D1 C1 B1
D A
P
D1
C1 B1
A1
A1
C A D
P
B
C
1
B
图1 2 11
2
作法 连结 A1 P, PC1 , A1C1 ,它们就是平面 与长方 体表面的交线图1 2 112.
图1 2 9
例1 已知 : A l , C l , D l 图1 2 10 . 求证 : 直线AD, BD , CD 共面.
D
C
l
A B
图1 2 10
空间点和直线都在同一 个平面内 那么就称它们 共面". , "
例 2 如图1 2 11, 在长方体ABCD A1 B1C1 D1中, P 为棱 BB1 的中点, 画出由A1 , C1 , P 三点所确定的平面 与长方体表面的交线 .
图1 2 6
a
b
类似地, 我们可以得出下面两个 推理:
图1 2 7
A一ຫໍສະໝຸດ 平面 图1 2 7 .a
推论 2 经过两条相交直线有且只有 , 推论 3 经过两条平行直线有且只有 ,
一个平面 图1 2 8 .
b
图1 2 8
如图1 2 9, 用两根细绳沿上桌子 四条腿的对角拉直, 如果这两根细 绳相交, 说明桌子四条腿的底端在 同一个平面内, 否则就不在同一个 平面内, 其依据就是推理2 .
公理 3 经过不在同一条直线上 的三 个点, 有且只有一个平面图1 2 5.
B C
A
图1 2 5
1. 2 . 1 平面的基本性质(二)