a b 上的最大值与最小值,可分两步进行:(1)求函数()y f x =在(,)a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值.注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点; ③函数的最值必在极值点或区间端点处取得.1.已知0x 是函数()e ln x f x x =-的极值点,若()00,a x ∈, ()0,b x ∈+∞,则 A. ()0f a '>, ()0f b '< B. ()0f a '<, ()0f b '< C. ()0f a '>, ()0f b '> D. ()0f a '<, ()0f b '> 【答案】D【解析】因为()1(0)x f x e x x '=->,令()1=0x f x e x '=-,即1=x e x ,在平面直角坐标系画出1,x y e y x==的图象,如图:根据图象可知, ()()()()000,,0,,,0x x f x x x f x '∞'∈∈+,所以 ()0f a '<, ()0f b '>,故选D.2.已知20a b =≠,且关于x 的函数()321132f x x a x a bx =++⋅在R 上有极值,则a 与b 的夹角范围为( )A. 0,6π⎛⎫⎪⎝⎭B. ,6ππ⎛⎤ ⎥⎝⎦C. ,3ππ⎛⎤ ⎥⎝⎦D. 2,33ππ⎛⎤ ⎥⎝⎦【答案】C【解析】()321132f x x a x a bx =++⋅在R 有极值, ()2'0f x x a x a b ∴=++⋅=有不等式的根, 0∴∆>,即2240,4cos 0a a b a a b θ-⋅>∴->,120,cos 2a b θ=≠∴<, 0,3πθπθπ≤≤∴<≤,即向量,a b 夹角范围是,3ππ⎛⎤⎥⎝⎦,故选C. 【方法点睛】本题主要考查向量的模及平面向量数量积公式、利用导数研究函数的极值,属于难题.平面向量数量积公式有两种形式,一是cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角, ·cos ·a ba bθ=(此时·a b 往往用坐标形式求解);(2)求投影, a 在b 上的投影是a b b⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb + 的模(平方后需求a b ⋅).3.在ABC ∆中, ,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则sin 23B π⎛⎫- ⎪⎝⎭的最小值是( ) A. 0 B. 32- C. 32D. -1 【答案】D【解析】()()3222113f x x bx a c ac x =+++-+,∴f′(x )=x 2+2bx+(a 2+c 2-ac ),又∵函数()()3222113f x x bx a c ac x =+++-+有极值点,∴x 2+2bx+(a 2+c 2-ac )=0有两个不同的根,∴△=(2b )2-4(a 2+c 2-ac )>0,即ac >a 2+c 2-b 2,即ac >2accosB ;即cosB <12,故∠B 的范围是(π3π,),所以23B π- 5,33ππ⎛⎫∈ ⎪⎝⎭,当3112B 326B πππ-==,即 时sin 23B π⎛⎫- ⎪⎝⎭的最小值是-1 故选D4.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx , 11f e e⎛⎫= ⎪⎝⎭,则f(x)( )A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值,又有极小值D. 既无极大值,又无极小值 【答案】D【解析】因为xf ′(x )-f (x )=x ln x ,所以()()2ln xf x f x x x x -=',所以()'ln ()f x xx x=,所以f (x )=12x ln 2x +cx .因为f (1e )=12e ln 21e +c ×1e =1e ,所以c =12,所以f ′(x )=12ln 2x +ln x +12=12(ln x +1)2≥0,所以f (x )在(0,+∞)上单调递增,所以f (x )在(0,+∞)上既无极大值,也无极小值,故选D.点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如()()f x f x '-构造()()x f x g x e =, ()()f x f x '+构造()()x g x e f x =,()()xf x f x '-构造()()f xg x x=, ()()xf x f x '+构造()()g x xf x =等 5.设a R ∈,若函数,x y e ax x R =+∈有大于零的极值点,则( )A. 1a e<- B. 1a e >- C. 1a >- D. 1a <-【答案】D【解析】()x f x e a '=+(x>0),显然当0a ≥时, ()0f x '>,f(x)在R 上单调递增,无极值点,不符。
第二节 导数在研究函数中的应用第1课时 系统知识牢基础——导数与函数的单调性、极值与最值知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系 (1)若f ′(x )>0,则f (x )在这个区间上单调递增. (2)若f ′(x )<0,则f (x )在这个区间上单调递减. (3)若f ′(x )=0,则f (x )在这个区间上是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调性及单调区间.[提醒] (1)讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(2)有相同单调性的单调区间不止一个时,用“,”隔开或用“和”连接,不能用“∪”连接. (3)若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[重温经典]1.(多选·教材改编题)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是( ) A .在区间(-2,1)上f (x )是增函数 B .在区间(2,3)上f (x )是减函数 C .在区间(4,5)上f (x )是增函数 D .当x =2时,f (x )取到极大值 答案:BCD2.(教材改编题)函数y =x 4-2x 2+5的单调递减区间为( ) A .(-∞,-1)和(0,1) B .[-1,0]和[1,+∞) C .[-1,1] D .(-∞,-1]和[1,+∞)答案:A3.(易错题)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( ) A.⎝⎛⎭⎫13,+∞ B .⎝⎛⎦⎤-∞,13C.⎣⎡⎭⎫13,+∞ D .⎝⎛⎭⎫-∞,13 解析:选C y ′=3x 2+2x +m ,由条件知y ′≥0在R 上恒成立,∴Δ=4-12m ≤0,∴m ≥13.4.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x <1,所以k ≥1.故选D.5.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是________.解析:∵y ′=-4x 2+a ,且y 有三个单调区间,∴方程y ′=-4x 2+a =0有两个不等的实根,∴Δ=02-4×(-4)×a >0,∴a >0. 答案:(0,+∞)6.设函数f (x )在(a ,b )上的导函数为f ′(x ),f ′(x )在(a ,b )上的导函数为f ″(x ),若在(a ,b )上,f ″(x )<0恒成立,则称函数f (x )在(a ,b )上为“凸函数”.已知f (x )=x 44-t 3x 3+32x 2在(1,4)上为“凸函数”,则实数t 的取值范围是________.解析:由f (x )=x 44-t 3x 3+32x 2可得f ′(x )=x 3-tx 2+3x ,f ″(x )=3x 2-2tx +3,∵f (x )在(1,4)上为“凸函数”,∴x ∈(1,4)时,3x 2-2tx +3<0恒成立,∴t >32⎝⎛⎭⎫x +1x 恒成立. 令g (x )=32⎝⎛⎭⎫x +1x ,∵g (x )在(1,4)上单调递增, ∴t ≥g (4)=518.∴实数t 的取值范围是⎣⎡⎭⎫518,+∞. 答案:⎣⎡⎭⎫518,+∞知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值. 2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.[提醒] (1)极值点不是点,若函数f (x )在x 1处取得极大值,则x 1为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.(3)f ′(x 0)=0是x 0为f (x )的极值点的必要而非充分条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点.[重温经典]1.(多选)(2021·福州模拟)下列函数中,存在极值点的是( ) A .y =x -1xB .y =2|x |C .y =-2x 3-xD .y =x ln x解析:选BD 由题意函数y =x -1x ,则y ′=1+1x2>0,所以函数y =x -1x 在(-∞,0),(0,+∞)内单调递增,没有极值点;函数y =2|x |=⎩⎪⎨⎪⎧2x ,x ≥0,2-x ,x <0,根据指数函数的图象与性质可得,当x <0时,函数y =2|x |单调递减,当x >0时,函数y =2|x |单调递增,所以函数y =2|x |在x =0处取得极小值;函数y =-2x 3-x ,则y ′=-6x 2-1<0,所以函数y =-2x 3-x 在R 上单调递减,没有极值点;函数y =x ln x ,则y ′=ln x +1,当x ∈⎝⎛⎭⎫0,1e 时,y ′<0,函数单调递减,当x ∈⎝⎛⎭⎫1e ,+∞时,y ′>0,函数单调递增,当x =1e 时,函数取得极小值,故选B 、D.2.(教材改编题)如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( ) A .1 B .2 C .3D .4解析:选A 由图象及极值点的定义知,f (x )只有一个极小值点.3.(教材改编题)若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2a ×(-3)+3=0,解得a =5.4.(多选)材料:函数是描述客观世界变化规律的重要数学模型,在现行的高等数学与数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的,如函数f(x)=x x(x>0),我们可以作变形:f(x)=x x=eln x x=e x ln x=e t(t=x ln x),所以f(x)可看作是由函数f(t)=e t和g(x)=x ln x复合而成的,即f(x)=x x(x>0)为初等函数.根据以上材料,对于初等函数h(x)=x 1x(x>0)的说法正确的是()A.无极小值B.有极小值1C.无极大值D.有极大值e 1 e解析:选AD根据材料知:h(x)=x 1x=e1ln xx=e1ln xx,所以h′(x)=e 1ln xx·⎝⎛⎭⎫1x ln x′=e1ln xx·⎝⎛⎭⎫-1x2ln x+1x2=1x2e1ln xx(1-ln x),令h′(x)=0得x=e,当0<x<e时,h′(x)>0,此时函数h(x)单调递增;当x>e时,h′(x)<0,此时函数h(x)单调递减.所以h(x)有极大值且为h(e)=e 1e,无极小值.5.若x=-2是函数f(x)=(x2+ax-1)e x的极值点,则f′(-2)=________,f(x)的极小值为________.解析:由函数f(x)=(x2+ax-1)e x可得f′(x)=(2x+a)e x+(x2+ax-1)e x,因为x=-2是函数f(x)的极值点,所以f′(-2)=(-4+a)e-2+(4-2a-1)e-2=0,即-4+a+3-2a=0,解得a=-1.所以f′(x)=(x2+x-2)e x.令f′(x)=0可得x=-2或x=1.当x<-2或x>1时,f′(x)>0,此时函数f(x)为增函数,当-2<x<1时,f′(x)<0,此时函数f(x)为减函数,所以当x=1时函数f(x)取得极小值,极小值为f(1)=(12-1-1)×e1=-e.答案:0-e6.设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是________.解析:由题意得f′(x)=3x2-4ax+a2的两个零点x1,x2满足x1<2<x2,所以f′(2)=12-8a+a2<0,解得2<a<6.答案:(2,6)知识点三 函数的最值1.在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.2.若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.[提醒] 求函数最值时,易误认为极值点就是最值点,不通过比较就下结论,这种做法是错误的.[重温经典]1.(教材改编题)函数f (x )=ln x -x 在区间(0,e]上的最大值为( ) A .1-e B .-1 C .-eD .0解析:选B 因为f ′(x )=1x -1=1-x x ,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,e]时,f ′(x )<0,所以f (x )的单调递增区间是(0,1),单调递减区间是(1,e],所以当x =1时,f (x )取得最大值f (1)=ln 1-1=-1.2.(教材改编题)函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值D .既无最大值,也无最小值解析:选D f ′(x )=4x 3-4=4(x -1)(x 2+x +1).令f ′(x )=0,得x =1.又x ∈(-1,1)且1∉(-1,1),∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D. 3.(教材改编题)函数y =x +2cos x 在区间⎣⎡⎦⎤0,π2上的最大值是________. 答案:3+π64.(易错题)已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________. 答案:(-4,-2)5.函数f (x )=x e -x ,x ∈[0,4]的最小值为________. 解析:f ′(x )=e -x -x e -x =e -x (1-x ). 令f ′(x )=0,得x =1(e -x >0), 又f (1)=1e >0,f (0)=0,f (4)=4e 4>0,所以f (x )的最小值为0. 答案:06.已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________.解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1).∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12时,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-332。
补讲:导数及其应用(单调性、极值与最值)一.选择题:(1) 已知函数)(x f y =在区间),(b a 内可导,且),(0b a x ∈,则=--+→hh x f h x f h )()(lim000( )(A))('0x f (B))('20x f (C))('20x f - (D)0 (2) 函数x x y ln =在区间 ( )(A) )1,0(e 上单调递减 (B) ),1(+∞e上单调递减 (C) ),0(+∞上单调递减 (D) ),0(+∞上单调递增 (3) 函数5123223+--=x x x y 在]3,0[上的最大值和最小值依次是( )(A) 15,12- (B) 15,5- (C) 4,5- (D) 15,4--(4) 已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则实数a 的取值范围是 ( )(A)21<<-a (B)63<<-a (C)3-<a 或6>a (D)1-<a 或2>a (5) 设点P 是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是 ( ) (A) )32[ππ, (B) ]322(ππ,(C) ),32[)2,0[πππ (D) ),65[)2,0[πππ(6) 方程0109623=-+-x x x 的实根个数是 ( )(A) 3 (B) 2 (C) 1 (D) 0二.填空题:(7) 函数2)()(c x x x f -=在2=x 处有极大值,则实数=c(8) 已知曲线x x x y C 2323+-=:,直线kx y l =:,若l 与C 相切于点)0)(,(000≠x y x ,则切点坐标是 (9) 函数bx x x f +-=3)()(R b ∈在区间)1,0(上单调递增,且关于x 的方程0)(=x f 的根都在区间]2,2[-内,则实数b 的取值范围是(10) 已知a x x x f ++=233)()(R a ∈在]33[,-上有最小值3,则在]33[,-上, )(x f 的最大值是 三.解答题:(11) 函数b ax x x f +-=3)(3)0(>a 的极大值为6,极小值为2,求实数b a ,的值.(12) 已知函数x x x f -+=)1ln()(.① 求函数)(x f 的单调区间; ② 若1->x ,证明:x x x ≤+≤+-)1ln(111.(13) (全国卷Ⅱ)设a 为实数,函数.)(23a x x x x f +--=(Ⅰ)求)(x f 的极值.(Ⅱ)当a 在什么范围内取值时,曲线x x f y 与)(=轴仅有一个交点.14 ( 全国卷III )用长为90cm,宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?*(15) 设21,x x 是函数x a x b x a x f 22323)(-+=)0(>a 的两个极值点, 且2||||21=+x x .① 证明:10≤<a ② 证明:934||≤b ③ 若函数)(2)(')(1x x a x f x h --=,证明:当21<<x x 且01<x 时,a x h 4|)(|≤.16. (山东卷)已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<, (I )求m 与n 的关系式; (II )求()f x 的单调区间;(III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.(全国卷Ⅱ)设a 为实数,函数.)(23a x x x x f +--= (Ⅰ)求)(x f 的极值.(Ⅱ)当a 在什么范围内取值时,曲线x x f y 与)(=轴仅有一个交点.解:(I)'()f x =32x -2x -1若'()f x =0,则x ==-13,x =1 当x 变化时,'()f x ,()f x 变化情况如下表:∴()f x 的极大值是()327f a -=+,极小值是(1)1f a =-(II)函数322()(1)(1)1f x x x x a x x a =--+=-++-由此可知,取足够大的正数时,有()f x >0,取足够小的负数时有()f x <0,所以曲线y =()f x 与x 轴至少有一个交点结合()f x 的单调性可知:当()f x 的极大值527a +<0,即5(,)27a ∈-∞-时,它的极小值也小于0,因此曲线y =()f x 与x 轴仅有一个交点,它在(1,+∞)上。
当()f x 的极小值a -1>0即a ∈(1,+∞)时,它的极大值也大于0,因此曲线y =()f x 与x 轴仅有一个交点,它在(-∞,-13)上。
∴当5(,)27a ∈-∞-∪(1,+∞)时,曲线y =()f x 与x 轴仅有一个交点。
即a 的取值范围是3[,)4+∞( 全国卷III )用长为90cm,宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少? 解:设容器的高为x ,容器的体积为V ,1分 则V=(90-2x )(48-2x )x,(0<V<24)5分 =4x 3-276x 2+4320x∵V ′=12 x 2-552x+4320……7分(山东卷)已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<,(I )求m 与n 的关系式; (II )求()f x 的单调区间;(III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.解(I)2()36(1)f x mx m x n '=-++因为1x =是函数()f x 的一个极值点,所以(1)0f '=,即36(1)0m m n -++=,所以36n m =+(II )由(I )知,2()36(1)36f x mx m x m '=-+++=23(1)1m x x m ⎡⎤⎛⎫--+⎪⎢⎥⎝⎭⎣⎦当0m <时,有211>+,当x 变化时,()f x 与()f x '的变化如下表: 故有上表知,当0m <时,()f x 在2,1m ⎛⎫-∞+⎪⎝⎭单调递减,在2(1,1)m+单调递增,在(1,)+∞上单调递减. (III )由已知得()3f x m '>,即22(1)20mx m x -++>又0m <所以222(1)0x m x m m -++<即[]222(1)0,1,1x m x x m m -++<∈-① 设212()2(1)g x x x m m=-++,其函数开口向上,由题意知①式恒成立,所以22(1)0120(1)010g m mg ⎧-<+++<⎧⎪⇒⎨⎨<⎩⎪-<⎩解之得43m -<又0m <所以403m -<< 即m 的取值范围为4,03⎛⎫- ⎪⎝⎭第五讲答案:一.选择题:BABCCC二.填空题:(7) 6 (8) )83,23(- (9) ]4,3[ (10) 57 三.解答题:(11) 1=a ,4=b .(14) 解:① '()f x =ax 2+bx -a 2,∵ x 1,x 2是f (x )的两个极值点,∴ x 1,x 2是方程'()f x =0的两个实数根. 1分∵ a >0, ∴ x 1x 2=-a <0,x 1+x 2=-ba. 2分∴ | x 1|+|x 2|=| x 1-x 2|=b 2a 2+4a . 3分∵ | x 1|+|x 2|=2, ∴ b 2a2+4a =4,即 b 2=4a 2-4a 3. 4分 ∵ b 2≥0, 0<a ≤1. 5分 ② 设g (a )=4a 2-4a 3,则 g '(a )=8a -12a 2=4a (2-3a ). 6分由g '(a )>0及0a >⇔0<a <23,g '(a )<0⇔23<a ≤1, 7分得 g (a )在区间(0,23)上是增函数,在区间(23,1]上是减函数,∴ g (a )max =g (23)=1627. 8分∴|b |≤439. 9分③ ∵ x 1,x 2是方程f '(x )=0的两个实数根,∴ f '(x )=a (x -x 1)(x -x 2). 10分 ∴ h (x )=a (x -x 1)(x -x 2)-2a (x -x 1)=a (x -x 1)(x -x 2-2),∴ | h (x )|=a | x -x 1|| x -x 2-2|≤a (| x -x 1|+| x -x 2-2|2)2. 12分∵ x >x 1,∴| x -x 1|=x -x 1.又x 1<0,x 1x 2<0,∴x 2>0.∴x 2+2>2.∵ x <2,∴x -x 2-2<0.∴ | x -x 2-2|=x 2+2-x . ∴ | x -x 1|+| x -x 2-2|=x 2-x 1+2=212x x -+=4. ∴ | h (x )|≤4a . 14分。