高中数学的必修二数学平面的基本性质知识点
- 格式:docx
- 大小:38.96 KB
- 文档页数:7
必修二数学知识点整理一、立体几何初步。
(一)空间几何体。
1. 结构特征。
- 棱柱。
- 有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
- 棱柱的底面、侧面、侧棱、顶点等概念。
按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等。
- 棱锥。
- 有一个面是多边形,其余各面都是有一个公共顶点的三角形。
- 棱锥的底面、侧面、侧棱、顶点等概念。
按底面多边形的边数可分为三棱锥(四面体)、四棱锥等。
- 棱台。
- 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
- 棱台的上底面、下底面、侧面、侧棱、顶点等概念。
- 圆柱。
- 以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
- 圆柱的轴、底面、侧面、母线等概念。
- 圆锥。
- 以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。
- 圆锥的轴、底面、侧面、母线等概念。
- 圆台。
- 用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
- 圆台的上底面、下底面、侧面、母线等概念。
- 球。
- 以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。
- 球心、半径、直径等概念。
2. 三视图和直观图。
- 三视图。
- 正视图(主视图)、侧视图(左视图)、俯视图的概念。
- 画三视图的规则:长对正、高平齐、宽相等。
- 通过三视图还原空间几何体的方法:先根据视图的轮廓想象出基本的几何体形状,再根据视图中的线段长度等确定几何体的具体尺寸。
- 直观图。
- 斜二测画法的步骤:- 在已知图形中取互相垂直的x轴和y轴,两轴相交于点O。
画直观图时,把它们画成对应的x'轴和y'轴,两轴相交于点O',且∠x'O'y' = 45°(或135°)。
- 已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段。
- 已知图形中平行于x轴的线段,在直观图中长度不变;平行于y轴的线段,长度变为原来的一半。
必修2知识点归纳第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体; 一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
1、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。
(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图; 侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。
几何体的正视图、侧视图和俯视图统称为几何体的三视图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''xOy∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;一般地,原图的面积是其直观图面积的22倍,即22S S 原图直观=4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R lr S ⋅⋅+⋅⋅=ππ侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体;()13V h S S S S =+⋅+下下台体上上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。
1.空间中的平行关系1.集合的语言:点A 在直线l 上,记作: A ∈l ;点A 在平面α内,记作: A ∈α;直线在平面α内(即直线上每一个点都在平面α内),记作l ⊂α ; 注意:点A 是元素,直线是集合,平面也是集合。
2.平面的三个公理:(1)公理一:如果一条直线上的两点在同一个平面内那么这条直线上所有的点都在这个平而内.符号语言表述:A ∈l ,B ∈l , A ∈α, B ∈α⇒l ⊂α ; (2)公理二:经过不在同一条直线上的三点,有且只有一个平面,即不共线的三点确定一个平面.符号语言表述: A,B,C 三点不共线⇒有且只有一个平面α,使A ∈a, B ∈a, C ∈(3)公理三:如果不重合的两个平面有一个公共点,那么它们 有且只有一条过这个点的公共直线,符号语言表述: A ∈α∩β⇒α∩β= a, A ∈a.3. 平面基本性质的推论推论1:经过一条直线和直线外的一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
【例1.【解析】(1)D;直线上有两点在一个平面内,则这条直线一定在平面内,公理1保证了A 正确;公理2保证了C 正确;如果两个平面有两个公共点,则它们的交线是过这两点的直线,公理3保证了B 正确;直线不在平面内,可以与平面有一个交点,故D 错误.(2)①错误,如果这三条直线交于一点,比如过正方体同一顶点的三条棱就无法确定一个平面;②正确,两条相交直线确定一个平面;③错误,必须是不共线的三点,如果是共线三点,则有无数个平面;④正确,两条相交的对角线确定一个平面,四个顶点都在这个平面内,故是平面图形;⑤错误,两个平面若相交,公共点必是一条直线;⑥错误;若四点共线,则可以有无穷多个平面过这四点,若是对不共线的四点,该命题正确.【备选】 已知点A ,直线l ,平面α,① αα∉⇒⊄∈A l l A , ② αα∈⇒∈∈A l l ,A ③ αα∉⇒⊂∉A l l A , ④ αα⊄⇒∉∈l A l A , 以上说法表达正确的有______________【解析】④直线不在平面内,可以与平面有一个交点,故①错误; 直线是点集,故只能用l ⊂α,②错误;直线是平面的真子集,故不在直线上的点可以在平面内,③错误; 一条直线在一个平面内,则直线上任一点都在平面内,故④正确。
2023年数学必修二第二章知识点2023年数学必修二第二章知识点1直线与平面有几种位置关系直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。
其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。
直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没有公共点。
直线与平面相交和平行统称为直线在平面外。
直线与平面垂直的判定:如果直线L与平面α内的任意一直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。
线面平行:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
直线与平面的夹角范围[0,90°]或者说是[0,π/2]这个范围。
当两条直线非垂直的相交的时候,形成了4个角,这4个角分成两组对顶角。
两个锐角,两个钝角。
按照规定,选择锐角的那一对对顶角作为直线和直线的夹角。
直线的方向向量m=(2,0,1),平面的法向量为n=(-1,1,2),m,n夹角为θ,cosθ=(m_n)/|m||n|,结果等于0.也就是说,l和平面法向量垂直,那么l平行于平面。
l和平面夹角就为0°提高数学成绩的技巧是什么课内重视听讲,课后及时复习接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。
下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。
尽量自己思考,不要急于翻看答案。
还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。
多做题,养成良好的解题习惯要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。
刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加难度,开拓思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。
高中数学的必修二数学平面的基本性质知
识点
平面的基本性质
教学目标
1、知识与能力:
(1)巩固平面的基本性质即四条推断出公理和三条推论.
(2)能使用公理和推论进行解题.
2、过程与方法:
(1)体验在空间确定一个平面的过程与方法;
(2)掌握利用平面的基本性质证明三点共线、三线共点、多线共面的方法。
3、情感成见与价值观:
培养学生认真观察的态度,慎密思考的习惯,提高学生审美能力和空间想象的能力。
教学重点
平面的三条基本性质即三条推论.
教学难点
准确运用三条公理和推论解题.
教学过程
一、问题情境
问题1:空间共点的三条直线二维能确定几个平面?空间互相对角线平行的三条直线呢?
问题2:如何判断办公桌的四条腿内则的底端是否在一个平面内?
二、温故知新
公理1
一处如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.
公理2
如果两个平面有两个一个公共设施点,那么它们还有其它公用点,这些公共点的集合是经过这个公共给定点的一条直线.
公理3
经过不在同一条直线上的三点,有且只有一个平面.
推论1
经过一条直线和这条直线外的一点,有且只有一个平面.
推论2
经过两条直角直线,有且只有一个平面.
推论3
经过两条平行平行线,有且只有一个平面.
公理4(平行公理)平行于同一条直线的两条直线互相平行.
把作出以上各公理及推论进行对比:
三、数学运用
基础训练:(1)已知:;求证:直线AD、BD、CD共面.
证明:——公理3推论1
——公理1
同理可证,,直线AD、BD、CD共面
【解题反思1】1。
逻辑要严谨
2.书写要规范
3.证明共面的步骤:
(1)确定平面——公理3及其3个推论
(2)证线“归”面(线在面内如:)——公理1
(3)作出结论。
变式1、如果直线两两交汇,那么这三条直线是否共面?(口答)
变式2、已知空间不共面的二点,过其中任意三点可以三维空间确定一个平面,由这四个一两个点能确知几个平面?
变式3、四条线段顺次首尾连接,所得的图形一定是平面曲面图形吗?(口答)
(2)已知直线满足:;求证:直线
证明:——公理3推论3
——公理1
直线共面
提高训练:已知,求证:四条直线在同一平面内.
思路分析:考虑由直线a,b确定一个平面,再证明直线c,l
在此平面上,但十分困难。
因而可以全面开放思路,需要考虑确定两
个平面,再证明两个平面重合,问题迎刃而解。
证明:
——公理3推论3
——公理3推论3
——公理1
因此,平面同时经过平面五条相交直线所以平面重合。
——
公理3推论2
直线共面
上面方法称为同一法
拓展训练:如图,三棱锥A-BCD中,E、G分别是BC、AB的中点,F在CD上,H在AD上,且有DF:FC=DH:HA=2:3;求证:EF、GH、BD 交于一点.[渗透空间问题平面化人生观]
思路分析:思路1:开放思路,考虑三个平面,首先证明两条直线在一个米洛韦区面内,并且相交,然后证明交点在两个平面上为,据公理2知它在两面的交线——第三条直线上,因此证得三线共点。
证法1:连接,
因E、G分别是BC、AB的中点,故因DF:FC=DH:HA=2:3,故——公理4
共面,由上知,相交,设交点为O,则平面,平面,
所以直线所以EF、GH、BD交于一点。
思路2:首先证明直线GH、BD交于一点P,直线EF、BD交于
一点Q,然后证明两点P、Q重合,进而得出EF、GH、BD交于一点。
证法法2:提示:过点H作HO,使得,交点为O,连接OF,证明,
延长GH,EF,使它们与直线BD分别交于点P、Q,由三角形相似可以求出OP=OQ.所以点P、Q重合。
链接生活:在正方体木头中,试画出过其中三条棱的中点P、Q、R的平面截得木头的截面形状.
【解题反思2】1。
逻辑要严谨
2.书写要规范
3.方法要掌握
(1)证明共面的步骤:
1)确定平面——公理3及其3个推论——公理3及3个推论
2)证线“归”面(线在面内如:)——公理1
3)作出结论。
(2)证明共线的步骤:
①证所有点在第一个面内(如平面)——公理1
②证所有人点在第二个面内(如平面)——公理1
③结论1:所有点在两个平面的交线上所
④结论2:所有点共线——公理2
(3)证明共点的步骤:
1)证交于一个点——公理3及3个推论
2)证此点在四个面内(如平面)——公理1
3)结论1:此点在两个平面的交线上——————公理2
4)结论2:三条线共点
四、回顾小结
本节主要复习了平面三个公理和三个推论,学会了如何使用
公理及其推论解题.
五、课外作业(见所发的前置作业)
反馈练习
[1.2.1平面的基本性质(2)]
1、经过同一直线上所的3个点的平面()
A、有且只有1个
B、有且只有3个
C、有无数个
D、有0个
2、若空间三个平面两两相交,则它们的交线条数是()
A、1或2
B、2或3
C、1或3
D、1或2或3
3、与空间四点距离相等的平面共有()
A、3个或7个
B、4个或10个
C、4个或无数个
D、7个或无数个
4、四条平行直线最多可以确定()
A、三个平面
B、四个平面
C、五个平面
D、六个平面
5、四条线段首尾顺次相连,它们最多可确定的平面个数有个.
①若空间四点不共面,则其中无三点共线;
②若直线l上有一点在平面外,则l在外;
③若直线、、中,与共面且与共面,则与共面;
④两两相交的三条圆周共面.
其中所有正确的命题的序号是.
7.点P在直线l上,而直线l在平面内,用符号表示为()
A.B.C.D.8.下列推理,错误的是()
A.B.C.D.9.下面是四个形式语言的叙述语(其中A、B表示点,表示直线,表示平面)
①②③④其中叙述方法和推理过程都正确的命题的序号是
_______________.
10、已知A、B、C不在同一条直线上才,求证:直线AB、BC、CA共面.
11、求证:如果一条直线与白线两条平行线都相交,那么这
三条直线在同一个平面内.
已知:直线、、且,,;
求证:直线、、共面.
12、在正方体ABCD-A1B1C1D1中,
①AA1与CC1能否确定一个平面?为什么?
②点B、C1、D能否确定一个平面?为什么?
③画出平面ACC1A1与平面BC1D的交线,平面ACD1与平面BDC1的交线.
13、配对相交且不共点的四条直线共面.(注:有两种情形,
见图,试分别证之)。