高考数学大二轮复习冲刺经典专题第二编讲专题专题一函数与导数第2讲导数及其应用练习文
- 格式:doc
- 大小:215.50 KB
- 文档页数:20
第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
专题一 集合,常用逻辑用语,不等式,函数与导数(讲案)第二讲 函数的基本性质与图象【最新考纲透析】预计时间:3.13---3.18函数与基本初等函数的主要考点是:函数的表示方法、分段函数、函数的定义域和值域、函数的单调性、函数的奇偶性、指数函数与对数函数的图象与性质、幂函数的图象与性质。
本部分一般以选择题或填空题的形式出现,考查的重点是函数的性质和图象的应用,重在检测对该部分的基础知识和基本方法的掌握程度。
复习该部分以基础知识为主,注意培养函数性质和函数图象分析问题和解决问题的能力。
【考点精析】题型一 函数的概念与表示例1 (1)函数21sin()(10)()0x x x f x e x π-⎧-<<=⎨≥⎩,若(1)()2f f a +=,则的所有可能值为( ) A .1,2- B.2- C .1,2- D .1,2(2)根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为 ⎪⎪⎩⎪⎪⎨⎧≥<=Ax A c A x x c x f ,,,)((A ,C 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是A .75,25B .75,16C .60,25D .60,16(3)已知集合A 到集合{}0,1,2,3B =的映射1:1f x x →-,则集合A 中的元素最多有 个。
解析:1:1f x x →-是集合A 到集合B 的映射,∴A 中的每一个元素在集合B 中都应该有象。
令101x =-,该方程无解,所以0无原象,分别令11,2,3,1x =-解得:342,,23x x x =±=±=±。
故集合A 中的元素最多为6个。
(4)如图,已知底角为450的等腰梯形ABCD ,底边BC 长为7cm,腰长为cm ,当一条垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF x =,试写出左边部分的面积y 与x 的函数解析式。
专题二 函数与导数第2讲 函数与方程及函数的应用 真题试做 1.(2012·湖南高考,文9)设定义在R上的函数f(x)是最小正周期为2π的偶函数,f′(x)是f(x)的导函数.当x∈[0,π]时,0<f(x)<1;当x∈(0,π)且x≠时,f′(x)>0,则函数y=f(x)-sin x在[-2π,2π]上的零点个数为( ). A.2 B.4 C.5 D.8 2.(2012·浙江高考,文10)设a>0,b>0,e是自然对数的底数,( ). A.若ea+2a=eb+3b,则a>b B.若ea+2a=eb+3b,则a<b C.若ea-2a=eb-3b,则a>b D.若ea-2a=eb-3b,则a<b 3.(2012·山东高考,文15)若函数f(x)=ax(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)在[0,+∞)上是增函数,则a=__________. 4.(2012·课标全国高考,文16)设函数f(x)=的最大值为M,最小值为m,则M+m=__________. 5.(2012·陕西高考,文21)设函数f(x)=xn+bx+c(nN+,b,cR). (1)设n≥2,b=1,c=-1,证明:f(x)在区间内存在唯一零点; (2)设n为偶数, |f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值; (3)设n=2,若对任意x1,x2[-1,1],有|f(x1)-f(x2)|≤4,求b的取值范围. 6.(2012·江苏高考,17)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程; (2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由. 考向分析 通过分析近三年的高考试题可以看到对函数与方程的考查主要体现在以下几个方面:一、结合函数与方程的关系,求函数的零点;二、结合根的存在性定理或函数的图象,对函数是否存在零点(方程是否存在实根)进行判断;三、利用零点(方程实根)的存在求相关参数的值或范围.对函数的实际应用问题的考查,题目大多以社会实际生活为背景,设问新颖、灵活,而解决这些问题所涉及的数学知识、数学思想和方法又都是高中教材和课标中所要求掌握的概念、公式、法则、定理等基础知识和方法. 热点例析 热点一 确定函数的零点 【例1】设函数f(x)=x-ln x(x>0),则y=f(x)( ). A.在区间,(1,e)内均有零点 B.在区间,(1,e)内均无零点 C.在区间内有零点,在区间(1,e)内无零点 D.在区间内无零点,在区间(1,e)内有零点 规律方法 确定函数零点的常用方法: (1)解方程判定法,方程易解时用此法; (2)利用零点存在的判定定理; (3)利用数形结合,尤其是那些方程两端对应的函数类型不同时多以数形结合法求解. 变式训练1 方程|x|=cos x在(-∞,+∞)内( ). A.没有根 B.有且仅有一个根 C.有且仅有两个根 D.有无穷多个根 热点二 函数零点的应用 【例】(1)m为何值时,f(x)=x2+2mx+3m+4, ①有且仅有一个零点? ②有两个零点且均比-1大? (2)若函数F(x)=|4x-x2|+a有4个零点,求实数a的取值范围. 规律方法 解决由函数零点(方程根)的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解,再者,对于存在零点求参数范围问题,可通过分离参数,从而转化为求函数值域问题. 变式训练2 已知函数f(x)=若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是__________. 热点三 函数的实际应用 【例3】某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元. (1)写出y关于r的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的r. 规律方法 应用函数知识解应用题的步骤: (1)正确地将实际问题转化为函数模型,这是解应用题的关键.转化来源于对已知条件的综合分析、归纳与抽象,并与熟知的函数模型相比较,以确定函数模型的种类. (2)用相关的函数知识,进行合理设计,确定最佳解题方案,进行数学上的计算求解. (3)把计算获得的结果带回到实际问题中去解释实际问题,即对实际问题进行总结作答. 变式训练3 某种产品每件成本为6元,每件售价为x元(x>6),年销量为u万件,若已知-u与2成正比,且售价为10元时,年销量为28万件. (1)求年利润y(万元)关于x的函数关系式; (2)求售价为多少时,年利润最大,并求出最大年利润. 思想渗透 函数与方程思想的含义 (1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题. (2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程(方程组)或者构造方程,通过解方程(方程组)或者运用方程的性质去分析、转化问题,使问题获得解决.方程的思想是对方程概念的本质认识,用于指导解题就是善于利用方程(方程组)的观点观察、处理问题. (3)方程的思想与函数的思想密切相关:方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标;函数y=f(x)也可以看作二元方程f(x)-y=0,通过方程进行研究;方程f(x)=a有解,当且仅当a属于函数f(x)的值域;函数与方程的这种相互转化关系十分重要. 如图所示,长方体物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为c(c∈R).E移动时单位时间内的淋雨量包括两部分:P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v-c|×S成正比,比例系数为;其他面的淋雨量之和,其值为.记y为E移动过程中的总淋雨量.当移动距离d=100,面积S=时, (1)写出y的表达式; (2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少. 解:(1)由题意知,E移动时单位时间内的淋雨量为|v-c|+, 故y==(3|v-c|+10). (2)由(1)知, 当0<v≤c时,y=(3c-3v+10)=-15; 当c<v≤10时,y=(3v-3c+10)=+15. 故y= 当0<c≤时,y是关于v的减函数.故当v=10时,ymin=20-. 当<c≤5时,在(0,c]上,y是关于v的减函数;在(c,10]上,y是关于v的增函数. 故当v=c时,ymin=. 1.(2012·浙江路桥中学月考,6)已知符号函数sgn(x)=则函数f(x)=sgn(ln x)-ln2x的零点个数为( ). A.4 B.3 C.2 D.1 2.(2012·山东潍坊一模,12)若直角坐标平面内的两点P,Q满足条件: P,Q都在函数y=f(x)的图象上;P,Q关于原点对称. 则称点对[P,Q]是函数y=f(x)的一对“友好点对”(点对[P,Q]与[Q,P]看作同一对“友好点对”). 已知函数f(x)=则此函数的“友好点对”有( ). A.0对 B.1对 C.2对 D.3对 3.(2012·浙江金华十校模拟,8)已知函数f(x)=x-tan x,若实数x0是函数y=f(x)的零点,且0<t<x0,则f(t)的值( ). A.大于1B.大于0 C.小于0D.不大于0 4.(2012·浙江东阳中学3月检测,16)若函数f(x)=x2+ax+2b在区间(0,1),(1,2)内各有一个零点,则a2+(b-2)2的取值范围是__________. 5.(2012·江苏高考,10)设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=其中a,bR.若f=f,则a+3b的值为______. 6.(2012·浙江重点中学协作体联考,12)函数f(x)=则函数y=f(f(x))+1的所有零点所构成的集合为__________. 7.(2012·北京高考,文12)已知函数f(x)=lg x,若f(ab)=1,则f(a2)+f(b2)=__________. 8.某市近郊有一块大约500 m×500 m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其总面积为3 000 m2,其中场地四周(阴影部分)为通道,通道宽度均为2 m,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S m2. (1)分别写出用x表示y和S的函数关系式(写出函数定义域); (2)怎样设计能使S取得最大值,最大值为多少? 命题调研·明晰考向 真题试做 1.B 解析:由x∈(0,π)且x≠时,f′(x)>0可知: 当x∈时,f′(x)<0,f(x)单调递减; 当x∈时,f′(x)>0,f(x)单调递增. 又x∈[0,π]时,f(x)∈(0,1),且f(x)是最小正周期为2π的偶函数,可画出f(x)的草图为: 对于y=f(x)-sin x的零点,可在同一坐标系中再作出y=sin x的图象,可知在[-2π,2π]上零点个数为4. 2.A 解析:考查函数y=ex+2x为单调增函数,若ea+2a=eb+2b,则a=b; 若ea+2a=eb+3b,a>b.故选A. 3. 解析:当0<a<1时,f(x)=ax在[-1,2]上的最大值为a-1=4,即a=,最小值为a2=m,从而m=,这时g(x)=,即g(x)=在[0,+∞)上是增函数.当a>1时,f(x)=ax在[-1,2]上的最大值为a2=4,得a=2,最小值为a-1=m,即m=,这时g(x)=(1-4m)=-在[0,+∞)上为减函数,不合题意,舍去.所以a=. 4.2 解析:f(x)==1+, 设g(x)=,则g(-x)=-g(x), g(x)是奇函数. 由奇函数图象的对称性知g(x)max+g(x)min=0, M+m=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2. 5.(1)证明:当b=1,c=-1,n≥2时,f(x)=xn+x-1. f·f(1)=×1<0, f(x)在内存在零点. 又当x时,f′(x)=nxn-1+1>0, f(x)在上是单调递增的. f(x)在内存在唯一零点. (2) 解:方法一:由题意知即 由下图知,b+3c在点(0,-2)取到最小值-6, 在点(0,0)取到最大值0, b+3c的最小值为-6,最大值为0. 方法二:由题意知 -1≤f(1)=1+b+c≤1,即-2≤b+c≤0, -1≤f(-1)=1-b+c≤1,即-2≤-b+c≤0, ①×2+得 -6≤2(b+c)+(-b+c)=b+3c≤0. 当b=0,c=-2时,b+3c=-6;当b=c=0时,b+3c=0, b+3c的最小值为-6,最大值为0. 方法三:由题意知 解得b=,c=, b+3c=2f(1)+f(-1)-3. 又-1≤f(-1)≤1,-1≤f(1)≤1. -6≤b+3c≤0. 当b=0,c=-2时,b+3c=-6;当b=c=0时,b+3c=0, b+3c的最小值为-6,最大值为0. (3)解:当n=2时,f(x)=x2+bx+c. 对任意x1,x2[-1,1]都有|f(x1)-f(x2)|≤4等价于f(x)在[-1,1]上的最大值与最小值之差M≤4.据此分类讨论如下: 当>1,即|b|>2时,M=|f(1)-f(-1)|=2|b|>4,与题设矛盾; 当-1≤-<0,即0<b≤2时, M=f(1)-f=2≤4恒成立; 当0≤-≤1,即-2≤b≤0时, M=f(-1)-f=2≤4恒成立. 综上可知,-2≤b≤2. 6.解:(1)令y=0,得kx-(1+k2)x2=0,由实际意义和题设条件知x>0,k>0, 故x==≤=10,当且仅当k=1时取等号. 所以炮的最大射程为10千米. (2)因为a>0,所以炮弹可击中目标存在k>0,使3.2=ka-(1+k2)a2成立关于k的方程a2k2-20ak+a2+64=0有正根判别式Δ=(-20a)2-4a2(a2+64)≥0a≤6. 所以当a不超过6(千米)时,可击中目标. 精要例析·聚焦热点 热点例析 【例1】D 解析:法一:f=·-ln =+1>0,f(1)=-ln 1=>0,f(e)=-ln e=-1<0, f·f(1)>0,f(1)·f(e)<0,故y=f(x)在区间内无零点,在区间(1,e)内有零点. 法二:在同一坐标系中分别画出y=x与y=ln x的图象.如图所示. 由图象知零点存在于区间(1,e)内. 【变式训练1】C 解析:在同一直角坐标系中作出函数y=|x|和y=cos x的图象,如图. 当x>时,y=|x|>>1,y=cos x≤1. 当x<-时,y=|x|>>1,y=cos x≤1,所以两函数的图象只在内有两个交点,所以|x|=cos x在(-∞,+∞)内有两个根. 【例2】解:(1)若函数f(x)=x2+2mx+3m+4有且仅有一个零点,则等价于Δ=4m2-4(3m+4)=0, 即4m2-12m-16=0,即m2-3m-4=0,解得m=4或m=-1. 设两零点分别为x1,x2,且x1>-1,x2>-1,x1≠x2. 则x1+x2=-2m,x1·x2=3m+4, 故只需? 故m的取值范围是{m|-5<m<-1}. (2)若F(x)=|4x-x2|+a有4个零点,即|4x-x2|+a=0有四个根,即|4x-x2|=-a有四个根. 令g(x)=|4x-x2|,h(x)=-a.则作出g(x)的图象, 由图象可知要使|4x-x2|=-a有四个根, 则需g(x)的图象与h(x)的图象有四个交点, 0<-a<4,即-4<a<0. 【变式训练2】(0,1) 解析:由函数图象知,如图所示,当0<k<1时直线y=k与函数f(x)的图象有两个交点,即方程f(x)=k有两个不同的实根. 【例3】解:(1)设容器的容积为V, 由题意知V=πr2l+πr3, 又V=,故l==-r=. 由于l≥2r,因此0<r≤2. 所以建造费用y=2πrl×3+4πr2c=2πr××3+4πr2c. 因此y=4π(c-2)r2+,0<r≤2. (2)由(1)得y′=8π(c-2)r- =,0<r<2. 由于c>3,所以c-2>0. 当r3-=0时,r=. 令=m,得m>0, 所以y′=(r-m)(r2+rm+m2). 当0<m<2,即c>时, 当r=m时,y′=0; 当r∈(0,m)时,y′<0; 当r∈(m,2)时,y′>0. 所以r=m是函数y的极小值点,也是最小值点. 当m≥2,即3<c≤时, 当r∈(0,2)时,y′<0,函数单调递减. 所以r=2是函数y的最小值点. 综上所述,当3<c≤时,建造费用最小时r=2;当c>时,建造费用最小时r=. 【变式训练3】解:(1)设-u=k2, 售价为10元时,年销量为28万件, -28=k2,解得k=2. u=-22+=-2x2+21x+18. 即y=(-2x2+21x+18)(x-6)=-2x3+33x2-108x-108. (2)由(1)得y′=-6x2+66x-108=-6(x2-11x+18) =-6(x-2)(x-9), 由y′=0得x=2(x>6,舍去)或x=9. 显然,当x∈(6,9)时,y′>0;当x∈(9,+∞)时,y′<0. 函数y=-2x3+33x2-108x-108在(6,9)上是增函数, 在(9,+∞)上是减函数. 当x=9时,y取最大值,且ymax=135. 售价为9元时,年利润最大,最大年利润为135万元. 创新模拟·预测演练 1.C 解析:因为f(x)=则x=e,x=1是函数f(x)的零点,故选C. 2.C 解析:P,Q为友好点对,不妨设点P(x0,y0)(x0>0),则Q(-x0,-y0). 所以即(1) 方程组(1)的解的个数即是“友好点对”数, 在同一坐标系作出函数图象(如图),有两个交点,所以有2对“友好点对”. 3.B 解析:分别作出函数y=x与y=tan x在区间上的图象,得到0<x0<,且在区间(0,x0)内函数y=x的图象位于函数y=tan x的图象上方,即0<x<x0时,f(x)>0,则f(t)>0,故选B. 4.(5,10) 解析:依题意有即分别以a,b为横、纵坐标轴,作出可行域得点P(a,b)在以A(-2,0),B(-1,0),C(-3,1)为顶点的三角形(不含边界)区域内. 而a2+(b-2)2表示点P到点Q(0,2)的距离的平方. 因为QBBC,则|PQ|2>|QB|2=5. 又|QC|=>|QA|=,则|PQ|2<|QC|2=10,故a2+(b-2)2的取值范围是(5,10). 5.-10 解析:根据题意,可得 即解得 故a+3b=-10. 6. 解析:即求方程f(f(x))=-1的所有根的集合,先解方程f(t)=-1,即或得t=-2,或t=. 再解方程f(x)=-2和f(x)=. 即或和或 得x=-3或x=或x=-或x=. 7.2 解析:由已知可得,lg(ab)=1,f(a2)+f(b2)=lg a2+lg b2=lg(a2b2)=2lg(ab)=2×1=2. 8.解:(1)由已知xy=3 000,2a+6=y, 则y=(6<x≤500), S=(x-4)a+(x-6)a =(2x-10)a =(2x-10)·=(x-5)(y-6) =3 030-6x-(6<x≤500). (2)S=3 030- ≤3 030-2 =3 030-2×300=2 430, 当且仅当6x=,即x=50时,等号成立. 此时x=50,y=60,Smax=2 430. 即设计成x=50,y=60时,运动场地占地面积最大,最大值为2 430 m2.。
高考数学大二轮复习冲刺经典专题第二编讲专题专题一函数与导数第2讲导数及其应用练习文「考情研析」1.导数的几何意义和运算是导数应用的基础,是高考的一个热点. 2.利用导数解决函数的单调性与极值(最值)问题是高考的常见题型.核心知识回顾1.导数的几何意义(1)函数y =f (x )在□01x =x 0处的导数f ′(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处切线的斜率,即k =□02f ′(x 0). (2)曲线y =f (x )在点(x 0,f (x 0))处的切线方程为□03y -f (x 0)=f ′(x 0)(x -x 0). 2.函数的单调性(1)在某个区间(a ,b )内,如果□01f ′(x )>0(f ′(x )<0),那么函数y =f (x )在这个区间内□02单调递增(单调递减). (2)利用导数求函数f (x )的单调区间的一般步骤: ①确定函数□03f (x )的定义域; ②求□04导数f ′(x ); ③在函数f (x )的定义域内□05解不等式f ′(x )>0或f ′(x )<0; ④根据③的结果确定函数f (x )的□06单调区间. 3.导数与极值函数f (x )在x 0处的导数□01f ′(x 0)=0且f ′(x )在x 0附近“□02左正右负”⇔f (x )在x 0处取得□03极大值;函数f (x )在x 0处的导数□04f ′(x 0)=0且f ′(x )在x 0附近“□05左负右正”⇔f (x )在x 0处取得□06极小值. 4.求函数f (x )在区间[a ,b ]上的最值的一般步骤 (1)求函数y =f (x )在[a ,b ]内的□01极值; (2)比较函数y =f (x )的□02各极值与□03端点处的函数值□04f (a ),f (b )的大小,最大的一个是最大值,最小的一个是最小值.热点考向探究考向1 导数的几何意义例 1 (1)(2019·唐山市高三第二次模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,-x 2+ax ,x >0为奇函数,则f (x )在x =2处的切线斜率等于( )A .6B .-2C .-6D .-8答案 B解析 设x >0,则-x <0,f (-x )=x 2-2x ,又f (x )为奇函数,则f (x )=-f (-x )=-x 2+2x ,f ′(x )=-2x +2,则f ′(2)=-2,故选B.(2)设直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( )A .ln 2-1B .ln 2-2C .2ln 2-1D .2ln 2-2答案 A解析 设切点坐标为(x 0,ln x 0),则1x 0=12,即x 0=2,∴切点坐标为(2,ln 2),又切点在直线y =12x +b 上,∴ln 2=1+b ,即b =ln 2-1.(3)已知曲线y =13x 3+43,则曲线在点P (2,4)处的切线方程为__________;曲线过点P (2,4)的切线方程为__________.答案 4x -y -4=0 4x -y -4=0或x -y +2=0 解析 ①∵P (2,4)在曲线y =13x 3+43上,y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.②设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为x -y +2=0或4x -y -4=0.函数在某点的导数值就是对应曲线在该点处切线的斜率,这是导数的几何意义,所以与导数有关的问题常涉及求导数、求斜率、求切点坐标、求切线方程、求参数值等.注意切点既在原函数的图象上又在切线上这一条件的应用.1.(2019·南阳市六校高二下学期第一次联考)曲线y =e x上的点到直线y =x -2的最短距离是( )A. 2 B .2 C.322D .1答案 C解析 设与y =x -2平行的直线与y =e x 相切,则切线斜率k =1.∵y =e x ,∴y ′=e x,由y ′=e x =1得x =0,当x =0时,y =e 0=1,即切点坐标为(0,1),则点(0,1)到直线y =x -2的距离是曲线y =e x上的点到直线y =x -2的最短距离,∵点(0,1)到直线的距离为d =|0-1-2|12+-12=322,∴曲线y =e x上的点到直线l :y =x -2的距离的最小值为322,故选C.2.若点P 是函数f (x )=x 2-ln x 上任意一点,则P 到直线x -y -2=0的最小距离为( ) A.22B. 2C.12 D .3答案 B解析 由f ′(x )=2x -1x=1得x =1(负值舍去),故曲线f (x )=x 2-ln x 上切线斜率为1的切点是(1,1),所以点P 到直线x -y -2=0的最小距离为|1-1-2|2=2,故选B.3.(2019·山西大学附属中学高二下学期模块诊断)函数f (x )=ax 2+sin x 的图象在x =π2处的切线方程为y =x +b ,则b 的值为( )A .1+π4B .1-π4C .1+4πD .1-4π答案 B解析 ∵f (x )=ax 2+sin x ,∴f ′(x )=2ax +cos x .由题意,得f ′⎝ ⎛⎭⎪⎫π2=2a ×π2+cosπ2=a π=1,解得a =1π,∴f (x )=1πx 2+sin x .∴当x =π2时,f ⎝ ⎛⎭⎪⎫π2=1π×⎝ ⎛⎭⎪⎫π22+sin π2=π4+1,故切点坐标为⎝ ⎛⎭⎪⎫π2,π4+1,将切点坐标代入切线方程得π4+1=π2+b ,解得b =1-π4.故选B.考向1 利用导数研究函数的单调性例2 (1)已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞)B .(0,1)和(2,+∞) C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)答案 C解析 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x=2x 2-5x +2x=x -22x -1x>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12和(2,+∞). (2)(2019·山西大学附属中学高二下学期3月模块诊断)已知函数f (x )=ln xx,则f (x )的单调递增区间为( )A .(0,1)B .(0,e)C .(1,+∞)D .(e ,+∞)答案 B解析 ∵f (x )=ln x x (x >0),∴f ′(x )=1-ln x x2. 由f ′(x )=1-ln x x2>0,得ln x <1,解得0<x <e. ∴函数f (x )的单调递增区间为(0,e).故选B.(3)若函数f (x )=x 2+1+ax 2x 在⎣⎢⎡⎭⎪⎫13,+∞上是增函数,则实数a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫253,+∞解析 由已知得,f ′(x )=2x +a -1x 2,若函数f (x )在⎣⎢⎡⎭⎪⎫13,+∞上是增函数,则当x ∈⎣⎢⎡⎭⎪⎫13,+∞时,2x +a -1x 2≥0恒成立,即a ≥1x 2-2x 恒成立,即a ≥⎝ ⎛⎭⎪⎫1x 2-2x max,设u (x )=1x 2-2x ,则u ′(x )=-2x 3-2<0,即函数u (x )在⎣⎢⎡⎭⎪⎫13,+∞上单调递减,所以当x =13时,函数u (x )取得最大值u ⎝ ⎛⎭⎪⎫13=253,所以a ≥253.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫253,+∞.(1)大多数试题中确定函数的单调性需要分类讨论,讨论的标准是导数的零点在定义域内的分布情况,根据导数的零点把定义域划分为若干区间,在各个区间上确定导数值的符号.(2)研究函数单调性时要注意函数的定义域,要从函数本身确定函数定义域,不要求导后从导数上确定函数的定义域.1.函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1) D .(1,+∞)答案 D解析 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D.2.(2019·贵州凯里市第一中学高三下学期模拟)函数f (x )=⎝ ⎛⎭⎪⎫1+x -x 22+x 33-x 44+…-x 20182018+x 20192019cos2x 在区间[-3,4]上的零点的个数为( )A .4B .5C .6D .8答案 C解析 因为f (x )=⎝⎛⎭⎪⎫1+x -x 22+x 33-x 44+…-x 20182018+x 20192019·cos2x .令g (x )=1+x -x 22+x 33-x 44+…-x 20182018+x 20192019,h (x )=cos2x ,则f (x )=g (x )h (x ),g ′(x )=1-x +x 2-x 3+…+x 2018,当x =-1时,g ′(x )=1+1+…+1=2019>0,当x ∈(-∞,-1)∪(-1,+∞)时,g ′(x )=1--x 20191--x=1+x 20191+x >0,所以g (x )单调递增.因为g (-1)=-12-13-…-12019<0,g (0)=1,所以g (x )在区间[-3,4]上有且只有一个零点.而h (x )=cos2x 在区间[-3,4]有5个零点,分别是x =-3π4,-π4,π4,3π4,5π4,因为-1<-π4<π4<1,又因为f ⎝ ⎛⎭⎪⎫-π4≠0,f ⎝ ⎛⎭⎪⎫π4≠0,所以f (x )的零点有6个,故选C.3.设f (x )=-13x 3+12x 2+2ax .若f (x )在⎣⎢⎡⎭⎪⎫23,+∞上存在单调增区间,则a 的取值范围为________.答案 a >-19解析 由f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a ,当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a ;令29+2a >0,得a >-19,所以,当a >-19时,f (x )在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间.考向3 利用导数研究函数的极值、最值例3 (1)(2019·鞍山一中高三三模)已知函数f (x )=x e x-13ax 3-12ax 2有三个极值点,则a 的取值范围是( )A .(0,e) B.⎝ ⎛⎭⎪⎫0,1e C .(e ,+∞) D.⎝ ⎛⎭⎪⎫1e ,+∞ 答案 C解析 由题意,函数的导数f ′(x )=e x+x e x-ax 2-ax , 若函数f (x )=x e x-13ax 3-12ax 2有三个极值点,等价于f ′(x )=e x+x e x-ax 2-ax =0有三个不同的实根. (1+x )e x-ax (x +1)=0,即(x +1)(e x-ax )=0,则x =-1,所以e x-ax =0有两个不等于-1的根,则a =e xx .设h (x )=exx,则h ′(x )=e x x -exx2=exx -1x 2, 则由h ′(x )>0得x >1,由h ′(x )<0得x <1且x ≠0, 则当x =1时,h (x )取得极小值h (1)=e ,当x <0时,h (x )<0,作出函数h (x )=exx的图象如图.要使a =exx有两个不同的根,则满足a >e ,即实数a 的取值范围是(e ,+∞).故选C.(2)已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( )A .[-3,+∞)B .(-3,+∞)C .(-∞,-3)D .(-∞,-3]答案 D解析 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:x (-∞,-3)-3 (-3,1) 1 (1,+∞)f ′(x ) + 0 - 0 + f (x )单调递增极大值单调递减极小值单调递增又f (-3)=28,f (1)=-4,f (2)=3,f (x )在区间[k,2]上的最大值为28,所以k ≤-3.(3)已知函数f (x )=e x1+ax 2,其中a 为正实数,x =12是f (x )的一个极值点.①求a 的值;②当b >12时,求函数f (x )在[b ,+∞)上的最小值.解 f ′(x )=ax 2-2ax +1e x1+ax22. ①因为x =12是函数y =f (x )的一个极值点,所以f ′⎝ ⎛⎭⎪⎫12=0,因此14a -a +1=0,解得a。