2018年高考数学二轮复习第一部分专题一第五讲导数的应用第五讲导数的应用(一)习题
- 格式:doc
- 大小:181.00 KB
- 文档页数:12
专题04 导数及其应用(十七)导数及其应用1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数定义求函数y=C(C为常数),21,,,y x y x yx===的导数.(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.•常见基本初等函数的导数公式:•常用的导数运算法则:法则1:法则2:法则3:3.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4.生活中的优化问题会利用导数解决某些实际问题.与2017年考纲相比没什么变化,而且这部分内容作为高考的必考内容,在2018年的高考中预计仍会以“一小一大”的格局呈现,“一小”即以选择题或填空题的形式考查导数的几何意义和导数在研究函数问题中的直接应用,或以定积分的简单应用为主,难度中等;“一大”即以压轴题的形式呈现,仍会以导数的应用为主,主要考查导数、含参不等式、方程、探索性等方面的综合应用,难度较大.考向一 利用导数研究函数的单调性样题1 (2017新课标全国Ⅰ文科)已知函数()f x =e x (e x −a )−a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2ax =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042a a --≥,即342e a ≥-时()0f x ≥. 综上,a 的取值范围为34[2e ,1]-.【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f x ',由()f x '的正负,得出函数()f x 的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.样题2(2017新课标全国Ⅲ文科)已知函数()2(1)ln 2x ax a x f x =+++. (1)讨论()f x 的单调性;(2)当a ﹤0时,证明3()24f x a≤--.从而当a <0时,11ln()1022a a -++≤,即3()24f x a≤--.【名师点睛】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间的大小关系,或利用放缩、等量代换将多元函数转化为一元函数.考向二 利用导数研究函数的极值问题样题3 若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e --C .35e -D .1【答案】A样题4 (2017山东文科)已知函数()3211,32f x x ax a =-∈R . (1)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(2)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【解析】(1)由题意2()f x x ax '=-, 所以,当2a =时,(3)0f =,2()2f x x x '=-,①当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增;当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减;当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增.所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时()g x 取到极小值,极小值是(0)g a =-.②当0a =时,()(sin )g x x x x '=-,当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值.③当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增;考向三 导数与不等式恒成立问题样题 5 已知定义在R 上的奇函数()f x 满足:当0x ≥时,()s i n f x x x=-.若不等式2(4)(2)f t f m m t ->+对任意实数t 恒成立,则实数m 的取值范围是A .(,-∞B .(C .(,0)(2,)-∞+∞D .(,(2,)-∞+∞【答案】A【解析】由题意得,当0x ≥时,()1cos 0f x x '=-≥,则()f x 在[0,)+∞上单调递增,又根据奇函数的性质可知,()f x 在R 上单调递增,那么由2(4)(2)f t f m mt ->+可得242t m mt ->+在R 上恒成立,分离参数得242t m t <-+,令24()2t g t t =-+,求导可得,()g t 在(,-∞上单调递增,在(上单调递减,在)+∞上单调递增,故min ()g t g ==min ()m g t g <==.故选A .【思路点睛】本题主要考查导数的最值应用,奇函数的性质,分离参数的方法,属于中档题.本题有两种方法求解:(1)利用函数是奇函数,可将0x <时的函数解析式求出,再用函数的单调性求解;(2)直接先求出0x ≥时的单调性,再根据奇函数在对称区间上的单调性相同可得出()f x 在R 上单调递增,可得到242t m mt ->+在R 上恒成立,再利用分离参数的方法,可得到242t m t <-+,进而利用求导的方法求出24()2t g t t =-+的最小值即可.此题判断出()f x 在R 上的单调性是解题的关键. 样题6 已知函数()2f x x x =-,()e 1x g x ax =--(e 为自然对数的底数).(1)讨论函数()g x 的单调性;(2)当0x >时,()()f x g x ≤恒成立,求实数a 的取值范围.。
第六讲 导数的应用(二)[真题自检]1.(2017·高考全国卷Ⅱ)设函数f (x )=(1-x 2)e x. (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解析:(1)f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)单调递减, 在(-1-2,-1+2)单调递增. (2)f (x )=(1+x )(1-x )e x.当a ≥1时,设函数h (x )=(1-x )e x ,h ′(x )=-x e x<0(x >0),因此h (x )在[0,+∞)单调递减, 而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x -x -1,g ′(x )=e x-1>0(x >0),所以g (x )在[0,+∞)单调递增, 而g (0)=0,故e x≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0=5-4a -12, 则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1. 当a ≤0时,取x 0=5-12,则x 0∈(0,1), f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1.综上,a 的取值范围是[1,+∞).2.(2016·高考全国卷Ⅱ)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 解析:(1)f (x )的定义域为(0,+∞). 当a =4时,f (x )=(x +1)ln x -4(x -1),f (1)=0,f ′(x )=ln x +1x-3,f ′(1)=-2.故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0.(2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a x -x +1>0.设g (x )=ln x -a x -x +1,则g ′(x )=1x-2a x +2=x 2+-a x +1x x +2,g (1)=0. ①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1-a -2-1,x 2=a -1+a -2-1.由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)单调递减,因此g (x )<0.综上,a 的取值范围是(-∞,2].导数与方程问题[典例](2017·临沂模拟)已知函数f (x )=e x-1,g (x )=x +x ,其中e 是自然对数的底数,e =2.718 28….(1)证明:函数h (x )=f (x )-g (x )在区间(1,2)上有零点; (2)求方程f (x )=g (x )的根的个数,并说明理由. 解析:(1)证明:h (x )=f (x )-g (x )=e x-1-x -x ,则h (1)=e -3<0,h (2)=e 2-3-2>0,所以函数h (x )在区间(1,2)上有零点. (2)由(1)得h (x )=e x-1-x -x .由g (x )=x +x 知,x ∈[0,+∞), 而h (0)=0,则x =0为h (x )的一个零点,而h (x )在(1,2)内有零点, 因此h (x )在[0,+∞)上至少有两个零点.因为h ′(x )=e x-12x 12--1,记φ(x )=e x-12x 12--1,则φ′(x )=e x+14x 32-.当x ∈(0,+∞)时,φ′(x )>0,因此φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点,即h (x )在[0,+∞)内至多有两个零点. 所以方程f (x )=g (x )的根的个数为2. [类题通法]数学思想在用导数研究方程根或零点问题中的应用对于函数的零点问题,往往通过利用导数来研究函数的单调性,从而研究函数在不同区间上的函数取值,利用数形结合来求解函数的零点个数或参数的取值范围.在求解的过程中要注意函数零点的存在性定理及分类讨论思想的应用.[演练冲关]1.(2016·江西宜春中学模拟)设函数f (x )=ln x +m x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解析:(1)由题设,当m =e 时,f (x )=ln x +e x ,则f ′(x )=x -ex2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.2.已知函数f (x )=1x-a ln x (a ∈R ).(1)若h (x )=f (x )-2x ,当a =-3时,求h (x )的单调递减区间; (2)若函数f (x )有唯一的零点,求实数a 的取值范围.解析:(1)∵h (x )的定义域为(0,+∞), h ′(x )=-1x +3x -2=-2x 2-3x +1x=-x -x -x,∴h (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,12和(1,+∞).(2)问题等价于a ln x =1x有唯一的实根,显然a ≠0,则关于x 的方程x ln x =1a有唯一的实根,构造函数φ(x )=x ln x ,则φ′(x )=1+ln x , 由φ′(x )=1+ln x =0,得x =e -1, 当0<x <e -1时,φ′(x )<0,φ(x )单调递减, 当x >e -1时,φ′(x )>0,φ(x )单调递增, ∴φ(x )的极小值为φ(e -1)=-e -1.如图,作出函数φ(x )的大致图象,则要使方程x ln x =1a有唯一的实根,只需直线y =1a 与曲线y =φ(x )有唯一的交点,则1a =-e -1或1a>0,解得a =-e 或a >0,故实数a 的取值范围是{a |a =-e 或a >0}.导数、函数、不等式的交汇问题函数、导数、不等式的交汇命题是课标卷命题的热点,也是每年高考必考内容,常考的角度主要有不等式恒成立问题及证明不等式,综合性能有较大的区分度. 交汇点一 不等式恒成立问题[典例1](2017·洛阳模拟)设函数f (x )=a 3x 3-32x 2+(a +1)x +1(其中常数a ∈R ).(1)已知函数f (x )在x =1处取得极值,求a 的值;(2)已知不等式f ′(x )>x 2-x -a +1对任意a ∈(0,+∞)都成立,求x 的取值范围.解析:(1)因为f (x )=a 3x 3-32x 2+(a +1)x +1,所以f ′(x )=ax 2-3x +a +1,因为函数f (x )在x =1处取得极值,所以f ′(1)=a -3+a +1=0,解得a =1, 此时f ′(x )=x 2-3x +2=(x -1)(x -2),当x <1或x >2时,f ′(x )>0,f (x )为增函数;当1<x <2时,f ′(x )<0,f (x )为减函数; 所以f (x )在x =1处取得极大值,所以a =1符合题意.(2)f ′(x )=ax 2-3x +a +1,不等式f ′(x )>x 2-x -a +1对任意a ∈(0,+∞)都成立,等价于a >x 2+2xx 2+2对任意a ∈(0,+∞)都成立,等价于x 2+2x x 2+2≤0成立,所以x 2+2x ≤0,解得-2≤x ≤0. 所以x 的取值范围是[-2,0]. [类题通法]等价转化思想在求解不等式恒成立问题中的两种方法(1)分离参数法:若能够将参数分离,且分离后含x 变量的函数关系式的最值易求,则用分离参数法.即:①λ≥f (x )恒成立,则λ≥f (x )max . ②λ≤f (x )恒成立,则λ≤f (x )min .(2)最值转化法:若参数不易分离或分离后含x 变量的函数关系式的最值不易求,则常用最值转化法.可通过求最值建立关于参数的不等式求解.如f (x )≥0,则只需f (x )min ≥0.[演练冲关]1.(2017·南昌模拟)已知函数f (x )=e -x[x 2+(1-m )x +1](e 为自然对数的底数,m 为常数). (1)若曲线y =f (x )与x 轴相切,求实数m 的值;(2)若存在实数x 1,x 2∈[0,1]使得2f (x 1)<f (x 2)成立,求实数m 的取值范围.解析:(1)f ′(x )=-e -x[x 2+(1-m )x +1]+e -x(2x +1-m )=e -x[-x 2+(m +1)x -m ]=-e -x(x -m )(x -1),设切点为(t,0),则f ′(t )=0,f (t )=0,即⎩⎪⎨⎪⎧-e -tt -m t -=0,e -t [t 2+-m t +1]=0,解得⎩⎪⎨⎪⎧t =1,m =3或⎩⎪⎨⎪⎧t =m ,m =-1,所以m 的值是3或-1.(2)依题意,当x ∈[0,1]时,函数f (x )max >2f (x )min ,①m ≥1时,当x ∈[0,1]时,f ′(x )≤0,函数f (x )单调递减, 所以f (0)>2f (1),即1>2×3-m e ⇒m >3-e2; ②m ≤0时,x ∈[0,1]时,f ′(x )≥0,函数f (x )单调递增, 所以f (1)>2f (0),即3-me >2⇒m <3-2e ;③当0<m <1时,当x ∈(0,m )时f ′(x )<0, 当x ∈(m,1)时,f ′(x )>0,所以f (x )min =f (m )=m +1em,f (x )max =f (0)或f (1),记函数g (m )=m +1e m,g ′(m )=-mem ,当m ≥0时,g ′(m )≤0,g (m )单调递减, 所以m ∈(0,1)时,g (m )>g (1)=2e ,所以2f (x )min =m +em>4e>1=f (0), 2f (x )min =m +e m>4e >3e >3-m e=f (1),不存在m ∈(0,1)使得f (x )max >2f (x )min , 综上,实数m 的取值范围是(-∞,3-2e)∪⎝ ⎛⎭⎪⎫3-e 2,+∞. 交汇点二 证明不等式[典例2] (2017·吉林实验中学模拟)已知函数f (x )=(ax 2-x +a )e x. (1)讨论函数f (x )的单调性;(2)设g (x )=b ln x -x (b >0),当a =12时,若对任意x 1∈(0,2),存在x 2∈[1,2],使f (x 1)+g (x 2)≥0成立,求实数b 的取值范围.解析:(1)f ′(x )=(x +1)(ax +a -1)e x.当a =0时,f ′(x )在(-∞,-1)上时,f ′(x )>0,f (x )在(-∞,-1)上单调递增;f ′(x )在(-1,+∞)上时,f ′(x )<0,f (x )在(-1,+∞)上单调递减.当a >0时,因为-1+1a>-1,所以f (x )在(-∞,-1)和(-1+1a ,+∞)上单调递增,在(-1,-1+1a)上单调递减;当a <0时,因为-1+1a<-1,所以f (x )在(-∞,-1+1a )和(-1,+∞)上单调递减,在(-1+1a,-1)上单调递增.(2)由(1)知当a =12时,f (x )在(0,1)上单调递减,在(1,2)上单调递增,因此f (x )在(0,2)上的最小值为f (1)=0;由题意知,对任意x 1∈(0,2),存在x 2∈[1,2],使g (x 2)≥-f (x 1)成立, 因为[-f (x 1)]max =0,所以b ln x 2-x 2≥0,即b ≥x 2ln x 2. 令h (x )=x ln x,x ∈[1,2],则h ′(x )=ln x -1x2<0,因此h (x )min =h (2)=2ln 2,所以b ≥2ln 2. [类题通法]构造函数法证明不等式中常见的四种方法(1)移项法:证明不等式f (x )>g (x )(f (x )<g (x ))的问题转化为证明f (x )-g (x )>0(f (x )-g (x )<0),进而构造辅助函数h (x )=f (x )-g (x ).(2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数.(3)主元法:对于(或可化为)f (x 1,x 2)≥A 的不等式,可选x 1(或x 2)为主元,构造函数f (x ,x 2)(或f (x 1,x )).(4)放缩法:若所构造函数最值不易求解,可将所证明不等式进行放缩,再重新构造函数.[演练冲关]2.(2017·武汉调研)已知函数f (x )=12x 2+(1-a )x -a ln x .(1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <a 时,f (a +x )<f (a -x ); (3)设x 1,x 2是f (x )的两个零点,证明:f ′(x 1+x 22)>0.解析:(1)f (x )的定义域为(0,+∞).由已知,得f ′(x )=x +1-a -a x=x 2+-a x -ax=x +x -ax.若a ≤0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增.若a >0,则由f ′(x )=0,得x =a .当0<x <a 时,f ′(x )<0;当x >a 时,f ′(x )>0. 此时f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)证明:令g (x )=f (a +x )-f (a -x ),则g (x )=12(a +x )2+(1-a )(a +x )-a ln(a +x )-[12(a-x )2+(1-a )(a -x )-a ln(a -x )]=2x -a ln(a +x )+a ln(a -x ). ∴g ′(x )=2-a a +x -aa -x =-2x2a 2-x 2.当0<x <a 时,g ′(x )<0,∴g (x )在(0,a )上是减函数. 而g (0)=0,∴g (x )<g (0)=0. 故当0<x <a 时,f (a +x )<f (a -x ).(3)证明:由(1)可知,当a ≤0时,函数f (x )至多有一个零点, 故a >0,从而f (x )的最小值为f (a ),且f (a )<0. 不妨设0<x 1<x 2,则0<x 1<a <x 2,∴0<a -x 1<a .由(2),得f (2a -x 1)=f (a +a -x 1)<f (x 1)=0=f (x 2).从而x 2>2a -x 1,于是x 1+x 22>a .由(1)知,f ′(x 1+x 22)>0.。
第五讲 导数的应用(一)限时规范训练 A 组——高考热点强化练一、选择题1.曲线y =e x在点A 处的切线与直线x +y +3=0垂直,则点A 的坐标为( ) A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:与直线x +y +3=0垂直的直线的斜率为1,所以切线的斜率为1,因为y ′=e x,所以由y ′=e x =1,解得x =0,此时y =e 0=1,即点A 的坐标为(0,1),选B. 答案:B2.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )在原点附近的图象大致是( )解析:因为f ′(x )=2x -2sin x ,[f ′(x )]′=2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,故选A. 答案:A3.曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为( ) A.π6 B.π4 C.π3D.π2解析:因为f (x )=x ln x ,所以f ′(x )=ln x +1,所以f ′(1)=1,所以曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为π4.答案:B4.若函数f (x )=2x 3-3mx 2+6x 在(2,+∞)上为增函数,则实数m 的取值范围是( ) A .(-∞,2) B .(-∞,2] C.⎝⎛⎭⎪⎫-∞,52 D.⎝⎛⎦⎥⎤-∞,52解析:因为f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,令f ′(x )≥0,即6x 2-6mx +6≥0,则m ≤x +1x ,又因为y =x +1x 在(2,+∞)上为增函数,故当x ∈(2,+∞)时,x +1x >52,故m ≤52,故选D. 答案:D5.函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1 C .0D .不存在解析:f ′(x )=x -1x =x 2-1x,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得最小值,且f (1)=12-ln 1=12.答案:A6.已知常数a ,b ,c 都是实数,f (x )=ax 3+bx 2+cx -34的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-115,则a 的值是( ) A .-8122B.13 C .2D .5解析:由题意知,f ′(x )=3ax 2+2bx +c ≤0的解集为[-2,3],且在x =3处取得极小值-115,故有⎩⎪⎨⎪⎧3a >0,-2+3=-2b 3a ,-2×3=c3a ,f 3=27a +9b +3c -34=-115,解得a =2.答案:C7.(2017·沈阳模拟)已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (1)=0,当x >0时,xf ′(x )<2f (x ),则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-1,0)∪(0,1)解析:根据题意,设函数g (x )=f x x 2(x ≠0),当x >0时,g ′(x )=f ′x ·x -2·f xx 3<0,说明函数g (x )在(0,+∞)上单调递减,又f (x )为偶函数,所以g (x )为偶函数,又f (1)=0,所以g (1)=0, 故g (x )在(-1,0)∪(0,1)上的函数值大于零,即f (x )在(-1,0)∪(0,1)上的函数值大于零. 答案:D8.已知函数f (x )的导函数为f ′(x ),若x 2f ′(x )+xf (x )=sin x (x ∈(0,6)),f (π)=2,则下列结论正确的是( ) A .xf (x )在(0,6)上单调递减 B .xf (x )在(0,6)上单调递增 C .xf (x )在(0,6)上有极小值2πD .xf (x )在(0,6)上有极大值2π解析:因为x 2f ′(x )+xf (x )=sin x ,x ∈(0,6),所以xf ′(x )+f (x )=sin x x,设g (x )=xf (x ),x ∈(0,6),则g ′(x )=f (x )+xf ′(x )=sin x x,由g ′(x )>0得0<x <π,g ′(x )<0得π<x <6,所以当x =π时,函数g (x )=xf (x )取得极大值g (π)=πf (π)=2π. 答案:D 二、填空题9.曲线y =x 2+1x在点(1,2)处的切线方程为________.解析:∵y ′=2x -1x2,∴y ′|x =1=1,即曲线在点(1,2)处的切线的斜率k =1,∴切线方程为y-2=x -1, 即x -y +1=0. 答案:x -y +1=010.设函数f (x )=x (e x-1)-12x 2,则函数f (x )的单调增区间为________.解析:因为f (x )=x (e x -1)-12x 2,所以f ′(x )=e x -1+x e x -x =(e x-1)(x +1).令f ′(x )>0,即(e x-1)·(x +1)>0,解得x ∈(-∞,-1)或x ∈(0,+∞).所以函数f (x )的单调增区间为(-∞,-1)和(0,+∞). 答案:(-∞,-1)和(0,+∞)11.函数f (x )=x 3-3x 2+6在x =________时取得极小值.解析:依题意得f ′(x )=3x (x -2).当x <0或x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.因此,函数f (x )在x =2时取得极小值. 答案:212.(2017·高考全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA, △FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.解析:如图,连接OD ,交BC 于点G ,由题意,知OD ⊥BC ,OG =36BC . 设OG =x ,则BC =23x ,DG =5-x ,三棱锥的高h =DG 2-OG 2=25-10x +x 2-x 2=25-10x ,S △ABC =12×23x ×3x =33x 2,则三棱锥的体积V =13S △ABC ·h =3x 2·25-10x =3·25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝ ⎛⎭⎪⎫0,52,则f ′(x )=100x 3-50x 4.令f ′(x )=0得x =2.当x ∈(0,2)时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫2,52时,f ′(x )<0,f (x )单调递减,故当x =2时,f (x )取得最大值80,则V ≤3×80=415.∴三棱锥体积的最大值为415 cm 3. 答案:415 cm 3三、解答题13.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.解析:(1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2, 令f ′(x )=0,解得x =-1或x =5.因x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 由此知函数f (x )在x =5时取得极小值f (5)=-ln 5. 14.设函数f (x )=3x 2+axex(a ∈R). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.解析:(1)对f (x )求导得f ′(x )=6x +a e x -3x 2+ax e x e x 2=-3x 2+6-a x +ae x, 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0. 当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6xe x, 故f (1)=3e ,f ′(1)=3e,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+6-a x +aex令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.15.(2017·高考北京卷)已知函数f (x )=e xcos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解析:(1)因为f (x )=e xcos x -x ,所以f ′(x )=e x(cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(2)设h (x )=e x(cos x -sin x )-1,则h ′(x )=e x(cos x -sin x -sin x -cos x )=-2e xsin x .当x ∈⎝ ⎛⎭⎪⎫0,π2时,h ′(x )<0,所以h (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.所以对任意x ∈⎝ ⎛⎦⎥⎤0,π2有h (x )<h (0)=0,即f ′(x )<0.所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.因此f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为f (0)=1,最小值为f ⎝ ⎛⎭⎪⎫π2=-π2. B 组——高考能力提速练一、选择题1.函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是( )A .a >0,b <0,c >0,d >0B .a >0,b <0,c <0,d >0C .a <0,b <0,c >0,d >0D .a >0,b >0,c >0,d <0解析:∵函数f (x )的图象在y 轴上的截距为正值,∴d >0.∵f ′(x )=3ax 2+2bx +c ,且函数f (x )=ax 3+bx 2+cx +d 在(-∞,x 1)上单调递增,(x 1,x 2)上单调递减,(x 2,+∞)上单调递增, ∴f ′(x )<0的解集为(x 1,x 2),∴a >0,又x 1,x 2均为正数,∴c 3a >0,-2b6a>0,可得c >0,b <0.答案:A2.设函数f (x )=x -2sin x 是区间⎣⎢⎡⎦⎥⎤t ,t +π2上的减函数,则实数t 的取值范围是( )A.⎣⎢⎡⎦⎥⎤2k π-π3,2k π-π6(k ∈Z)B.⎣⎢⎡⎦⎥⎤2k π+π3,2k π+11π6(k ∈Z)C.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π3(k ∈Z) D.⎣⎢⎡⎦⎥⎤2k π+π3,2k π+7π6(k ∈Z) 解析:由题意得f ′(x )=1-2cos x ≤0,即cos x ≥12,解得2k π-π3≤x ≤2k π+π3(k ∈Z),∵f (x )=x -2sin x 是区间⎣⎢⎡⎦⎥⎤t ,t +π2上的减函数,∴⎣⎢⎡⎦⎥⎤t ,t +π2⊆⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3,∴2k π-π3≤t ≤2k π-π6(k ∈Z),故选A. 答案:A3.(2017·重庆模拟)若直线y =ax 是曲线y =2ln x +1的一条切线,则实数a =( ) A .e -12B .2e -12C .e 12D .2e 12解析:依题意,设直线y =ax 与曲线y =2ln x +1的切点的横坐标为x 0,则有y ′|x =x 0=2x 0,于是有⎩⎪⎨⎪⎧a =2x 0,ax 0=2ln x 0+1,解得x 0=e ,a =2x 0=2e -12,选B.答案:B4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3)D .(-∞,-3]解析:由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:x (-∞,-3)-3 (-3,1) 1 (1,+∞)f ′(x ) + 0 - 0 + f (x )单调递增极大值单调递减极小值单调递增又f (-3)=28,f (1)=-4,f (2)=3,f (x )在区间[k,2]上的最大值为28,所以k ≤-3. 答案:D5.对∀x ∈R ,函数f (x )的导数存在,若f ′(x )>f (x ),且a >0,则以下说法正确的是( ) A .f (a )>e a·f (0) B .f (a )<e a·f (0) C .f (a )>f (0) D .f (a )<f (0)解析:设g (x )=f xex,则g ′(x )=f ′x -f xex>0,故g (x )=f xex为R 上的单调递增函数,因此g (a )>g (0), 即f aea>f 0e=f (0),所以f (a )>e a·f (0),选A.答案:A6.若函数f (x )=x e x-a 有两个零点,则实数a 的取值范围为( ) A .-1e <a <0B .a >-1eC .-e<a <0D .0<a <e解析:构造函数g (x )=x e x,则g ′(x )=e x(x +1),因为e x>0,所以由g ′(x )=0,解得x =-1, 当x >-1时,g ′(x )>0,函数g (x )为增函数;当x <-1时,g ′(x )<0,函数g (x )为减函数, 所以当x =-1时函数g (x )有最小值:g (-1)=-e -1=-1e.画出函数y =x e x的图象,如图所示,显然当-1e <a <0时,函数f (x )=x e x-a 有两个零点,故选A.答案:A7.设函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1x ≤0e axx >0在[-2,2]上的最大值为2,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫12ln 2,+∞B.⎣⎢⎡⎦⎥⎤0,12ln 2C .(-∞,0)D.⎝ ⎛⎦⎥⎤-∞,12ln 2解析:设y =2x 3+3x 2+1(-2≤x ≤0),则y ′=6x (x +1)(-2≤x ≤0),所以-2≤x <-1时y ′>0,-1<x <0时y ′<0,所以y =2x 3+3x 2+1在[-2,0]上的最大值为2,所以函数y =e ax在(0,2]上的最大值不超过2,当a >0时,y =e ax 在(0,2]上的最大值e 2a≤2,所以0<a ≤12ln 2,当a =0时,y=1≤2,当a <0时,y =e ax在(0,2]上的最大值小于1,所以实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,12ln 2.答案:D8.定义在R 上的函数f (x )的导函数为f ′(x ),已知f (x +1)是偶函数,且(x -1)f ′(x )<0.若x 1<x 2,且x 1+x 2>2,则f (x 1)与f (x 2)的大小关系是( )A .f (x 1)<f (x 2)B .f (x 1)=f (x 2)C .f (x 1)>f (x 2)D .不确定解析:由(x -1)f ′(x )<0可知,当x >1时,f ′(x )<0,函数单调递减.当x <1时,f ′(x )>0,函数单调递增.因为函数f (x +1)是偶函数,所以f (x +1)=f (1-x ),f (x )=f (2-x ),即函数f (x )图象的对称轴为x =1.所以,若1≤x 1<x 2,则f (x 1)>f (x 2);若x 1<1,则x 2>2-x 1>1,此时有f (x 2)<f (2-x 1),又f (2-x 1)=f (x 1),所以f (x 1)>f (x 2). 综上,必有f (x 1)>f (x 2),选C. 答案:C 二、填空题9.曲线y =x (3ln x +1)在点(1,1)处的切线方程为______.解析:y ′=3ln x +1+x ·3x=3ln x +4,k =y ′|x =1=4,切线方程为y -1=4(x -1),即y =4x-3.答案:y =4x -310.已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值范围为________.解析:由题意知f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立.又∵y =-x +1x 在⎣⎢⎡⎦⎥⎤13,2上单调递减,∴⎝⎛⎭⎪⎫-x +1x max =83,∴2a ≥83,即a ≥43.答案:⎣⎢⎡⎭⎪⎫43,+∞11.已知函数f (x )=ln x ,则函数g (x )=f (x )-f ′(x )在区间[2,e]上的最大值为________. 解析:因为f (x )=ln x ,所以f ′(x )=1x ,则g (x )=f (x )-f ′(x )=ln x -1x,函数g (x )的定义域为(0,+∞),g ′(x )=1x +1x2>0在x ∈(0,+∞)上恒成立,所以函数g (x )在(0,+∞)上是增函数,所以g (x )在区间[2,e]上的最大值g (x )max =g (e)=ln e -1e =1-1e .答案:1-1e12.已知y =f (x )为R 上的连续可导函数,且xf ′(x )+f (x )>0,则函数g (x )=xf (x )+1(x >0)的零点个数为________.解析:本题考查导数在函数中的应用,考查考生的构造思想.设F (x )=xf (x ),则F ′(x )=f (x )+xf ′(x )>0在R 上恒成立,且F (0)=0,所以F (x )=xf (x )>0在(0,+∞)上恒成立,所以在(0,+∞)上g (x )=xf (x )+1>1恒成立,则函数g (x )=xf (x )+1的零点个数为0. 答案:0 三、解答题13.已知函数f (x )=ln x -a x.(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求a 的值.解析:(1)x ∈(0,+∞),f ′(x )=1x +a x 2=x +ax2(a >0),显然f ′(x )>0,故f (x )在(0,+∞)上是单调递增函数. (2)由(1)可知,f ′(x )=x +ax 2. ①若a ≥-1,则当x ∈(1,e)时,x +a >0,即f ′(x )>0,故f (x )在[1,e]上为增函数, ∴f (x )min =f (1)=-a =32,∴a =-32(舍去).②若a ≤-e ,则当x ∈(1,e)时,x +a <0,即f ′(x )<0,故f (x )在[1,e]上为减函数,∴f (x )min =f (e)=1-a e =32,∴a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a ,当1<x <-a 时,f ′(x )<0,f (x )在(1,-a )上为减函数; 当-a <x <e 时,f ′(x )>0,f (x )在(-a ,e)上为增函数. ∴f (x )min =f (-a )=ln(-a )+1=32,∴a =- e.综上所述,a =- e.14.(2017·潍坊模拟)已知函数f (x )=a x+b ln x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =x .(1)求函数f (x )的单调区间及极值;(2)若∀x ≥1,f (x )≤kx 恒成立,求k 的取值范围. 解析:(1)f (x )的定义域为(0,+∞),f ′(x )=bx -ax 2,故f ′(1)=b -a =1, 又f (1)=a ,点(1,a )在直线y =x 上, ∴a =1,则b =2.∴f (x )=1x +2ln x 且f ′(x )=2x -1x2,当0<x <12时,f ′(x )<0,当x >12时,f ′(x )>0.故函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫12,+∞,单调减区间为⎝ ⎛⎭⎪⎫0,12,f (x )极小值=f ⎝ ⎛⎭⎪⎫12=2-2ln 2,无极大值.(2)由题意知,k ≥f x x =2ln x x +1x 2(x ≥1)恒成立, 令g (x )=2ln x x +1x2(x ≥1), 则g ′(x )=2-2ln x x 2-2x 3=2x -x ln x -1x 3(x ≥1), 令h (x )=x -x ln x -1(x ≥1),则h ′(x )=-ln x (x ≥1),当x ≥1时,h ′(x )≤0,h (x )在[1,+∞)上为减函数,故h (x )≤h (1)=0,故g ′(x )≤0, ∴g (x )在[1,+∞)上为减函数,故g (x )的最大值为g (1)=1,∴k ≥1.15.已知函数f (x )=13x 3-32x 2+2x +5. (1)求函数f (x )的图象在点(3,f (3))处的切线方程;(2)若曲线y =f (x )与y =2x +m 有三个不同的交点,求实数m 的取值范围.解析:(1)∵f (x )=13x 3-32x 2+2x +5,∴f ′(x )=x 2-3x +2. 易求得f ′(3)=2,f (3)=132. ∴f (x )的图象在(3,f (3))处的切线方程是y -132=2(x -3),即4x -2y +1=0. (2)令f (x )=2x +m ,即13x 3-32x 2+2x +5=2x +m ,得13x 3-32x 2+5=m , 设g (x )=13x 3-32x 2+5, ∵曲线y =f (x )与直线y =2x +m 有三个不同的交点,∴曲线y =g (x )与直线y =m 有三个不同的交点,易得g ′(x )=x 2-3x ,令g ′(x )=0,解得x =0或x =3,当x <0或x >3时,g ′(x )>0,当0<x <3时,g ′(x )<0,∴g (x )在(-∞,0),(3,+∞)上单调递增,在(0,3)上单调递减,又g (0)=5,g (3)=12,即g (x )极大值=5,g (x )极小值=12, ∴可画出如图所示的函数g (x )的大致图象.1 2<m<5.∴实数m的取值范围为。