2.2.2平面与平面平行的判定(1)
- 格式:ppt
- 大小:114.50 KB
- 文档页数:14
2.2.2平面与平面平行的判定知识点平面与平面平行的判定定理思考1三角板的一条边所在平面与平面α平行,这个三角板所在平面与平面α平行吗?答案不一定.思考2三角板的两条边所在直线分别与平面α平行,这个三角板所在平面与平面α平行吗?答案平行.思考3如图,平面BCC1B1内有多少条直线与平面ABCD平行?这两个平面平行吗?答案无数条.不平行.梳理面面平行的判定定理表示定理图形文字符号平面与平面平行的判定定理一个平面内的两相交直线与另一个平面平行,则这两个平面平行⎭⎪⎬⎪⎫a⊂βb⊂βa∩b=Pa∥αb∥α⇒β∥α类型一面面平行的判定定理例1下列四个命题:(1)若平面α内的两条直线分别与平面β平行,则平面α与平面β平行;(2)若平面α内有无数条直线分别与平面β平行,则平面α与平面β平行;(3)平行于同一直线的两个平面平行;(4)两个平面分别经过两条平行直线,这两个平面平行.其中正确的个数是______________.答案0反思与感悟在判定两平面是否平行时,一定要强调一个平面内的“两条相交直线”这个条件,线不在多,相交就行.跟踪训练1设直线l, m, 平面α,β,下列条件能得出α∥β的有()①l⊂α,m⊂α,且l∥β,m∥β;②l⊂α,m⊂α,且l∥m,l∥β,m∥β;③l∥α,m∥β,且l∥m;④l∩m=P, l⊂α,m⊂α,且l∥β,m∥β.A.1个B.2个C.3个D.0个答案 A解析①错误,因为l, m不一定相交;②错误,一个平面内有两条平行直线平行于另一个平面,这两个平面可能相交;③错误,两个平面可能相交;④正确.类型二平面与平面平行的证明例2如图所示,在正方体AC1中,M,N,P分别是棱C1C,B1C1,C1D1的中点,求证:平面MNP∥平面A1BD.证明如图,连接B1C.由已知得A1D∥B1C,且MN∥B1C,∴MN∥A1D.又∵MN⊄平面A1BD,A1D⊂平面A1BD,∴MN∥平面A1BD.连接B1D1,同理可证PN∥平面A1BD.又∵MN⊂平面MNP,PN⊂平面MNP,且MN∩PN=N,∴平面MNP∥平面A1BD.引申探究若本例条件不变,求证:平面CB1D1∥平面A1BD.证明因为ABCD-A1B1C1D1为正方体,所以DD1綊BB1,所以BDD1B1为平行四边形,所以BD∥B1D1.又BD⊄平面CB1D1,B1D1⊂平面CB1D1,所以BD∥平面CB1D1,同理A1D∥平面CB1D1.又BD∩A1D=D,所以平面CB1D1∥平面A1BD.反思与感悟判定平面与平面平行的四种常用方法(1)定义法:证明两个平面没有公共点,通常采用反证法.(2)利用判定定理:一个平面内的两条相交直线分别平行于另一个平面.证明时应遵循先找后作的原则,即先在一个平面内找到两条与另一个平面平行的相交直线,若找不到再作辅助线.(3)转化为线线平行:平面α内的两条相交直线与平面β内的两条相交直线分别平行,则α∥β.(4)利用平行平面的传递性:若α∥β,β∥γ,则α∥γ.跟踪训练2如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分別是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)因为G,H分别是A1B1,A1C1的中点,所以GH是△A1B1C1的中位线,所以GH∥B1C1.又因为B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)因为E,F分别是AB,AC的中点,所以EF∥BC.因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.因为A1G∥EB,A1G=EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A 1E ∥平面BCHG . 因为A 1E ∩EF =E , 所以平面EF A 1∥平面BCHG .类型三 线线平行与面面平行的综合应用命题角度1 线线、线面、面面平行的相互转化的证明问题例3 如图,在正方体ABCD -A 1B 1C 1D 1中,S 是B 1D 1的中点,E ,F ,G 分别是BC ,DC 和SC 的中点,求证: (1)直线EG ∥平面BDD 1B 1; (2)平面EFG ∥平面BDD 1B 1.证明 (1)如图,连接SB .∵E ,G 分别是BC ,SC 的中点, ∴EG ∥SB .又∵SB ⊂平面BDD 1B 1,EG ⊄平面BDD 1B 1, ∴EG ∥平面BDD 1B 1. (2)连接SD .∵F ,G 分别是DC ,SC 的中点, ∴FG ∥SD .又∵SD ⊂平面BDD 1B 1,FG ⊄平面BDD 1B 1, ∴FG ∥平面BDD 1B 1.又EG ∥平面BDD 1B 1,且EG ⊂平面EFG ,FG ⊂平面EFG ,EG ∩FG =G , ∴平面EFG ∥平面BDD 1B 1.反思感悟 解决线线平行与面面平行的综合问题的策略(1)立体几何中常见的平行关系是线线平行、线面平行和面面平行,这三种平行关系不是孤立的,而是相互联系、相互转化的.(2)线线平行――→判定线面平行――→判定面面平行所以平行关系的综合问题的解决必须灵活运用三种平行关系的判定定理.跟踪训练3 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为BC ,CC 1,C 1D 1,A 1A 的中点.求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面HB 1D 1.证明 (1)如图,取BB 1的中点M ,连接C 1M ,HM ,易知HMC 1D 1是平行四边形,∴HD 1∥MC 1, 又由已知可得MC 1∥BF ,∴BF ∥HD 1.(2)取BD 的中点O ,连接OE ,D 1O ,则OE 綊12DC .又D 1G 綊12DC ,∴OE 綊D 1G ,∴四边形OEGD 1是平行四边形,∴GE ∥D 1O . 又D 1O ⊂平面BB 1D 1D ,EG ⊄平面BB 1D 1D , ∴EG ∥平面BB 1D 1D .(3)由(1)知HD 1∥BF ,又BD ∥B 1D 1,B 1D 1,HD 1⊂平面HB 1D 1,BF ,BD ⊂平面BDF , 且B 1D 1∩HD 1=D 1,BD ∩BF =B , ∴平面BDF ∥平面HB 1D 1.命题角度2 线线与面面平行的探索性问题例4 如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面P AO ?解 当Q 为CC 1的中点时,平面D 1BQ ∥平面P AO .∵Q 为CC 1的中点,P 为DD 1的中点,连接PQ ,如图,易证四边形PQBA 是平行四边形,∴QB ∥P A .又∵AP ⊂平面APO ,QB ⊄平面APO ,∴QB ∥平面APO .∵P ,O 分别为DD 1,DB 的中点,∴D 1B ∥PO . 同理可得D 1B ∥平面P AO , 又D 1B ∩QB =B , ∴平面D 1BQ ∥平面P AO .反思感悟 对于探索性问题,一是可直接运用题中的条件,结合所学过的知识探求;二是可先猜想,然后证明猜想的正确性.跟踪训练4 在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,M 为PE 的中点,在棱PC 上是否存在一点F ,使平面BFM ∥平面AEC ?并证明你的结论.解 当F 是棱PC 的中点时,平面BFM ∥平面AEC . ∵M 是PE 的中点,∴FM ∥CE . ∵FM ⊄平面AEC ,CE ⊂平面AEC , ∴FM ∥平面AEC . 由EM =12PE =ED ,得E 为MD 的中点,连接BM ,BD ,如图所示,设BD ∩AC =O ,则O 为BD 的中点. 连接OE ,则BM ∥OE .∵BM⊄平面AEC,OE⊂平面AEC,∴BM∥平面AEC.又∵FM⊂平面BFM,BM⊂平面BFM,FM∩BM=M,∴平面BFM∥平面AEC.1.下列命题中正确的是()A.一个平面内两条直线都平行于另一平面,那么这两个平面平行B.如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行C.平行于同一直线的两个平面一定相互平行D.如果一个平面内的无数多条直线都平行于另一平面,那么这两个平面平行答案 B解析如果一个平面内任何一条直线都平行于另一个平面,即两个平面没有公共点,则两平面平行,所以B正确.2.在正方体中,相互平行的面不会是()A.前后相对侧面B.上下相对底面C.左右相对侧面D.相邻的侧面答案 D解析由正方体的模型知前后面、上下面、左右面都相互平行,所以选D.3.在正方体EFGH-E1F1G1H1中,下列四对截面彼此平行的一对是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G答案 A解析如图,∵EG∥E1G1,EG⊄平面E1FG1,E1G1⊂平面E1FG1,∴EG∥平面E1FG1.又G1F∥H1E,同理可证H1E∥平面E1FG1,又H1E∩EG=E,∴平面E1FG1∥EGH1.4.如图,已知在三棱锥P-ABC中,D,E,F分别是棱P A,PB,PC的中点,则平面DEF 与平面ABC的位置关系是________.答案平行解析在△P AB中,因为D,E分别是P A,PB的中点,所以DE∥AB.又DE⊄平面ABC,因此DE∥平面ABC.同理可证EF∥平面ABC.又DE∩EF=E,所以平面DEF∥平面ABC.5.如图,在正方体ABCD-A1B1C1D1中,P为DD1中点.能否同时过D1,B两点作平面α,使平面α∥平面P AC?证明你的结论.解能作出满足条件的平面α,其作法如下:如图,连接BD1,取AA1的中点M,连接D1M,则BD1与D1M所确定的平面即为满足条件的平面α.证明如下:连接BD交AC于O,连接PO,则PO∥D1B,故D1B∥平面P AC.又因为M为AA1的中点,所以D1M∥P A,从而D1M∥平面P AC.又因为D1M∩D1B=D1,D1M⊂α,D1B⊂α,所以α∥平面P AC.证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)两个平面同时平行于第三个平面,那么这两个平面平行.课时作业一、选择题1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是()A.相交B.平行C.异面D.不确定答案 B解析因为l∩m=P,所以过l与m确定一个平面β.又因l∥α,m∥α,l∩m=P,所以β∥α.2.α、β是两个不重合的平面,a、b是两条不同的直线,则在下列条件下,可判定α∥β的是()A.α、β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a,b是两条异面直线且a∥α,b∥α,α∥β,b∥β答案 D解析A错,若a∥b,则不能断定α∥β;B错,若三点不在β的同一侧,α与β相交;C错,若a∥b,则不能断定α∥β.故选D.3.已知m,n是两条直线,α,β是两个平面,有以下命题:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确命题的个数是()A.0 B.1 C.2 D.3答案 B解析设m∩n=P,记m与n确定的平面为γ.由题意知:γ∥α,γ∥β,则α∥β.故①正确.②、③均错误.4.在正方体ABCD-A1B1C1D1中,M为棱A1D1的动点,O为底面ABCD的中心,E、F分别是A1B1、C1D1的中点,下列平面中与OM扫过的平面平行的是()A.面ABB1A1B.面BCC1B1C.面BCFE D.面DCC1D1答案 C解析取AB、DC的中点分别为E1和F1,OM扫过的平面即为面A1E1F1D1(如图),故面A1E1F1D1∥面BCFE.5.六棱柱ABCDEF-A1B1C1D1E1F1的底面是正六边形,则此六棱柱的面中互相平行的有()A.1对B.2对C.3对D.4对答案 D解析由图知平面ABB1A1∥平面EDD1E1,平面BCC1B1∥平面FEE1F1,平面AFF1A1∥平面CDD1C1,平面ABCDEF∥平面A1B1C1D1E1F1,∴此六棱柱的面中互相平行的有4对.6.在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.其中推断正确的序号是()A.①③B.①④C.②③D.②④答案 A解析∵在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,∴FG∥BC1. ∵BC1∥AD1,∴FG∥AD1,∵FG⊄平面AA1D1D,AD1⊂平面AA1D1D,∴FG∥平面AA1D1D,故①正确;∵EF∥A1C1,A1C1与平面BC1D1相交,∴EF与平面BC1D1相交,故②错误;∵FG∥BC1,FG⊄平面BC1D1,BC1⊂平面BC1D1,FG∥平面BC1D1,故③正确;∵EF与平面BC1D1相交,∴平面EFG与平面BC1D1相交,故④错误.故选A.7.如图是四棱锥的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为P A,PD,PC,PB的中点,在此几何体中,给出下面四个结论:①平面EFGH∥平面ABCD;②平面P AD∥BC;③平面PCD∥AB;④平面P AD∥平面P AB. 其中正确的有()A.①③B.①④C.①②③D.②③答案 C解析把平面展开图还原为四棱锥如图所示,则EH∥AB,所以EH∥平面ABCD.同理可证EF∥平面ABCD,所以平面EFGH∥平面ABCD;平面P AD,平面PBC,平面P AB,平面PDC 均是四棱锥的四个侧面,则它们两两相交.∵AB∥CD,∴平面PCD∥AB.同理平面P AD∥BC.二、填空题8.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是_____.答案相交或平行解析b、c⊂β,a⊂α,a∥b∥c,若α∥β,满足要求;若α与β相交,交线为l,b∥c∥l,a∥l,满足要求,故答案为相交或平行.9.已知平面α和β,在平面α内任取一条直线a,在β内总存在直线b∥a,则α与β的位置关系是________.答案平行解析假若α∩β=l,则在平面α内,与l相交的直线a,设a∩l=A,对于β内的任意直线b,若b过点A,则a与b相交,若b不过点A,则a与b异面,即β内不存在直线b∥a.故α∥β. 10.已知a和b是异面直线,且a⊂平面α,b⊂平面β,a∥β,b∥α,则平面α与β的位置关系是________.答案平行解析在b上任取一点O,则直线a与点O确定一个平面γ,设γ∩β=l,则l⊂β,∵a∥β,∴a与l无公共点,∴a∥l,∴l∥α.又b∥α,根据面面平行的判定定理可得α∥β.三、解答题11.如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1C,B1C1,C1D1的中点,求证:平面PMN∥平面A1BD.证明连接B1D1,B1C.∵P,N分别是D1C1,B1C1的中点,∴PN∥B1D1.又B1D1∥BD,∴PN∥BD.又PN⊄平面A1BD,BD⊂平面A1BD,∴PN∥平面A1BD.同理,MN∥平面A1BD.又PN∩MN=N,∴平面PMN∥平面A1BD.12.已知四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q分别在P A,BD,PD 上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.证明∵PM∶MA=BN∶ND=PQ∶QD,∴MQ∥AD,NQ∥BP,而BP⊂平面PBC,NQ⊄平面PBC,∴NQ∥平面PBC.又∵四边形ABCD为平行四边形,∴BC∥AD,∴MQ∥BC,而BC⊂平面PBC,MQ⊄平面PBC,∴MQ∥平面PBC.易知MQ∩NQ=Q,根据平面与平面平行的判定定理,可知平面MNQ∥平面PBC.13.如图,在四棱锥C-ABED中,四边形ABED是正方形,G,F分别是线段EC,BD的中点.(1)求证:GF∥平面ABC;(2)若点P为线段CD的中点,平面GFP与平面ABC有怎样的位置关系?并证明.(1)证明如图,连接AE,由F是线段BD的中点得F为AE的中点,∴GF为△AEC的中位线,∴GF∥AC.又∵AC⊂平面ABC,GF⊄平面ABC,∴GF∥平面ABC.(2)解平面GFP∥平面ABC,证明如下:在CD上取中点P,连接FP,GP.∵F,P分别为BD,CD的中点,∴FP为△BCD的中位线,∴FP∥BC.又∵BC⊂平面ABC,FP⊄平面ABC,∴FP∥平面ABC,又GF∥平面ABC,FP∩GF=F,FP⊂平面GFP,GF⊂平面GFP,∴平面GFP∥平面ABC.四、探究与拓展14.已知l,m是两条不同的直线,α,β是两个不同的平面,有下面四个命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l∥α,m∥l,则m∥α.其中所有真命题的序号是________.答案②解析当l∥m时,平面α与平面β不一定平行,故①错误;②正确;若α∥β,l∥α,则l⊂β或l∥β,故③错误;④中直线m有可能在平面α内,故④错误.15.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥ADD1A1?若存在,求点F的位置,若不存在,请说明理由.解当F为AB的中点时,平面C1CF∥ADD1A1.理由如下:∵在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,F为AB的中点,∴CD綊AF綊C1D1,∴AFCD是平行四边形,且AFC1D1是平行四边形,∴CF∥AD,C1F∥AD1.又CF∩C1F=F,CF,C1F都在平面C1CF内,∴平面C1CF∥平面ADD1A1.。
1、重点:平面与平面平行的判定定理及应用依据:教学重在过程,重在研究,而不是重在结论。
学生不应该死背定理内容,而是理解知识发生、发展的过程。
这样,知识就成了一个数学模式,可用来解决具体问题。
2、难点:平面与平面平行的判定定理的探究发现及应用。
依据:因为问题的产生与解决具有一定的隐蔽性,虽然学生了解两个平面平行的判定,但在问题中应用的时候就不够灵活或找不到需要的条件。
为此,本节的难点是两个平面平行的判定。
重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。
3.疑点:正确理解并应用两个平面平行的判定定理时,要注意定理中的关键词:相交.六、教学过程(一)创设问题情景,引入新课基于新课程的理念和本节课的教学目标,使学生体会到数学知识发生在现实背景只需按为此结合一道习题即回归了上节课直线与平面的判定也引出了本节课的内容,自然流畅,更让学生了解到本节课学习的必要性。
教师:上节课我们学习了直线与平面的判定你能利用你所学的知识解决本题吗?实例:如图,在正方体ABCD —A 1B 1C 1D 1求证:B 1D 1 || 平面C 1BD[知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。
平行问题找中点解决是个好途径好方法。
这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法] 学生上黑板板演,其他同学下面做,师生共同评价点明,对旧知识复习,又有深入,同时又点出了“转化”的思想方法,为引入新课作铺垫点明 证明线面平行的方法及思想(转化的思想) 提出课题 思考1:如果将上题中正方体中的AB 1 , AD 1连接构成了一个新的平面AB 1D 1如何证明:平面AB 1D 1∥平面C 1BD[设计意图:说明面面平行证明的必要性,通过提问引入本节课题,并为探寻平面与平面平行判定定理作好准备。
](二)判定定理的探求过程1、直观感知思考1:根据同学们日常生活的观察,你们能举出平面与平面平行的具体事例吗?生1:教室的天花板与地面给人平行的感觉。