简述气体保护焊的特点。
- 格式:docx
- 大小:36.72 KB
- 文档页数:2
CO2气体保护焊工艺简介一、气体保护焊的特点:1)采用明弧焊接,熔池可见度好,操作方便,适宜于全位置焊接。
并且有利于焊接过程中的机械化和自动化,特别是空间位置的机械化焊接。
2)电弧在保护气体的压缩下热量集中,焊接速度较快,熔池小,热影响区窄,焊件焊后的变形小,抗裂性能好,尤其适合薄板焊接。
3)用氩、氦等惰性气体焊接化学性质较活泼的金属和合金时,具有较好的焊接质量。
4)在室外作业时,必须设挡风装置才能施焊,电弧的光辐射较强,焊接设备比较复杂。
二、CO2气体保护焊工艺及设备1.特点:(1)焊接成本低 CO2气体是酿造厂和化工厂的副产品,来源广,价格低,其综合成本大概是手工电弧焊的1/2。
(2)生产效率高 CO2气体保护焊使用较大的电流密度(200A/mm2左右),比手工电弧焊(10-20A/mm2左右)高得多,因此熔深比手弧焊高2.2-3.8倍,对10mm以下的钢板可以不开坡口,对于厚板可以减少坡口加大钝边进行焊接,同时具有焊丝熔化快,不用清理熔渣等特点,效率可比手弧焊提高2.5-4倍。
(3)焊后变形小 CO2气体保护焊的电弧热量集中,加热面积小,CO2气流有冷却作用,因此焊件焊后变形小,特别是薄板的焊接更为突出。
(4)抗锈能力强CO2气体保护和埋弧焊相比,具有较高的抗锈能力,所以焊前对焊件表面的清洁工作要求不高,可以节省生产中大量的辅助时间。
缺点:由于CO2气体本身具有较强的氧化性,因此在焊接过程中会引起合金元素烧损,产生气孔和引起较强的飞溅,特别是飞溅问题,虽然从焊接电源、焊丝材料和焊接工艺上采取了一定的措施,但至今未能完全消除,这是CO2焊的明显不足之处。
2.CO2气体保护焊的分类 CO2气体保护焊按操作方法,可分为自动焊及半自动焊两种。
对于较长的直线焊缝和规则的曲线焊缝,可采用自动焊;对于不规则的或较短的焊缝,则采用半自动焊,目前生产上应用最多的是半自动焊。
CO2气体保护焊按照焊丝直径可分为细丝焊和粗丝焊两种。
二氧化碳气体保护焊特点二氧化碳气体保护焊,简称CO2焊,是一种广泛应用于金属材料加工领域的焊接工艺。
它以二氧化碳气体作为保护气体,结合电弧的作用,将两个金属件加热至熔点并使之融合。
相比于传统的气焊和电弧焊,CO2焊在焊接效率、焊接质量、环保性等方面都有明显的优势。
以下是二氧化碳气体保护焊的几个特点及详细阐述:1. CO2气体作为保护气体,具有较好的气闪和冷却效果二氧化碳气体的化学性质稳定、易获取且成本较低,因此成为CO2焊保护气体的首选。
CO2气体强而有力的喷射能力可有效地防止外界气体的进入,从而避免氧气、氮气等杂质与金属熔池的反应,造成焊接质量的下降。
同时,CO2气体喷射后会快速冷却合金区域,防止过度热导致焊渣和气泡等问题的产生。
2. 可适用于多种金属材料的焊接CO2焊可适用于多种金属材料的焊接,如低碳钢、不锈钢、铝合金等,且焊接效果较为理想,不会出现明显的气孔、夹杂、裂纹等问题。
在焊接高强度、超厚板材时,CO2焊仍能保持良好的焊缝成形性和稳定性。
3. 易于自动化控制,提高生产效率CO2焊设备使用电力进行加热,该过程可以便捷地实现数控技术,并结合机器人、自动加工线、智能焊接系统等技术,提高生产效率和稳定性。
相比于人工操作,通过自动化控制CO2焊的精度和一致性更高,可以大幅减少焊缝质量上的变异,避免了人为因素对焊接质量带来的干扰,同时也大幅缩短焊接周期。
4. 对环境和健康的影响较小相比于传统的气焊和电弧焊,CO2焊使用的保护气体二氧化碳不会对环境和健康带来明显的影响。
吸入二氧化碳气体后,人体会出现轻微的刺激和热感,但并不至于对人体造成危害。
同时,二氧化碳属于无色无味无毒的气体,不会对环境造成污染问题。
综上所述,二氧化碳气体保护焊具有气闪、冷却效果好、适用性广、易于自动化控制、环保等特点。
在制造业领域,CO2焊已成为工艺多元化、生产效率提高的重要手段之一。
CO2(二氧化碳)气体保护焊的原理、特点及应用CO2气体保护焊是一种以CO2作为保护气体的熔化极电弧焊,简称CO2焊。
CO2气体密度较大,巨受电弧加热后体积膨胀较大,所以隔离空气、保护熔池的效果较好,但CO2是一种氧化性较强的气体,在焊接过程中会使合金元素烧损,产生气孔和金属飞溅,故需用脱氧能力较强的焊丝或添加焊剂来保证焊接接头的冶金质量。
CO2焊按焊丝可分为细丝(直径小于1.6mm)、粗丝(直径大于1.6mm)和药芯焊丝CO2焊三种。
按操作方法可分为半机械化和机械化CO2焊两种。
1、CO2焊的原理CO2气体保护焊是采用CO2作为保护气体,使焊接区和金属熔池不受外界空气的侵入,依靠焊丝和工件间产生的电弧热来熔化金属的一种熔化极气体保护焊,焊丝由送丝机构通过软管经导电嘴送出,而CO2气体从喷嘴内以一定的流量喷出,这样当焊丝与焊件接触引燃电弧后,连续送给的焊丝末端和熔池被CO2气流所保护,防止了空气对熔化金属的危害作用,从而保证获得高质量的焊缝。
CO2气体保护焊焊接原理如下图所示。
▲CO2气体保护焊焊接原理1—焊丝2—喷嘴3—电弧4—CO2气流5—熔池6—焊缝7—焊件2、CO2焊的特点(1)CO2焊的优点与其他电弧焊比较,CO2焊的优点如下:①焊接熔池与大气隔绝,对油、锈敏感性较低,可以减少焊件及焊丝的清理工作。
电弧可见性良好,便于对中,操作方便,易于掌握熔池熔化和焊缝成形。
①电弧在气流的压缩下使热量集中,工件受热面积小,热影响区窄,加上CO2气体的冷却作用,因而焊件变形和残余应力较小,特别适用于薄板的焊接。
①电弧的穿透能力强,熔深较大,对接焊件可减少焊接层数。
对厚10mm左右的钢板可以开①形坡口一次焊透,角焊缝的焊脚尺寸也可以相应地减小。
①焊后无焊接熔渣,所以在多层焊时就无需中间清渣。
焊丝自动送进,容易实现机械化操作,短路过渡技术可用于全位置及其他空间焊缝的焊接,生产率高。
①抗锈能力强,抗裂性能好,焊缝中不易产生气孔,所以焊接接头的力学性能好,焊接质量高。
药芯焊丝气体保护焊使用药芯焊丝作为填充金属的各种电弧焊方法称为药芯焊丝电弧焊。
分类:1、药芯焊丝气体保护焊的原理及特点 (1).药芯焊丝气体保护焊的原理采用可熔化的药芯焊丝作电极及填充材料,在外加气体如CO2的保护下进行焊接的电弧焊方法。
这种焊接方法是一种气渣联合保护的方法。
(2)药芯焊丝气体保护焊的特点综合了焊条电弧焊和普通熔化极气体保护焊的优点。
①气渣联合保护,保护效果好,抗气孔能力强,成形美观,电弧稳定,飞溅少且颗粒细小。
①药芯焊丝气体保护电弧焊药芯焊丝CO 2气体保护电弧焊药芯焊丝熔化极惰性气体保护焊药芯焊丝混合气体保护焊②药芯焊丝埋弧焊 ③药芯焊丝自保护焊应用最多的是:药芯焊丝CO 2气体保护电弧焊②焊丝的熔敷速度快,明显高于焊条,略高于实芯焊丝,熔敷效率和生产率都较高,生产率比焊条电弧焊高3~4倍,经济效益显著。
③焊接各种钢材的适应性强。
④药粉改变了电弧特性,对焊接电源无特殊要求,交、直流,平缓外特性均可。
⑤缺点:焊丝制造过程复杂;送丝困难。
焊丝外表易锈蚀,药粉易受潮。
故焊前应对焊丝表面进行清理,并进行250~300℃的烘烤。
2、药芯焊丝及焊接工艺 (1)药芯焊丝的组成组成:由金属外皮(如08A )和芯部药粉组成。
截面形状有:E 形、O 形、梅花形、中间填丝形、T 形等。
药粉的成分与焊条的药皮类似,目前国产CO2气保焊药芯焊丝多为钛型药粉焊丝。
规格有2.0、2.4、2.8、3.2等几种。
(2)药芯焊丝的型号根据GB/T10045-2002《碳钢药芯焊丝》标准规定,碳钢药芯焊丝型号是根据熔敷金属力学性能、焊接位置及焊丝类别特点(如保护类型、电源类型及渣系特点等)进行划分的。
例如:E 50 1 T -1 M L表示保护气体为氩气含量为75%~80%的Ar 气+CO2混合气体表示焊丝类别特点:外加保护气,直流电源,焊丝接正极,用于单道焊和多道焊。
表示药芯焊丝表示焊丝熔敷金属V 形缺口冲击功在-40℃时不小于27J(3)药芯焊丝的牌号(字母及数字含义见(表4—13、14)字母钢类别字母钢类别L 结构钢用G 铬不锈钢R 低合金耐热钢A 奥氏体不锈钢D堆焊例如:编号 焊接时保护类型编号 焊接时保护类型 YJXX —1气体保护YJXX —3 气体保护、自保护两用YJXX —2 自保护 YJXX —4 其他保护形式 表4—13药芯焊丝类别表4—14药芯焊丝的保护类型表示保护形式。
MIG焊的原理特点及应用1. MIG焊的原理MIG焊(Metal Inert Gas Welding),也称为气体保护焊(Gas Metal Arc Welding,简称GMAW),是一种常用的电弧焊接方法。
它利用熔化电极和工件之间的电弧来进行焊接。
在MIG焊中,使用一根带有电流的连续且自动供给的焊丝作为电极,将焊丝传输到工件处,并同时通过喷出的惰性气体或混合气体进行保护。
MIG焊具有以下原理特点:- 熔化电极自动给送:MIG焊使用连续供给的焊丝,通过进给系统自动将焊丝送到焊接区域,使焊接过程更加稳定和高效。
- 惰性气体保护:在MIG焊中,使用惰性气体(常见的有氩气)来保护焊接区域,防止焊缝受到空气中的氧和湿气的污染,提高焊接质量。
- 电弧稳定:MIG焊利用直流电源产生的稳定电弧进行焊接,使焊接过程更加可靠和一致。
- 适应性强:MIG焊适用于多种金属的焊接,包括钢、铝、镍合金等,具有广泛的应用领域。
2. MIG焊的应用MIG焊由于其原理特点,被广泛应用于以下领域:2.1 汽车制造汽车制造行业是MIG焊的主要应用领域之一。
在汽车制造过程中,MIG焊被用于焊接车身零部件、底盘、车架等关键部位。
由于MIG焊的高效性和稳定性,它可以快速、准确地进行焊接,提高汽车的生产效率和质量。
2.2 金属结构制造MIG焊在金属结构制造领域也扮演着重要的角色。
无论是建筑物、桥梁、钢结构还是船舶等金属结构的制造和修复,MIG焊都能够提供高质量、高效率的焊接解决方案。
其适应性强的特点使得MIG焊成为了许多金属结构制造工艺中的首选方法。
2.3 家电制造在家电制造过程中,MIG焊被广泛用于焊接厨房电器、空调、冰箱等产品的外壳和内部结构。
由于MIG焊具有高效、稳定的特点,可以快速焊接大量的金属零部件,提高家电生产的效率和质量。
2.4 食品和饮料工业在食品和饮料工业中,MIG焊被应用于不锈钢容器和管道的焊接。
由于MIG焊具有惰性气体保护的特点,焊接过程不会产生内部污染,保证食品和饮料的安全性和卫生标准。
二氧化碳气体保护焊特点及适用范围操作规程焊丝选择方法与注意事项1.适用范围广:二氧化碳气体保护焊适用于钢材、铸铁、不锈钢等大部分金属的焊接。
因为二氧化碳气体的成本较低且易于获得,所以在工业生产中应用较为广泛。
2.焊接速度快:二氧化碳气体的冷却效果好,使焊接过程中的熔融池温度急剧下降,因此焊接速度较快。
对于需要进行高强度但焊接时间有限的场合,二氧化碳气体保护焊是一个很好的选择。
3.熔深较大:二氧化碳气体的流速较高,对熔融池的保护效果好,从而获得较大的熔深。
这使得焊缝质量较好,焊接强度高。
4.操作简单:二氧化碳气体保护焊的操作相对简单,操作人员只需要掌握一定的焊接技巧,就可以进行高质量的焊接。
操作规程:1.准备工作:包括准备焊接设备、工件清洗、熔池准备等,确保焊接环境整洁、干净。
2.焊接参数设置:根据焊接材料和工件的要求,设置合适的焊接电流、电压、送丝速度等参数。
3.焊接姿势:选择合适的焊接姿势,确保焊条与工件之间的角度适当。
4.焊接方法:尽量采用平稳的焊接速度,保持稳定的焊接电流和电压,保证焊接质量。
5.焊缝处理:焊接完成后,应进行适当的焊缝处理,如打磨、清理,以消除焊接产生的气孔、裂纹等缺陷。
焊丝选择方法:1.焊材的力学强度要与基体金属接近。
焊接过程中,焊丝与基体金属融合,必须具有与基体金属相似的材料强度,避免焊接接头强度下降。
2.焊材的熔点要低于基体金属。
焊接时,焊丝需要在合适的温度下熔化,与基体金属融合。
因此,焊材的熔点要低于基体金属。
3.焊材的化学成分要与基体金属相近。
焊材的化学成分应与基体金属相同或相近,以减少合金元素的交换和产生产生不均匀分配的问题。
注意事项:1.避免气泡和孔隙:焊接时,应注意保持合适的焊接电流和电压,避免产生气泡和孔隙。
2.控制焊接温度:焊接温度过高会导致焊接变形、裂纹等问题,应注意控制焊接温度。
3.熔深不均匀:焊接时,应保证焊丝与工件的角度适当,焊接速度平稳,以避免熔深不均匀,导致焊接质量下降。
CO2气体保护焊的原理及特点CO2气体保护焊(也称为活动气体保护焊)是一种常用的焊接方法,其原理是利用喷射的CO2气体形成一个保护气氛,以防止焊缝和熔池受到空气中氧、水蒸汽和其他杂质的污染。
CO2气体保护焊具有一些独特的特点,使其在众多焊接方法中得到广泛应用。
首先,CO2气体保护焊的原理是通过CO2气体的喷射形成保护氛围。
CO2气体的主要功能是阻止空气中的氧气与熔池中的金属产生氧化反应,从而有效地减少氧化物的形成。
保护氛围还可以防止熔池与空气中的水蒸汽发生反应,从而避免热裂纹的形成。
其次,CO2气体保护焊具有良好的焊接质量。
由于保护氛围的存在,CO2气体保护焊可以稳定地维持焊接温度,使得焊缝形成均匀的熔池,并且有助于熔池的凝固和形成良好的焊缝。
此外,CO2气体保护焊还能够提供相对较高的焊接速度,从而提高生产效率。
第三,CO2气体保护焊适用于多种材料的焊接。
CO2气体保护焊可以用于焊接碳钢、不锈钢、铝合金以及其他各种金属材料。
焊接时,可根据不同材料的特性和需求选择不同类型的CO2气体和相应的焊接参数,以实现最佳的焊接效果。
此外,CO2气体保护焊还有较低的成本。
CO2气体在大部分工业中都是相对廉价和易得到的,这使得CO2气体保护焊在大规模和连续生产中非常适用。
另外,在CO2气体保护焊中使用的设备和工具相对简单,操作也相对容易,这使得工人能够快速上手,并且减少了培训成本。
然而,CO2气体保护焊也有一些缺点和限制。
首先,CO2气体保护焊的保护氛围不适用于焊接特别厚的金属材料,因为CO2气体需要将大量能量带走,以保持焊接区域的适宜温度。
同时,CO2气体保护焊在操作过程中会产生大量的焊接烟雾和气味,对工人的健康构成潜在威胁。
此外,CO2气体保护焊焊接速度较快,需要对传热、冷却和收缩等因素进行仔细的控制,以避免焊接缺陷的产生。
总之,CO2气体保护焊作为一种常见的焊接方法,其原理通过喷射CO2气体形成保护氛围以防止焊缝受到氧化和污染,具有焊接质量高、适用范围广、成本低等特点。
熔化极气体保护焊原理及分类一、熔化极气体保护焊原理、特点及分类1、熔化极气体保护焊的原理用外加气体作为电弧介质,并保护熔滴、熔池和焊接区的电弧焊方法,称为气体保护焊。
气体保护焊分为:(1)熔化极气体保护焊;(2)不熔化极气体保护焊。
2.熔化极气体保护焊的特点(1)明弧焊,熔池可见度好;不用焊剂,烟雾少,无熔渣;保护气体是喷射的,适宜全位置焊接,不受空间位置的限制,有利于实现机械化和自动化焊接。
(2)电弧在保护气流的压缩下热量集中,熔池和热影响区很小,焊接变形小、焊接裂纹倾向不大,尤其适合于薄板焊接。
(3)采用氩、氦等惰性气体保护,当焊接化学性质较活泼的金属或合金时,可获得高质量的焊接接头。
(4)不宜在有风的地方施焊;弧光强烈;设备复杂。
3.熔化极气体保护焊的分类(1)按保护气体的成分可分为:①熔化极惰性气体保护焊(Metal Inert Gas Arc Welding )(MIG焊);②熔化极活性气体保护焊(Metal Active Gas Arc Welding)(MAG焊);③CO2气体保护焊(CO2焊)。
(2)按所用焊丝的类型不同可分为:①实芯焊丝气体保护焊;②药芯焊丝气体保护焊。
(3)按操作方式不同可分为:①半自动气体保护焊;②自动气体保护焊。
二、熔化极气体保护焊常用气体及应用熔化极气体保护焊常用的保护气体有:氩气(Ar)、氦气(he)、氮气(N2)、氢气(H2)、氧气(O2)、二氧化碳(CO2)及混合气体。
被焊材料保护气体混合比化学性质焊接方法铝及铝合金Ar惰性熔化极和钨极Ar+He (He)=10%铜及铜合金Ar惰性熔化极和钨极Ar+N2 (N2)=20%熔化极N2 还原性不锈钢Ar+O2 (O2)=1%~ 2% 氧化性熔化极Ar+O2+CO2 (O2)=2% 、(CO2)=5%碳钢及低合金钢CO2氧化性熔化极Ar+CO2 (CO2)=20%~ 30%O2+CO2 (O2)=10%~ 15%钛锆及其合金Ar惰性熔化极和钨极Ar+He (He)=25%镍基合金Ar+He (He)=15%惰性熔化极和钨极1.氩气(Ar)和氦气(he)—惰性气体常用于铝、镁、钛等金属及其合金的焊接。
焊机种类及特点
焊机是一种用于焊接金属的设备,它可以将两个或多个金属部件连接在一起。
根据不同的焊接方式和应用场景,焊机可以分为多种类型,下面将介绍几种常见的焊机及其特点。
1. 电弧焊机
电弧焊机是一种常见的焊接设备,它使用电弧将两个金属部件连接在一起。
电弧焊机的特点是焊接速度快,焊接效果好,适用于焊接各种金属材料。
但是,电弧焊机需要使用电源,且操作较为复杂,需要一定的技术水平。
2. 气体保护焊机
气体保护焊机是一种利用惰性气体保护焊接的设备,它可以在焊接过程中保护焊接区域不受氧化和污染。
气体保护焊机的特点是焊接质量高,焊接速度快,适用于焊接高强度、高精度的金属部件。
但是,气体保护焊机需要使用惰性气体,成本较高。
3. 点焊机
点焊机是一种利用电流将两个金属部件连接在一起的设备,它可以在焊接过程中产生高温,使金属部件熔化并连接在一起。
点焊机的特点是焊接速度快,焊接效果好,适用于焊接薄板金属部件。
但是,点焊机只能焊接薄板金属部件,不适用于焊接厚板金属部件。
4. 激光焊机
激光焊机是一种利用激光束将两个金属部件连接在一起的设备,它可以在焊接过程中产生高温,使金属部件熔化并连接在一起。
激光焊机的特点是焊接速度快,焊接效果好,适用于焊接高强度、高精度的金属部件。
但是,激光焊机需要使用激光器,成本较高。
不同类型的焊机各有特点,选择适合自己的焊机可以提高焊接效率和质量。
在选择焊机时,需要考虑焊接材料、焊接厚度、焊接质量等因素,以便选择最合适的焊机。
简述气体保护焊的特点
气体保护焊是一种常用的焊接方法,其特点包括以下几个方面:
1. 气体保护焊能够在焊接过程中提供可控的保护气体环境,防止焊缝受到氧气、水分和其他有害气体的污染。
保护气体可以是惰性气体,如氩气或氦气,也可以是活性气体,如二氧化碳。
这种保护气体能够有效地减少气孔、夹渣等缺陷的产生,提高焊接质量。
2. 气体保护焊可以适用于不同类型的金属材料,包括钢、铝、镁、铜等。
不同材料采用不同的保护气体组合,以满足其焊接特性和要求。
3. 气体保护焊操作相对简单,易于掌握。
操作人员只需通过调节焊机的电流、电压和气体流量等参数,就能够控制焊接过程中的热量和保护气体的流动,实现理想的焊接效果。
4. 气体保护焊焊接速度较快,焊缝质量较高。
由于保护气体的作用,焊接过程中金属材料受热区域较小,热变形和变质的影响较小,能够实现较小的变形和收缩,同时焊缝也具有较高的强度和密度。
5. 气体保护焊适用于大多数焊接场合,包括手工焊、自动化焊、机器人焊等。
无论是浅焊缝还是深焊缝,无论是平焊还是立焊,都可以使用气体保护焊进行焊接。
综上所述,气体保护焊具有保护焊缝、适用范围广、操作简单、
焊接速度快等特点,因此被广泛应用于金属结构、船舶、汽车制造、石油化工等各个领域的焊接工艺中。