熔化极惰性气体保护焊、熔化极活性混合气体保护焊
- 格式:ppt
- 大小:2.26 MB
- 文档页数:3
GMAW:熔化极气体保护焊含有MIG和MAGMIG:熔化极惰性气体保护焊MAG:熔化极活性气体保护焊FCAW: 药芯焊丝气体保护焊(软钢及高张力钢用药芯焊丝)SMAW:药皮焊条电弧焊SAW:埋弧自动焊实芯焊丝气体保护焊(GMAW)和药芯焊丝气体保护焊(FCAW)两者的区别:1.GMAW的主要优势在于每小时的金属熔敷量,这极大地降低了劳动力成本。
气体保护焊的另一个优势在于它是一种干净的工艺,这主要归功于没有使用焊剂。
在通风不良的车间会发现,从手工电弧焊或药芯焊换成气体保护焊后情况会得到改善,这是因为烟的产生减少了。
由于有各种各样的焊丝可选用,而且焊接设备变的更便于携带,气体保护焊的适用领域不断得到扩展。
该工艺的另外一个优点是可见性。
因为没有焊渣,焊工能够很容易地观察电弧和熔池的情况,从而改善控制。
GMAW还对气流和风特别敏感,它们会将保护气体吹开,留下未保护的金属。
正是这个原因,气体保护焊不大适合工地焊接。
应充分认识到,气体流量大于推荐值的上限,并不能保证对熔池适当的保护。
实际上,大的气体流量反而导致气体紊乱,并增大气孔产生的可能性,这是因为增大气体流量实际上可能将空气带入焊接区。
2.FCAW获得广泛的认可,是因为它能提供优良的性能。
可能最重要的优点是它能提供很高的生产效率,即单位时间内所熔敷的焊缝金属量。
它是手工焊接工艺中效率最高的。
这是由于焊丝盘提供连续不断的焊丝,同GMAW一样增加了电弧时间。
该工艺还被分类为大熔深弧焊,这有助于减少熔合性缺陷的可能性。
由于该方法主要用于半自动工艺,其操作技能要求远低于手工方法的要求。
无论有无保护气体的辅助,FCAW因有焊剂,它比GMAW对母材污染有更大的容许。
正是这个原因,使得FCAW适合工地焊接,在现场,风使得保护气体流失,而GMAW会受到极大的影响。
然而,检验师应当明白该工艺有它的局限。
首先,由于有焊剂,所以在后序焊道焊接前和外观检查前必须去除这层固体焊渣。
TIG 钨极氩弧焊,MIG 熔化极惰性气体保护焊,MAG 熔化极活性气体保护焊,SMAW焊条手工电弧焊MIG焊(熔化极气体保护电弧焊)这种焊接方法是利用连续送进的焊丝与工件之间燃烧的电弧作热源,由焊炬嘴喷出的气体来保护电弧进行焊接的。
熔化极气体保护电弧焊通常用的保护气体有氩气,氦气,二氧化碳气或这些的混合气体。
以氩气或氦气为保护气时称为熔化极惰性气体保护电弧焊(在国际上称为MIG焊)。
熔化极气体保护电弧焊的主要优点是可以方便的进行各种位置的焊接,同时也具有焊接速度较快,熔敷率较高的优点。
熔化极活性气体保护电弧焊可适用于大部分主要金属的焊接,包括碳钢,合金钢。
熔化极惰性气体保护电弧焊适用于不锈钢,铝,镁,铜,钛,镐及镍合金。
利用这种焊接方法还可以进行电弧点焊。
TIG Tungsten Inert Gas,缩写TIG。
直译就是钨极惰性气体焊。
钨极氩弧焊按操作方式分为手工焊、半自动焊和自动焊三类。
手工钨极氩弧焊时,焊枪的运动和添加填充焊丝完全靠手工操作;半自动钨极氩弧焊时,焊枪运动靠手工操作,但填充焊丝则由送丝机构自动送进;自动钨极氩弧焊时,如工件固定电弧运动,则焊枪安装在焊接小车上,小车的行走和填充焊丝可以用冷丝或热丝的方式添加。
热丝是指提高熔敷速度。
某些场合,例如薄板焊接或打底焊道,有时不必添加填充焊丝。
TIG为今日各主要焊接方法中的一种,其特点为焊接品质佳,及具焊接薄板的能力,由于没有使用焊剂,故可减少夹渣机会,如此可提升焊道的品质,TIG已被需高品质焊接的航天工业所引用。
MAG(metal active-gas welding)是熔化极活性气体保护焊的简称,熔化极活性气体保护焊是焊接工艺的一种,其通常用的保护气体有:氩气、氦气、CO2气或这些气体的混合气。
MAG的主要优点是可以方便地进行各种位置的焊接,同时也具有焊接速度较快、熔敷率高等优点。
熔化极气体保护电弧焊以氩气或氦气为保护气时称为熔化极惰性气体保护电弧焊(在国际上简称为MIG焊);以惰性气体与氧化性气体(O2,CO2)混合气为保护气体时,或以CO2气体或CO2+O2混合气为保护气时,统称为熔化极活性气体保护电弧焊(在国际上简称为MAG焊)。
GMAW焊接--熔化极气体保护焊(又称惰性气体保护焊<MIG焊>).FCAW焊接--药芯焊丝气体保护焊.GTAW焊接--钨极氩弧焊(又称钨极惰性气体保护焊<TIG焊>).RESW焊接--电阻点焊.MCAW焊接--金属芯焊丝气体保护金属弧焊,或金属芯焊丝弧焊.SAW焊接---埋弧焊.PAW焊接---等离子电弧焊.MAG焊接---金属活性气体保护焊.回复引用TOP3#Re: 关于焊接符号---[请教]焊接名词与相对应的符号序号焊接名词符号1 氧乙炔焊OAW2 手工电弧焊SMAW3 埋弧焊SAW4 二氧化碳气体保护电弧焊FCAW5 钨极惰性气体保护电弧焊TIG6 熔化极惰性气体保护电弧焊MIG7 活性气体保护电弧焊MAG8 钨极脉冲氩弧焊TAW-P9 熔化极脉冲氩弧焊MAW-P10 气电立焊EGW11 等离子弧焊PAW12 电渣焊ESW13 电子束焊EBW14 激光焊LBW15 热剂焊TW16 高频电阻焊HFRW17 闪光对焊FW18 摩擦焊FRW19 电阻焊RW20 扩散焊DFW21 爆炸焊EW22 超声波焊USW23 硬钎焊 B24 软钎焊S25 热切割TC26 氧乙炔气割OFC-A27 等离子弧切割PAC28 激光切割LBC29 火焰喷涂FLSP30 电弧喷涂EASP31 等离子弧喷涂PSP32 焊态AW33 母材BM34 焊缝WM35 热影响区HAZRW——RWSISTANCE WELDING——电阻焊FW——flash welding——闪光焊RW-PC——pressure controlled resistance welding——压力控制电阻焊PW——projection welding——凸焊RSEW——resistance seam welding——电阻缝焊RSEW-HF——high-frequency seam welding——高频电阻缝焊RSEW-I——induction seam welding——感应电阻缝焊RSEW-MS——mash seam welding——压平缝焊RSW——resistance spot welding——点焊UW——upset welding——电阻对焊UW-HF——high-frequency ——高频电阻对焊UW-I——induction——感应电阻对焊SSW——SOLID STATE WELDING——固态焊CEW——co-extrusion welding——挤压焊CW——cold welding——冷压焊DFW——diffusion welding——扩散焊HIPW——hot isostatic pressure diffusion welding——热等静压扩散焊EXW——explosion welding——爆炸焊FOW——forge welding——锻焊FRW——friction welding——摩擦焊FRW-DD——direct drive friction welding——径向摩擦焊FSW——friction stir welding——搅拌摩擦焊FRW-I——inertia friction welding——惯性摩擦焊HPW——hot pressure welding——热压焊ROW——roll welding——热轧焊USW——ultrasonic welding——超声波焊。
TIG
中文:钨极惰性气体保护焊
日文:タングステンアーク溶接(ティグ)
英文:Tungsten inert gas welding
MIG
中文:熔化极惰性气体保护焊
日文:ミグ溶接
英文:metal inert-gas welding
MAG
中文:熔化极活性气体保护焊
日文:マグ溶接
英文:metal active-gas welding
Mig(惰性气体保护焊接)
使用惰性气体当保护气体以避免与其他物质产生反应。
惰性气体通常使用氩气Ar 或氦气He。
有时在惰性气体中混合有其他少量的O2、CO2或H2。
Mag(活性气体保护焊接)
使用活性气体当保护气体。
通常是使用CO2。
气体会在电弧中被分解,进而增大或缩小熔接范围。
因为CO2为主要的气体,因此通常又将MAG熔接称为CO2熔接。
熔化极气体保护电弧焊通常用的保护气体有:氩气、氦气、CO2气或这些气体的混合气。
以氩气或氦气为保护气时称为熔化极惰性气体保护电弧焊(在国际上简称为MIG焊);以惰性气体与氧化性气体(O2,CO2)混合气为保护气体时,或以CO2气体或CO2+O2混合气为保护气时,或以CO2气体或CO2+O2混合气为保护气时,统称为熔化极活性气体保护电弧焊(在国际上简称为MAG焊)。
熔化极气体保护电弧焊的主要优点是可以方便地进行各种位置的焊接,同时也具有焊接速度较快、熔敷率高等优点。
熔化极活性气体保护电弧焊可适用于大部分主要金属,包括碳钢、合金钢。
熔化极惰性气体保护焊适用于不锈钢、铝、镁、铜、钛、锆及镍合金。
利用这种焊接方法还可以进行电弧点焊。
铝合金MIG焊接的优点及注意事项MIG焊接的质量稳定可靠,最适于焊接铝及铝合金中厚板。
铝合金MIG焊烟尘会对人体造成尘肺、老年痴呆症、骨软化症、贫血症等损害,因而必须对铝合金MIG焊烟尘进行有效的防护,铝合金MIG焊烟尘防护的根本是防止工作人员吸入有害烟尘。
标签:铝合金;熔化极惰性气体保护焊;MIG焊铝合金的密度非常低,重量很輕,但强度比较高,接近甚至超过优质钢,其塑性好,容易加工成各种型材,具有优良的导电、导热和耐腐蚀性能,在汽车、航空航天、机械制造和船舶等工业中被大量应用,是工业中应用最广泛的一种合金材料。
硬铝合金属Al-Cu-Mg系,一般含有少量的Mn,可热处理强化,其特点是硬度大,但塑性较差。
超硬铝属Al-Cu-Mg-Zn系,可热处理强化,是室温下强度最高的铝合金,但耐腐蚀性差,高温软化快。
锻铝合金主要是Al-Zn-Mg-Si 系合金,虽然加入元素种类多,但是含量少,因而具有优良的热塑性,适于锻造。
目前随着工业水平的迅猛发展,对于铝合金焊接结构件的需求也日益增多,从而促进了对铝合金焊接性能的深入研究。
1 铝合金MIG焊的简介及优点铝合金的主要焊接工艺有非熔化极惰性气体钨极保护焊(TIG)、熔化极惰性气体保护焊(MIG)、搅拌摩擦焊和电阻点焊等。
MIG焊(熔化极惰性气体保护焊)是一种利用氩气保护或者惰性气体和活性气体混合保护,从而完成焊接过程的一种电弧焊。
MIG焊接与TIG焊的根本不同是用金属丝代替焊炬内的钨电极,因而在MIG焊中焊丝由电弧熔化,被送入焊接区,电力驱动辊按照焊接需要从线轴把焊丝送入焊炬。
两者所用的保护气体也不同,要在氩气内加入1%氧气,来改善电弧的稳定性,此外,在喷射传递、脉动喷射、球状传递和短路传递上也有不同。
对于熔化极惰性气体保护焊来说,它的热源不是交流电源,所采用的电源是直流形式的,这是由于在焊接过程中,如果不采用直流电源,会对电弧的稳定性和一致性产生影响。
对于不采用交流焊接的情况,直流正接和直流反接是2种不同的选择方式,MIG焊多采用直流反接法。
SMAW焊接用手工操纵焊条进行焊接的电弧焊方法。
即焊条电弧焊。
GMAW焊接--熔化极气体保护焊(又称惰性气体保护焊<MIG焊>). FCAW焊接--药芯焊丝气体保护焊.GTAW焊接--钨极氩弧焊(又称钨极惰性气体保护焊<TIG焊>). RESW焊接--电阻点焊.MCAW焊接--金属芯焊丝气体保护金属弧焊,或金属芯焊丝弧焊. SAW焊接---埋弧焊.PAW焊接---等离子电弧焊.MAG焊接---金属活性气体保护焊.焊接名词与相对应的符号序号焊接名词符号1 氧乙炔焊OAW2 手工电弧焊SMAW3 埋弧焊SAW4 二氧化碳气体保护电弧焊FCAW5 钨极惰性气体保护电弧焊TIG6 熔化极惰性气体保护电弧焊MIG7 活性气体保护电弧焊MAG8 钨极脉冲氩弧焊TAW-P9 熔化极脉冲氩弧焊MAW-P10 气电立焊EGW11 等离子弧焊PAW12 电渣焊ESW13 电子束焊EBW14 激光焊LBW15 热剂焊TW16 高频电阻焊HFRW17 闪光对焊FW18 摩擦焊FRW19 电阻焊RW20 扩散焊DFW21 爆炸焊EW22 超声波焊USW23 硬钎焊 B24 软钎焊S25 热切割TC26 氧乙炔气割OFC-A27 等离子弧切割PAC28 激光切割LBC29 火焰喷涂FLSP30 电弧喷涂EASP31 等离子弧喷涂PSP32 焊态AW33 母材BM34 焊缝WM35 热影响区HAZRW——RWSISTANCE WELDING——电阻焊FW——flash welding——闪光焊RW-PC——pressure controlled resistance welding——压力控制电阻焊PW——projection welding——凸焊RSEW——resistance seam welding——电阻缝焊RSEW-HF——high-frequency seam welding——高频电阻缝焊RSEW-I——induction seam welding——感应电阻缝焊RSEW-MS——mash seam welding——压平缝焊RSW——resistance spot welding——点焊UW——upset welding——电阻对焊UW-HF——high-frequency ——高频电阻对焊UW-I——induction——感应电阻对焊SSW——SOLID STATE WELDING——固态焊CEW——co-extrusion welding——挤压焊CW——cold welding——冷压焊DFW——diffusion welding——扩散焊HIPW——hot isostatic pressure diffusion welding——热等静压扩散焊EXW——explosion welding——爆炸焊FOW——forge welding——锻焊FRW——friction welding——摩擦焊FRW-DD——direct drive friction welding——径向摩擦焊FSW——friction stir welding——搅拌摩擦焊FRW-I——inertia friction welding——惯性摩擦焊HPW——hot pressure welding——热压焊ROW——roll welding——热轧焊USW——ultrasonic welding——超声波焊。
熔化极活性气体保护焊(Metal Active Gas Arc Welding )(MAG焊)熔化极活性气体保护焊一般采用在氩气中加入少量的氧化性气体(CO2、O2或其他混合气体)的混合气体作为保护气体进行焊接的一种熔化极气体保护焊方法。
1、熔化极活性气体保护焊的原理及特点原理与熔化极氩弧焊相同。
特点:除了具有一般气体保护焊的特点外,与纯氩弧焊、纯CO2焊相比还具有以下特点:(1)与纯氩气保护焊相比①熔池、熔滴温度比纯氩弧焊高,电流密度大,因此熔深大,焊缝厚度大,焊丝熔化速度快,熔敷效率高,有利于提高焊接生产率。
②具有一定氧化性,克服了纯氩保护时表面张力大、液态金属粘稠、易咬边及斑点漂移等问题。
同时改善了焊缝成形,由纯氩的指状(蘑菇)熔深成形改变为深圆弧状成形,接头的力学性能好。
③ CO气体较便宜,降低了焊接成本低,但CO的加入提高22了产生喷射过渡的临界电流,引起熔滴和熔池金属的氧化及合金元素的烧损(2)与纯CO气体保护焊相比2飞溅少,故电弧稳定性好,易形成喷射过渡,①电弧温度高,熔敷系数高,节省焊材,生产效率高。
②由于大部分为惰性的氩气,熔池保护效果好,焊缝金属不易形成气孔,力学性能高。
③焊缝成形好,焊缝平缓,波纹细密,均匀美观,成本较CO2焊高。
2、熔化极活性气体保护焊常用混合气体及应用(1)Ar+O 2Ar+O可用于碳钢、低合金钢、不锈钢等高合金钢和高强2钢的焊接。
焊接不锈钢等高合金钢和高强钢时,O含量控制在(1%~5%);2焊接碳钢、低合金钢时,O含量可达20%。
2为什么加入O:2①克服阴极斑点漂移,降低射流过渡的临界电流值,有利于熔滴的细化;②焊接不锈钢时,加入微量的O对接头的抗腐蚀性无显著影2响;当O超过2%时,焊缝表面氧化严重,接头质量下降。
2③因为焊缝金属的冲击韧性不取决于保护气体的氧化性,而取决于焊缝金属的含氧量,加入适量的O,虽然气体的氧化2性提高,但焊缝金属中的含氧量和杂质减少,因此焊缝金属的冲击韧性有所提高;(2)Ar+CO 2Ar+ CO的优点(电弧稳定、飞溅少、容易获得Ar既有2.轴向喷射过渡等),又有氧化性,克服了用单一Ar气焊接时的阴极斑点漂移现象及焊缝成形不好的问题。