2017年安徽省合肥市蜀山区中考数学二模试卷(解析版)
- 格式:pdf
- 大小:827.74 KB
- 文档页数:26
合肥市2017年高三第二次教学质量检测数学试题(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 为虚数单位,若复数()()12mi i ++是纯,则实数m =( ) A .1 B .1- C .12- D .22.已知[)1,A =+∞,1|212B x x a ⎧⎫=∈≤≤-⎨⎬⎩⎭R ,若A B φ≠I ,则实数a 的取值范围是( )A .[)1,+∞B .1,12⎡⎤⎢⎥⎣⎦C .2,3⎡⎫+∞⎪⎢⎣⎭D .()1,+∞3.已知变量x ,y 满足约束条件241x y x y y -≥⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最小值为( )A .1-B .1C .3D .74.若输入4n =,执行如图所示的程序框图,输出的s =( ) A .10 B .16 C.20 D .355.若中心在原点,焦点在y 轴上的双曲线离心率为3,则此双 曲线的渐近线方程为( )A .y x =±B .22y x =±C.2y x =± D .12y x =±6.等差数列{}n a 的前n 项和为n S ,且36S =,63S =,则10S =( ) A .110B .0 C.10- D .15- 7.一个几何体的三视图及其尺寸如图所示,则该几何体的体积 为( )A .283B 28 D .22+8.对函数()f x ,如果存在00x ≠使得()()00f x f x =--,则称()()00,x f x 与()()00,x f x --为函数图像的一组奇对称点.若()x f x e a =-(e 为自然数的底数)存在奇对称点,则实数a 的取值范围是( )A .(),1-∞B .()1,+∞ C.()e,+∞ D .[)1,+∞9.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( ) A .0条 B .1条 C.2条 D .1条或2条10.已知5件产品中有2件次品,现逐一检测,直至能确定...所有次品为止,记检测的次数为ξ,则E ξ=( )A .3B .72 C.185D .4 11.锐角..ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足()()()sin sin sin a b A B c b C -+=-,若a =22b c +的取值范围是( )A .(]3,6B .()3,5 C.(]5,6 D .[]5,612.已知函数()ln xf x x x ae =-(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( ) A .10,e ⎛⎫ ⎪⎝⎭ B .()0,e C.1,e e ⎛⎫⎪⎝⎭D .(),e -∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.等比数列{}n a 满足0n a >,且284a a =,则21222329log log log log a a a a ++++=L . 14.不共线向量a r ,b r 满足a b =r r ,且()2a a b ⊥-r r r ,则a r 与b r的夹角为 .15.在411x x ⎛⎫-- ⎪⎝⎭的展开式中,常数项为 .16.已知关于x 的方程()1cos sin 2t x t x t +-=+在()0,π上有实根,则实数t 的最大值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知()sin a =x x r ,()cos ,cos b x x =-r ,函数()f x a b =⋅+r r .(Ⅰ)求函数()y f x =图像的对称轴方程; (Ⅱ)若方程()13f x =在()0,π上的解为1x ,2x ,求()12cos x x -的值.18. 某校计划面向高一年级1200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类,自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.(Ⅰ)分别计算抽取的样本中男生及女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类学生数;(Ⅱ)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?附:()()()()()22n ab bc K a b c d a c b d -=++++,其中n a b c d =+++.19. 矩形ABCD 中,1AB =,2AD =,点E 为AD 中点,沿BE 将ABE ∆折起至PBE ∆,如右图所示,点P 在面BCDE 的射影O 落在BE 上.(Ⅰ)求证:BP CE ⊥;(Ⅱ)求二面角B PC D --的余弦值.20. 如图,抛物线E :()220y px p =>与圆O :228x y +=相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点()00,P x y 作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线1l ,2l ,1l 与2l 相交于点M . (Ⅰ)求p 的值;(Ⅱ)求动点M 的轨迹方程.21. 已知()()ln f x x m mx =+-. (Ⅰ)求()f x 的单调区间;(Ⅱ)设1m >,1x ,2x 为函数()f x 的两个零点,求证:120x x +<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=.(Ⅰ)求出圆C 的直角坐标方程;(Ⅱ)已知圆C 与x 轴相交于A ,B 两点,直线l :2y x =关于点()()0,0M m m ≠对称的直线为'l .若直线'l 上存在点P 使得90APB ∠=o ,求实数m 的最大值.23.选修4-5:不等式选讲已知函数())0f x ≠. (Ⅰ)求函数()f x 的定义域;(Ⅱ)若当[]0,1x ∈时,不等式()1f x ≥恒成立,求实数a 的取值范围.试卷答案一、选择题1-5:DABCB 6-10:DABCB 11、12:CA二、填空题 13.9 14.3π15.5- 16.1-三、解答题17.解:(Ⅰ)()()()sin cos ,cos f x a b x x x x =⋅+=⋅-+r r21sin cos sin 22sin 223x x x x x x π⎛⎫=⋅-+=-=- ⎪⎝⎭ 令232x k πππ-=+,得()5122kx k Z ππ=+∈ 即()y f x =的对称轴方程为5122kx ππ=+,()k Z ∈ (Ⅱ)由条件知121sin 2sin 20333x x ππ⎛⎫⎛⎫-=-=> ⎪ ⎪⎝⎭⎝⎭,且12520123x x ππ<<<<易知()()11,x f x 与()()22,x f x 关于512x π=对称,则1256x x π+=()1211111551cos cos cos 2cos 2sin 2663233x x x x x x x πππππ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=--=-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦18.(Ⅰ)由条件知,抽取的男生105人,女生18010575-=人。
2017年九年级数学中考模拟试卷一、选择题:1.已知有理数a,b,c在数轴上对应点的位置如图,化简:∣b-c∣-2∣c+a∣-3∣a-b∣=( )A.-5a+4b-3cB.5a-2b+cC.5a-2b-3cD.a-2b-3c2.下列计算正确的是()A.2+a=2aB.2a﹣3a=﹣1C.(﹣a)2•a3=a5D.8ab÷4ab=2ab3.若x、y为有理数,下列各式成立的是()A.(﹣x)3=x3B.(﹣x)4=﹣x4C.x4=﹣x4D.﹣x3=(﹣x)34.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2 B.65πcm2 C.80πcm2 D.105πcm25.化简的结果是()A. B. C.x+1 D.x﹣16.下列运算中,正确的是()A.3a+2b=5abB.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=17.某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少8.在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是()A.20米B.18米C.16米D.15米9.如图1,在直角梯形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP 的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是()A.3 B.4 C.5 D.610.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A.5米 B.8米 C.7米 D.5米二、填空题:11.已知关于x,y的方程组的解为正数,则 .12.分解因式:2x3﹣4x2+2x= .13.如图,△ABC是边长为4个等边三角形,D为AB边中点,以CD为直径画圆,则图中阴影部分面积为 .14.如图在□ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,若△DEF的面积为18,则□ABCD的面积为.三、计算题:15.计算:20160﹣|﹣|++2sin45°.16.解方程:3x2-7x+4=0.四、解答题:17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.18.如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,交y轴于C点,其中B点坐标为(3,0),C点坐标为(0,3),且图象对称轴为直线x=1.(1)求此二次函数的关系式;(2)P为二次函数y=ax2+bx+c在x轴下方的图象上一点,且S△ABP=S△ABC,求P点的坐标.19.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A 处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)20.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.21.某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级,绘制了两种不完整统计图.根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m= ,n= ,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图,求A等级中一男一女参加比赛的概率.(男生分别用代码 A1、A2表示,女生分别用代码B1、B2表示)五、综合题:22.如图,在平面直角坐标系中,已知抛物线y=ax2+bx的对称轴为x=0.775,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E.(1)求抛物线的解析式;(2)填空:①用含m的式子表示点C,D的坐标:C(,),D(,);②当m= 时,△ACD的周长最小;(3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标.23.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.参考答案1.B2.C3.D4.B5.A6.C7.D8.B9.A10.B11.答案为:7;12.答案为:2x(x﹣1)2.13.答案为:2.5﹣π.14.答案为:112;15.解:20160﹣|﹣|++2sin45°=1﹣+(3﹣1)﹣1+2×=1﹣+3+=4.16.解:(3)x1=,x2=117.解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.18.解:(1)根据题意,得,解得.故二次函数的表达式为y=﹣x2+2x+3.(2)由S△ABP=S△ABC,得y P+y C=0,得y P=﹣3,当y=﹣3时,﹣x2+2x+3=﹣3,解得x1=1﹣,x2=1+.故P点的坐标为(1﹣,﹣3)或(1+,﹣3).19.20.解:(1)设函数关系式为v=kt-1,∵t=5,v=120,∴k=120×5=600,∴v与t的函数关系式为v=600t-1(5≤t≤10);(2)①依题意,得3(v+v﹣20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v﹣20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A加油站在甲地和B加油站之间时,110t﹣(600﹣90t)=200,解得t=4,此时110t=110×4=440;当B加油站在甲地和A加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B加油站的距离为220或440千米.21.22.23.解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN ∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE。
安徽省合肥市蜀山区中考数学二模试卷一、选择题:本大题共10道小题,每小题4分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分1.﹣的绝对值是()A.﹣3 B.3 C.﹣D.2.下列运算中,正确的是()A.5a﹣2a=3 B.(x+2y)2=x2+4y2C.x8÷x4=x2D.(2a)3=8a33.一种甲型H1N1流感病毒的直径约为0.00000078m,数0.00000078用科学记数法表示为()A.0.78×10﹣5B.7.8×10﹣6C.7.8×10﹣7D.78×10﹣84.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50° B.45°C.35°D.30°5.立定跳远是小刚同学体育中考的选考项目之一.某次体育课上,体育老师记录了小刚的一组立定跳远训练成绩如下表:成绩(m) 2.35 2.4 2.45 2.5 2.55次数 1 1 2 5 1则下列关于这组数据的说法中正确的是()A.众数是2.45 B.平均数是2.45 C.中位数是2.5 D.方差是0.486.一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为()A.2πB.C.4πD.8π7.若a、b均为正整数,且a>,b>,则a+b的最小值是()A.6 B.7 C.8 D.98.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD9.在平面直角坐标系中双曲线经过△CDB顶点B,边BC过坐标原点O,点D在x轴的正半轴上,且∠BDC=90°,现将△CDB绕点B顺时针旋转得到对应△AOB如图所示,此时AB∥x轴,OA=.则k的值是()A.B. C.﹣3 D.310.如图,在平行四边形ABCD中,∠A=60°,AB=6厘米,BC=12厘米,点P、Q同时从顶点A 出发,点P沿A→B→C→D方向以2厘米/秒的速度前进,点Q沿A→D方向以1厘米/秒的速度前进,当Q到达点D时,两个点随之停止运动.设运动时间为x秒,P、Q经过的路径与线段PQ围成的图形的面积为y(cm2),则y与x的函数图象大致是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分11.分解因式:ax2﹣6ax+9a=.12.有依次排列的3个数:2,8,7.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,6,8,﹣1,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,4,6,2,8,﹣9,﹣1,8,7;继续依次操作下去…,那么从数串2,8,7开始操作第100次后所产生的那个新数串的所有数之和是.13.合肥大建设再创新高潮,继“高架时代”后合肥即将迈入“地铁时代”,合肥市投入200亿元用于地下轨道交通建设,并计划、两年累计再投入528亿元用于地下轨道交通建设,若设这两年中投入资金的年平均增长率为x,则可列方程为.14.如图,D、E分别是△ABC的边BC和AB上的点,△ABD与△ACD的周长相等,△CAE与△CBE的周长相等,设BC=a,AC=b,AB=c,给出以下几个结论:①如果AD是BC边中线,那么CE是AB边中线;②AE的长度为;③BD的长度为;④若∠BAC=90°,△ABC的面积为S,则S=AE•BD.其中正确的结论是(将正确结论的序号都填上)三、本大题共2小题,每小题8分,共16分15.计算: +(﹣)﹣2﹣(﹣1)0﹣2sin60°.16.解方程:.四、本大题共2小题,每小题8分,共16分17.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).①画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.18.为加强公路的节水意识,合理利用水资源,某市对居民用水实行阶梯水价,居民家庭每月用水量划分为两个阶梯,一、二阶梯用水的单价之比等于1:2,如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m3)之间的函数关系,其中射线AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求射线AB所在直线的表达式.五、本大题共2小题,每小题10分,共20分19.五一期间,小明同学到滨湖湿地公园参加校无线电测向科技社团组织的实践活动,目标点B在观测点A北偏西30°方向,距观测点A直线距离600米.由于观测点A和目标点B之间被一片湿地分隔,无法直接通行,小明根据地形决定从观测点A出发,沿东北方向走一段距离后,到达位于目标点B南偏东75°方向的C处,求小明还要走多远才能到达目标点B?(结果保留根号)20.小明、小亮和小强都积极报名参加校运动会的1500米比赛,由于受到参赛名额的限制,三人中只有一人可以报名,经测试三人的运动水平相当,体委权衡再三,决定用抽签的方式决定让谁参加.他做了3张外表完全相同的签,里面分别写了字母A,B,C,规则是谁抽到“A”,谁就去参赛.(1)小亮认为,第一个抽签不合算,因为3个签中只有一个“A”,如果第一个人没抽到“A”,则后面的人抽到“A”的概率会变大.(2)小强认为,最后抽不合算,因为如果前面有人把“A”抽走了,自己就没有机会了.(3)小明认为,无论第几个抽签,抽到A的概率都是相同的.你认为三人谁说的有道理?请说明理由.六、本题满分12分21.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥C,交AC 的延长线于点E.(1)求证:直线DE是⊙O的切线;(1)若AE=8,⊙O的半径为5,求DE的长.七、本题满分12分大圩葡萄味美多汁,深受消费者喜爱.某品种的葡萄采摘后常温保存最多只能存放一周,如果立即放在冷库中保存则可适当延长保鲜时间(保鲜期延长最多不超过120天).另外冷藏保鲜时每天仍有一定数量的葡萄变质,保鲜期内的葡萄因水分流失损失的质量可忽略不计.现有一位个体户,按市场价10元/千克收购了这种葡萄2000千克放在冷库室内保鲜,据测算,伺候每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有10千克葡萄变质丢弃.(1)存放x 天后将这批葡萄一次性出售,设这批葡萄的销售金额为y 元,写出y 关于x 的函数关系式,并说明销售金额y 随存放天数x 的变化情况;(2)考虑资金周转因式,该个体户决定在两个月(每月以30天计算)内将这批葡萄一次性出售,问该个体户将这批葡萄存放多少天后出售,可获得最大利润?最大利润时多少元?八、本题满分14分23.定义:如图1,点M 、N 把线段AB 分割成AM ,MN 和BN 三段,若以AM 、MN 、BN 为边的三角形是一个直接三角形,则称点M 、N 是线段AB 的勾股分割点.(1)如图2所示,已知点C 是线段AB 上的一定点,过C 作直线l ⊥AB ,在直线l 上截取CE=CA ,连接BE ,BE 的垂直平分线交AB 于点D ,求证:点C 、D 是线段AB 的勾股分割点. (2)已知点M 、N 是线段AB 的勾股分割点,若AM=2,NM=3,求BN 的长;(3)如图3,已知点M ,N 是线段AB 的勾股分割点,记AM=a ,BN=b ,MN=c ,且a <c ,b <c ,△AMC ,△MND 和△NBE 均是等边三角形,AE 分别交CM 、DM 、DN 于点F 、G 、H ,若H 是DN 的中点.①证明:a=b ;②试猜想S △AMF ,S BCN 和S 四边形ABCN 的数量关系(不需说明理由)安徽省合肥市蜀山区中考数学二模试卷参考答案与试题解析一、选择题:本大题共10道小题,每小题4分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分1.﹣的绝对值是()A.﹣3 B.3 C.﹣D.【考点】倒数.【专题】常规题型.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣的绝对值是.故选:D.【点评】负数的绝对值等于它的相反数.2.下列运算中,正确的是()A.5a﹣2a=3 B.(x+2y)2=x2+4y2C.x8÷x4=x2D.(2a)3=8a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的除法;完全平方公式.【分析】根据合并同类项、完全平方公式、同底数幂的除法、积的乘方,即可解答.【解答】解:A、5a﹣2a=3a,故错误;B、(x+2y)2=x2+4xy+4y2,故错误;C、x8÷x4=x4,故错误;D、正确;故选:D.【点评】本题考查了合并同类项、完全平方公式、同底数幂的除法、积的乘方,解决本题的关键是熟记合并同类项、完全平方公式、同底数幂的除法、积的乘方.3.一种甲型H1N1流感病毒的直径约为0.00000078m,数0.00000078用科学记数法表示为()A.0.78×10﹣5B.7.8×10﹣6C.7.8×10﹣7D.78×10﹣8【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000078=7.8×10﹣7,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50° B.45°C.35°D.30°【考点】平行线的性质;直角三角形的性质.【专题】几何图形问题.【分析】根据平行线的性质,可得∠3与∠1的关系,根据两直线垂直,可得所成的角是90°,根据角的和差,可得答案.【解答】解:如图,∵直线a∥b,∴∠3=∠1=60°.∵AC⊥AB,∴∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣60°=30°,故选:D.【点评】本题考查了平行线的性质,利用了平行线的性质,垂线的性质,角的和差.5.立定跳远是小刚同学体育中考的选考项目之一.某次体育课上,体育老师记录了小刚的一组立定跳远训练成绩如下表:成绩(m) 2.35 2.4 2.45 2.5 2.55次数 1 1 2 5 1则下列关于这组数据的说法中正确的是()A.众数是2.45 B.平均数是2.45 C.中位数是2.5 D.方差是0.48【考点】方差;算术平均数;中位数;众数.【分析】利用方差的定义、以及众数和中位数的定义分别计算得出答案.【解答】解:A、如图表所示:众数是2.5,故此选项错误;B、平均数是:(2.35+2.4+2.45×2+2.5×5+2.55)=2.47(m),故此选项错误;C、中位数是: =2.5,故此选项正确;D、方差为: [(2.35﹣2.225)2+(2.4﹣2.225)2+…+(2.55﹣2.225)2]=(0.015625+0.030625+0.050625+0.378125+0.105625)=0.0580625,故此选项错误;故选:C.【点评】此题主要考查了中位数以及方差以及众数的定义等知识,正确掌握相关定义是解题关键.6.一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为()A.2πB.C.4πD.8π【考点】圆锥的计算;由三视图判断几何体.【专题】计算题.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥.【解答】解:依题意知母线长l=4,底面半径r=1,则由圆锥的侧面积公式得S=πrl=π•1•4=4π.故选C.【点评】本题主要考查三视图的知识和圆锥侧面面积的计算;解决此类图的关键是由三视图得到立体图形;学生由于空间想象能力不够,找不到圆锥的底面半径,或者对圆锥的侧面面积公式运用不熟练,易造成错误.7.若a、b均为正整数,且a>,b>,则a+b的最小值是()A.6 B.7 C.8 D.9【考点】立方根;算术平方根.【分析】先根据平方根和立方根估算出a,b的范围,再确定a,b的最小正整数值,即可解答.【解答】解:∵9<11<16,∴3<<4,而a>,∴正整数a的最小值为4,∵8<9<27,∴2<<3,而b,∴正整数b的最小值为3,∴a+b的最小值是3+4=7.故选:B.【点评】本题考查了立方根、估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根和立方根.8.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD【考点】菱形的判定.【分析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线的性质,可得EF=GH=AB,EH=FG=CD,又由当EF=FG=GH=EH时,四边形EFGH是菱形,即可求得答案.【解答】解:∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵当EF=FG=GH=EH时,四边形EFGH是菱形,∴当AB=CD时,四边形EFGH是菱形.故选:D.【点评】此题考查了中点四边形的性质、菱形的判定以及三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.9.在平面直角坐标系中双曲线经过△CDB顶点B,边BC过坐标原点O,点D在x轴的正半轴上,且∠BDC=90°,现将△CDB绕点B顺时针旋转得到对应△AOB如图所示,此时AB∥x轴,OA=.则k的值是()A.B. C.﹣3 D.3【考点】反比例函数图象上点的坐标特征;坐标与图形变化-旋转.【分析】先求得△BOD是等边三角形,即可求得B的坐标,然后根据待定系数法即可求得双曲线的解析式.【解答】解:过A作AE⊥x轴于E,BF⊥x轴于F,∵AB∥x轴,∴∠ABO=∠BOD,∠ABD+∠BDO=180°,∵将△CDB绕点B顺时针旋转得到对应△AOB,∴∠ABO=∠CBD,∴∠BOD=∠OBD,∵OB=BD,∴∠BOD=∠BDO,∴△BOD是等边三角形,∴∠BOD=60°,∠BAO=∠AOE=30°,∵OA=,∴AE=BF=,∴B(1,);∵双曲线y=经过点B,∴k=1×=,故选B.【点评】本题考查了反比例函数图象上点的坐标特征,旋转的性质,等边三角形的判定和性质,求得△BOD是等边三角形是解题的关键.10.如图,在平行四边形ABCD中,∠A=60°,AB=6厘米,BC=12厘米,点P、Q同时从顶点A 出发,点P沿A→B→C→D方向以2厘米/秒的速度前进,点Q沿A→D方向以1厘米/秒的速度前进,当Q到达点D时,两个点随之停止运动.设运动时间为x秒,P、Q经过的路径与线段PQ围成的图形的面积为y(cm2),则y与x的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】几何动点问题;压轴题.【分析】当点P在AB上时,易得S△APQ的关系式;当点P在BC上时,高不变,但底边在增大,所以P、Q经过的路径与线段PQ围成的图形的面积关系式为一个一次函数;当P在CD上时,表示出所围成的面积关系式,根据开口方向判断出相应的图象即可.【解答】解:当点P在AB上时,即0≤x≤3时,P、Q经过的路径与线段PQ围成的图形的面积=x×=;当点P在BC上时,即3≤x≤9时,P、Q经过的路径与线段PQ围成的图形的面积=×3×+(2x﹣6+x﹣3)=﹣,y随x的增大而增大;当点P在CD上时,即9≤x≤12时,P、Q经过的路径与线段PQ围成的图形的面积=12×﹣(12﹣x)(﹣+12)=+12x﹣36;综上,图象A符合题意.故选A.【点评】本题主要考查了动点问题的函数图象,考查了学生从图象中读取信息的能力,正确列出表达式,是解答本题的关键.二、填空题:本大题共4小题,每小题5分,共20分11.分解因式:ax2﹣6ax+9a=a(x﹣3)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:ax2﹣6ax+9a=a(x2﹣6x+9)﹣﹣(提取公因式)=a(x﹣3)2.﹣﹣(完全平方公式)故答案为:a(x﹣3)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.有依次排列的3个数:2,8,7.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,6,8,﹣1,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,4,6,2,8,﹣9,﹣1,8,7;继续依次操作下去…,那么从数串2,8,7开始操作第100次后所产生的那个新数串的所有数之和是517.【考点】规律型:数字的变化类.【专题】压轴题.【分析】根据题意分别求得第一次操作,第二次操作,第三次操作所增加的数,可发现是定值5,从而求得第100次操作后所有数之和为2+8+7+100×5=517.【解答】解:第一次操作:6,﹣1第二次操作:4,2,﹣9,8第三次操作:2,2,﹣4,6,﹣17,8,9,﹣1第一次操作增加6﹣1=5第二次操作增加4+2﹣9+8=5第三次操作增加2+2﹣4+6﹣17+8+9﹣1=5即,每次操作加5,第100次操作后所有数之和为2+8+7+100×5=517.故答案是:517.【点评】本题考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求要有一定的解题技巧.解题的关键是能找到所增加的数是定值5.13.合肥大建设再创新高潮,继“高架时代”后合肥即将迈入“地铁时代”,合肥市投入200亿元用于地下轨道交通建设,并计划、两年累计再投入528亿元用于地下轨道交通建设,若设这两年中投入资金的年平均增长率为x,则可列方程为200(1+x)+200(1+x)2=528.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】分别表示出、的额,根据、两年累计再投入528亿元可列方程.【解答】解:设这两年中投入资金的年平均增长率为x,则额为200(1+x),的额为:200(1+x)2,根据、两年累计再投入528亿元,可列方程:200(1+x)+200(1+x)2=528,故答案为:200(1+x)+200(1+x)2=528.【点评】本题主要考查根据实际问题列方程的能力,分析题意准确抓住相等关系是解方程的关键.14.如图,D、E分别是△ABC的边BC和AB上的点,△ABD与△ACD的周长相等,△CAE与△CBE的周长相等,设BC=a,AC=b,AB=c,给出以下几个结论:①如果AD是BC边中线,那么CE是AB边中线;②AE的长度为;③BD的长度为;④若∠BAC=90°,△ABC的面积为S,则S=AE•BD.其中正确的结论是②③④(将正确结论的序号都填上)【考点】三角形综合题.【分析】由中线的定义,可得到AB=AC,但AB=AC时未必有AC=BC,可判断①;△ABD与△ACD的周长相等,我们可得出:AB+BD=AC+CD,等式的左右边正好是三角形ABC周长的一半,有AB,AC的值,那么就能求出BD的长了,同理可求出AE的长,可判断②③;把AE和BD代入计算,结合勾股定理可求得S,可判断④;则可得出答案.【解答】解:当AD是BC边中线时,则BD=CD,∵△ABD与△ACD的周长相等,∴AB=AC,但此时,不能得出AC=BC,即不能得出CE是AB的中线,故①不正确;∵△ABD与△ACD的周长相等,BC=a,AC=b,AB=c,∴AB+BD+AD=AC+CD+AD,∴AB+BD=AC+CD,∵AB+BD+CD+AC=a+b+c,∴AB+BD=AC+CD=.∴BD=﹣c=,同理AE=,故②③都正确;当∠BAC=90°时,则b2+c2=a2,∴AE•BE=×= [a﹣(c﹣b)][a﹣(c﹣b)]= [a2﹣(c﹣b)2]= [a2﹣(c2+b2﹣2bc)]=×2bc=bc=S,故④正确;综上可知正确的结论②③④,故答案为:②③④.【点评】本题为三角形的综合应用,主要考查了三角形各边之间的关系问题及三角形的面积,在列式子的时候要注意找出等量关系,难度适中.三、本大题共2小题,每小题8分,共16分15.计算: +(﹣)﹣2﹣(﹣1)0﹣2sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+4﹣1﹣2×=+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解方程:.【考点】解分式方程.【分析】首先找出最简公分母,进而去分母求出方程的根即可.【解答】解:方程两边同乘以x﹣2得:1=x﹣1﹣3(x﹣2)整理得出:2x=4,解得:x=2,检验:当x=2时,x﹣2=0,故x=2不是原方程的根,故此方程无解.【点评】此题主要考查了解分式方程,正确去分母得出是解题关键.四、本大题共2小题,每小题8分,共16分17.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).①画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】①根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出B1点的坐标;②根据网格结构找出点A、B、C绕点O按照逆时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出B2点的坐标.【解答】解:①如图所示,△A1B1C1即为△ABC关于x轴对称的图形,B1点的坐标是(1,0);②如图所示,△A2B2C2即为△ABC绕原点O按逆时针旋转90°的三角形,B2点的坐标是(0,1).【点评】本题考查了利用旋转变换与轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.18.为加强公路的节水意识,合理利用水资源,某市对居民用水实行阶梯水价,居民家庭每月用水量划分为两个阶梯,一、二阶梯用水的单价之比等于1:2,如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m3)之间的函数关系,其中射线AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求射线AB所在直线的表达式.【考点】一次函数的应用.【分析】(1)根据图象的信息得出即可;(2)首先设第一阶梯用水的单价为x元/m3,则第二阶梯用水单价为2x元/m3,设A(a,30)结合图象可得方程组,解方程组可得a、x的值,再设出解析式,利用待定系数法求出即可.【解答】解:(1)图中B点的实际意义表示当用水25m3时,所交水费为70元;(2)设第一阶梯用水的单价为x元/m3,则第二阶梯用水单价为2x元/m3,设A(a,30),则,解得,,∴A(15,30),B(25,70)设线段AB所在直线的表达式为y=kx+b,则,解得,∴线段AB所在直线的表达式为y=4x﹣30.【点评】此题主要考查了一次函数应用以及待定系数法求一次函数解析式,根据题意求出直线AB 是解此题的关键.五、本大题共2小题,每小题10分,共20分19.五一期间,小明同学到滨湖湿地公园参加校无线电测向科技社团组织的实践活动,目标点B在观测点A北偏西30°方向,距观测点A直线距离600米.由于观测点A和目标点B之间被一片湿地分隔,无法直接通行,小明根据地形决定从观测点A出发,沿东北方向走一段距离后,到达位于目标点B南偏东75°方向的C处,求小明还要走多远才能到达目标点B?(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】作AD⊥BC于D,根据方向角可知∠ABD=45°,根据勾股定理求出BD的长,根据题意求出∠C=60°,根据正切的概念求出CD的长,求和即可.【解答】解:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=600米,∴AD=DB=300米,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,tan∠C=,∴CD==100,∴BC=BD+CD=300+100(米).答:小明还要走(300+100)米才能到达目标点B.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确标注方向角、熟记锐角三角函数的概念是解题的关键.20.小明、小亮和小强都积极报名参加校运动会的1500米比赛,由于受到参赛名额的限制,三人中只有一人可以报名,经测试三人的运动水平相当,体委权衡再三,决定用抽签的方式决定让谁参加.他做了3张外表完全相同的签,里面分别写了字母A,B,C,规则是谁抽到“A”,谁就去参赛.(1)小亮认为,第一个抽签不合算,因为3个签中只有一个“A”,如果第一个人没抽到“A”,则后面的人抽到“A”的概率会变大.(2)小强认为,最后抽不合算,因为如果前面有人把“A”抽走了,自己就没有机会了.(3)小明认为,无论第几个抽签,抽到A的概率都是相同的.你认为三人谁说的有道理?请说明理由.【考点】列表法与树状图法.【专题】计算题.【分析】不妨设小亮首先抽签,画树状图展示所有6种等可能的结果数,再找出小明、小亮、小强抽到A签的结果数,然后根据概率公式可计算出他们抽到A签的结果数,通过比较概率的大小可判断谁说的正确.【解答】解:小明的说法有道理.理由如下:不妨设小亮首先抽签,画树状图为:共有6种等可能的结果数,其中小明、小亮、小强抽到A签的结果数都是2,所以他们抽到A签的结果数都是,所以无论第几个抽签,抽到A的概率都是相同的.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.六、本题满分12分21.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥C,交AC 的延长线于点E.(1)求证:直线DE是⊙O的切线;(1)若AE=8,⊙O的半径为5,求DE的长.【考点】切线的判定.【分析】(1)连接OD,由角平分线和等腰三角形的性质得出∠ODA=EAD,证出EA∥OD,再由已知条件得出DE⊥OD,即可得出结论.(2)作DF⊥AB,垂足为F,由AAS证明△EAD≌△FAD,得出AF=AE=8,DF=DE,求出OF=3,由勾股定理得出DF,即可得出结果.【解答】(1)证明:连接OD,如图1所示:∵AD平分∠BAC,∴∠EAD=∠OAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=EAD,∴EA∥OD,∵DE⊥EA,∴DE⊥OD,∵点D在⊙O上,∴直线DE与⊙O相切.(2)解:作DF⊥AB,垂足为F,如图2所示:∴∠DFA=∠DEA=90°,在△EAD和△FAD中,,∴△EAD≌△FAD(AAS),∴AF=AE=8,DF=DE,∵OA=OD=5,∴OF=3,在Rt△DOF中,DF===4,∴DE=DF=4.【点评】本题考查圆与直线相切的判定、平行线的判定与性质、三角形全等的判定与性质、勾股定理等知识,熟练掌握切线的判定方法,证明三角形全等是解决问题(2)的关键.七、本题满分12分22.大圩葡萄味美多汁,深受消费者喜爱.某品种的葡萄采摘后常温保存最多只能存放一周,如果立即放在冷库中保存则可适当延长保鲜时间(保鲜期延长最多不超过120天).另外冷藏保鲜时每天仍有一定数量的葡萄变质,保鲜期内的葡萄因水分流失损失的质量可忽略不计.现有一位个体户,按市场价10元/千克收购了这种葡萄2000千克放在冷库室内保鲜,据测算,伺候每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有10千克葡萄变质丢弃.(1)存放x天后将这批葡萄一次性出售,设这批葡萄的销售金额为y元,写出y关于x的函数关系式,并说明销售金额y随存放天数x的变化情况;(2)考虑资金周转因式,该个体户决定在两个月(每月以30天计算)内将这批葡萄一次性出售,问该个体户将这批葡萄存放多少天后出售,可获得最大利润?最大利润时多少元?【考点】二次函数的应用.【分析】(1)销售总金额=x天后的市场价×可售葡萄的总质量;(2)最大利润为:销售总金额﹣x天的总费用﹣成本,进而求得最值即可.【解答】解:(1)根据题意得:y=(2000﹣10x)(0.2x+10),即y=﹣2x2+300x+20000,配方得:y=﹣2(x﹣75)2+31250,(0≤x≤120),则当0≤x<75时,y随x的增大而增大;(2)设将这批葡萄存放x天后出售可获得利润为W,根据题意得:W=(﹣2x2+300x+20000)﹣10×2000﹣20x,即W=﹣2x2+280x,配方得:W=﹣2(x﹣70)2+9800,(0≤x≤60),∵a=﹣2<0,=9600元,∴当0≤x≤60时,W随x的增大而增大,∴当x=60时,W最大∴将这批葡萄存放60天后出售,可获得最大利润,最大利润是9600元.【点评】考查二次函数的应用;理解销售总金额的意义,得到销售总金额的等量关系是解决本题的关键.八、本题满分14分23. 定义:如图1,点M、N把线段AB分割成AM,MN和BN三段,若以AM、MN、BN为边的三角形是一个直接三角形,则称点M、N是线段AB的勾股分割点.。
2017年安徽省合肥市中考数学二模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.﹣2的相反数是()A.2 B.1 C.D.﹣2.如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么这个立体图形不可能是()A.B. C. D.3.下列计算正确的是()A.4x2+2x2=6x4B.(x﹣y)2=x2﹣y2C.(x3)2=x5D.x2•x2=x44.2016年2月初,合肥市教育考试院召开新闻发布会,公布了合肥市市区参加2016年中考的学生约为27600人,与去年相比增加300多人,用科学记数法表示“27600”正确的()A.2.76×103B.2.76×104C.2.76×105D.0.276×1055.如图,已知AB∥DE,∠ABC=65°,∠CDE=138°,则∠C的值为()A.21°B.23°C.25°D.30°6.“国庆黄金周”期间,小东和爸爸、妈妈外出旅游,一家三人随机站在一排拍照纪念,小东恰好站在中间的概率是()A.B.C.D.7.甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?设快车的速度为x千米/时,则下列方程正确的是()A.B.=40C.D.8.如图所示,△ABC是等边三角形,点D为AB上一点,现将△ABC沿EF折叠,使得顶点A与D点重合,且FD⊥BC,则的值等于()A.B.C.D.9.如图,原有一大长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若原来该大长方形的周长是120,则分割后不用测量就能知道周长的图形标号为()A.①②B.②③C.①③D.①②③10.一元二次方程m1x2+x+1=0的两根分别为x1,x2,一元二次方程m2x2+x+1=0的两根为x3,x4,若x1<x3<x4<x2<0,则m1,m2的大小关系为()A.0>m1>m2B.0>m2>m1C.m2>m1>0 D.m1>m2>0二、填空题(本大题共4小题,每小题5分,满分20分)11.化简:﹣=.12.若函数y=,则当函数值y=15时,自变量x的值是.13.观察下列图形规律:当n=时,图形“△”的个数是“●”的个数的2倍.14.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.,则下列结论正确的是(将正确的结论填在横线上).=s△ODB,②BD=4AD,③连接MD,S△ODM=2S△OCE,④连接ED,则△BED∽①s△OEB△BCA.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:,其中a=﹣2.16.求不等式x﹣1>3x的解集,并判断x=﹣是否为此不等式的解.四、(本大题共2小题,每小题8分,满分16分)17.现有一个“Z”型的工件(工件厚度忽略不计),如图示,其中AB为20cm,BC 为60cm,∠ABC=90°,∠BCD=50°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)18.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;(2)以O点为位似中心,将△AEF作位似变换且缩小为原来的,在网格内画出一个符合条件的△A1E1F1.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣,3 ),AB=2,AD=3.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=(x>0)的图象上,得矩形A'B'C'D'.求矩形ABCD的平移距离m和反比例函数的解析式.20.如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=,求⊙O的半径.六、(本题满分12分)21.某省是劳务输出大省,农民外出务工增长家庭收入的同时,也一定程度影响了子女的管理和教育,缺少管理和教育的留守儿童的学习和心理健康状况等问题日趋显现,成为社会关注的焦点.该省相关部门就留守儿童学习和心理健康状况等问题进行调查,本次抽样调查了该省某县部分留守儿童,将调查出现的情况分四类,即A类:基本情况正常;B类;有轻度问题;C类:有较为严重问题;D 类:有特别严重问题.通过调查,得到下面两幅不完整的统计图,请根据图中的信息解决下面的问题.(1)在这次随机抽样调查中,共抽查了多少名学生留守儿童?(2)扇形统计图中C类所占的圆心角是°;这次调查中为D类的留守儿童有人;(3)请你估计该县20000名留守儿童中,出现较为严重问题及以上的人数.七、(本题满分12分)22.某企业生成一种节能产品,投放市场供不应求.若该企业每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于120万元.已知这种产品的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=190﹣2x.月产量x(套)与生成总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2(2)与x之间的函数关系式;(3)求月产量x的取值范围;(4)当月产量x(套)为多少时,这种产品的利润W(万元)最大?最大利润是多少?八、(本题满分14分)23.如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD.我们称该四边形为“可分四边形”,∠DAB称为“可分角”.(1)如图2,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;(2)如图3,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则求∠DAB的度数;(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,则△DAB 的最大面积等于.2017年安徽省合肥市中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.﹣2的相反数是()A.2 B.1 C.D.﹣【考点】相反数.【分析】依据相反数的定义解答即可.【解答】解:﹣2的相反数是2.故选:A.2.如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么这个立体图形不可能是()A.B. C. D.【考点】由三视图判断几何体.【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【解答】解:A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,2,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.3.下列计算正确的是()A.4x2+2x2=6x4B.(x﹣y)2=x2﹣y2C.(x3)2=x5D.x2•x2=x4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【分析】结合幂的乘方与积的乘方、同底数幂的乘法的概念和运算法则进行求解即可.【解答】解:A、4x2+2x2=6x2≠6x4,计算错误,本选项错误;B、(x﹣y)2=x2+y2﹣2xy≠x2﹣y2,计算错误,本选项错误;C、(x3)2=x6≠x5,计算错误,本选项错误;D、x2•x2=x4,计算正确,本选项正确.故选D.4.2016年2月初,合肥市教育考试院召开新闻发布会,公布了合肥市市区参加2016年中考的学生约为27600人,与去年相比增加300多人,用科学记数法表示“27600”正确的()A.2.76×103B.2.76×104C.2.76×105D.0.276×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:27600=2.76×104,故选:B.5.如图,已知AB∥DE,∠ABC=65°,∠CDE=138°,则∠C的值为()A.21°B.23°C.25°D.30°【考点】平行线的性质;三角形的外角性质.【分析】根据两直线平行,内错角相等以及三角形外角和定理即可解答.【解答】解:如图,反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=65°,∴∠CMD=180°﹣∠BMD=115°,又∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE﹣∠CMD=138°﹣115°=23°.故选:B.6.“国庆黄金周”期间,小东和爸爸、妈妈外出旅游,一家三人随机站在一排拍照纪念,小东恰好站在中间的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有6种等可能的结果数,再找出小东站在中间的结果数,然后根据概率公式求解.【解答】解:设小东和爸爸、妈妈分别为:甲、乙、丙,画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以小东在中间的概率=.故选:B.7.甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?设快车的速度为x千米/时,则下列方程正确的是()A.B.=40C.D.【考点】由实际问题抽象出分式方程.【分析】设快车的速度为x千米/时,根据快车比慢车早40分钟到达乙站,列方程求解.【解答】解:设快车的速度为x千米/时,可得:,故选C8.如图所示,△ABC是等边三角形,点D为AB上一点,现将△ABC沿EF折叠,使得顶点A与D点重合,且FD⊥BC,则的值等于()A.B.C.D.【考点】翻折变换(折叠问题);等边三角形的性质.【分析】过点E作EG⊥BC,由翻折性质知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,在Rt△DEG中表示出AE=DE=2EG=2x、DG=x,继而在Rt△BEG中求得BE==x、BG==x,即可得AB=BC=AE+BE=x、CD=BC﹣BD=x,从而得出AF=DF=CDtanC=(2﹣2)x,即可得出答案.【解答】解:如图,过点E作EG⊥BC于点G,由题意知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,∵FD⊥BC,∴∠FDC=90°,∴∠EDG=30°,则AE=DE=2EG=2x,DG==x,∴BE===x,BG===x,∴BC=AB=AE+BE=2x+x=x,∵CD=BC﹣BD=x﹣(x+x)=x,∴AF=DF=CDtanC=x•=(2﹣2)x,∴==,故选:D.9.如图,原有一大长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若原来该大长方形的周长是120,则分割后不用测量就能知道周长的图形标号为()A.①②B.②③C.①③D.①②③【考点】中心对称图形.【分析】首先设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,由于原来该大长方形的周长是120,得出2(a+2b+c)=120,a=b+d,b=c+d;然后分别判断出图形①、图形②的周长都等于原来大长方形的周长的,所以它们的周长不用测量就能知道,而图形③的周长不用测量无法知道,据此解答即可.【解答】解:如图,设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,∵原来该大长方形的周长是120,∴2(a+2b+c)=120.根据图示,可得,①﹣②,可得:a﹣b=b﹣c,∴2b=a+c,∴120=2(a+2b+c)=2×2(a+c)=4(a+c),或120=2(a+2b+c)=2×4b=8b,∴2(a+c)=60,4b=60,∵图形①的周长是2(a+c),图形②的周长是4b,∴图形①②的周长是定值,不用测量就能知道,图形③的周长不用测量无法知道.∴分割后不用测量就能知道周长的图形的标号为①②.故选:A.10.一元二次方程m1x2+x+1=0的两根分别为x1,x2,一元二次方程m2x2+x+1=0的两根为x3,x4,若x1<x3<x4<x2<0,则m1,m2的大小关系为()A.0>m1>m2B.0>m2>m1C.m2>m1>0 D.m1>m2>0【考点】根与系数的关系.【分析】设f(x)=m1x2+x+1,方程f(x)=0的两实根为x1,x2(x1<x2),x3,x4是一元二次方程m2x2+x+1=0的两根,所以由x1<x3<x4<x2成立,即x3,x4在两实根x1,x2之间,可由根的分布的相关知识将这一关系转化为不等式,得出m1与m2的关系.【解答】解:∵x1,x2是一元二次方程m1x2+x+1=0的两根,∴m1x12+x1+1=0,m1x22+x2+1=0,∴f(x3)=m1x32+x3+1,f(x4)=m1x42+x4+1,∵x3,x4是一元二次方程m2x2+x+1=0的两根,∴m2x32+x3+1=0,m2x42+x4+1=0,∴f(x3)=(m1﹣m2)x32,f(x4)=(m1﹣m2)x42,∵x1<x3<x4<x2<0,∴,∴,∴m2>m1>0.故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.12.若函数y=,则当函数值y=15时,自变量x的值是﹣2或5.【考点】函数值.【分析】将y=15代入函数解析式中,求出x值,此题得解.【解答】解:当y=x2+3=15,解得:x=﹣2或x=2(舍去);当y=3x=15,解得:x=5.故答案为:﹣2或5.13.观察下列图形规律:当n=11时,图形“△”的个数是“●”的个数的2倍.【考点】规律型:图形的变化类.【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n ;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n 个“△”的个数是;最后根据图形“△”的个数是“●”的个数的2倍,求出n 的值是多少即可.【解答】解:∵n=1时,“•”的个数是3=3×1; n=2时,“•”的个数是6=3×2; n=3时,“•”的个数是9=3×3; n=4时,“•”的个数是12=3×4; ∴第n 个图形中“•”的个数是3n ; 又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=; n=3时,“△”的个数是6=; n=4时,“△”的个数是10=;∴第n 个“△”的个数是;由3n=,解得n=11或n=0(舍去), 故答案为:11.14.如图,反比例函数y=(x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E .,则下列结论正确的是 ①④ (将正确的结论填在横线上).①s △OEB =s △ODB ,②BD=4AD ,③连接MD ,S △ODM =2S △OCE ,④连接ED ,则△BED ∽△BCA .【考点】反比例函数综合题.【分析】①正确.由四边形ABCD 是矩形,推出S △OBC =S △OBA ,由点E 、点D 在反比例函数y=(x >0)的图象上,推出S △CEO =S △OAD =,即可推出S △OEB =S △OBD . ②错误.设点B (m ,n ),D (m ,n′)则M (m , n ,),由点M ,点D 在反比例函数y=(x >0)的图象上,可得m•n=m•n′,推出n′=n ,推出AD=AB ,推出BD=3AD ,故②错误.③错误.因为S △ODM =S △OBD ﹣S △BDM =•b•a ﹣•b•a=ab ,S △CEO =S △OAD =•a•b=ab ,所以S △ODM :S △OCE =ab : ab=3:2,故③错误.④正确.由==3,推出DE ∥AC ,推出△BED ∽△BCA .【解答】解:∵四边形ABCD 是矩形, ∴S △OBC =S △OBA ,∵点E 、点D 在反比例函数y=(x >0)的图象上, ∴S △CEO =S △OAD =,∴S △OEB =S △OBD ,故①正确,设点B (m ,n ),D (m ,n′)则M (m , n ,), ∵点M ,点D 在反比例函数y=(x >0)的图象上, ∴m•n=m•n′, ∴n′=n , ∴AD=AB ,∴BD=3AD ,故②错误,连接DM ,∵S △ODM =S △OBD ﹣S △BDM =•b•a ﹣•b•a=ab ,∵S △CEO =S △OAD =•a•b=ab , ∴S △ODM :S △OCE =ab : ab=3:2,故③错误,连接DE ,同法可证CE=BC , ∴BE=3EC , ∴==3,∴DE ∥AC ,∴△BED ∽△BCA ,故④正确. 故答案为①④三、(本大题共2小题,每小题8分,满分16分) 15.先化简,再求值:,其中a=﹣2.【考点】分式的化简求值.【分析】首先把括号内的分式进行通分相加,把除法转化为乘法,然后计算乘法即可化简,最后代入数值计算即可. 【解答】解:原式=•(1﹣a )(1+a )=1﹣a .当a=﹣2时,原式=1+2=3.16.求不等式x ﹣1>3x 的解集,并判断x=﹣是否为此不等式的解.【考点】不等式的解集.【分析】先解出不等式的解,再判断即可. 【解答】解:解不等式x ﹣1>3x ,可得:x<﹣2,所以x=﹣不是此不等式的解.四、(本大题共2小题,每小题8分,满分16分)17.现有一个“Z”型的工件(工件厚度忽略不计),如图示,其中AB为20cm,BC 为60cm,∠ABC=90°,∠BCD=50°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【考点】解直角三角形的应用.【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C=50°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ 的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【解答】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=50°,在△ABQ中,∵AQ==≈31.10,BQ=ABtanA=20tan50°≈23.84,∴CQ=BC﹣BQ=60﹣23.84=36.16,在△CPQ中,∵PQ=CQsinC=36.16sin50°≈27.70,∴AP=AQ+PQ=27.70+31.10≈58.8,答:工件如图摆放时的高度约为58.8cm.18.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;(2)以O点为位似中心,将△AEF作位似变换且缩小为原来的,在网格内画出一个符合条件的△A1E1F1.【考点】作图﹣位似变换;作图﹣旋转变换.【分析】(1)利用网格特点和旋转的性质,画出点O,B对应点E,F,从而得到△AEF,然后写出E、F的坐标;(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从而得到△A1E1F1.【解答】解:(1)如图,△AEF为所作,E(3,3),F(3,0);(2)如图,△A1E1F1为所作.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣,3 ),AB=2,AD=3.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=(x>0)的图象上,得矩形A'B'C'D'.求矩形ABCD的平移距离m和反比例函数的解析式.【考点】待定系数法求反比例函数解析式;矩形的性质;坐标与图形变化﹣平移.【分析】(1)由四边形ABCD是矩形,得到AB=CD=2,BC=AD=3,根据A(﹣,3 ),AD∥x轴,即可得到B(﹣,1),C(﹣,1),D(﹣,3);(2)根据平移的性质将矩形ABCD向右平移m个单位,得到A′(﹣+m,3),C(﹣+m,1),由点A′,C′在反比例函数y=(x>0)的图象上,得到方程3×(﹣+m)=1×(﹣+m),即可求得结果.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∵A(﹣,3 ),AD∥x轴,∴B(﹣,1),C(﹣,1),D(﹣,3);(2)∵将矩形ABCD向右平移m个单位,∴A′(﹣+m,3),C(﹣+m,1),∵点A′,C′在反比例函数y=(x>0)的图象上,∴3×(﹣+m)=1×(﹣+m),解得:m=6,∴B′(,1),∴k=×1=,∴矩形ABCD的平移距离m=6,反比例函数的解析式为:y=.20.如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=,求⊙O的半径.【考点】切线的性质;解直角三角形.【分析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平行线的性质和等腰三角形的性质证明;(2)连接CE,根据正切的定义和勾股定理求出AD,根据正切的定义计算即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴OD⊥BC,又∠C=90°,∴OD∥AC,∴∠ODA=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠CAD,即AD平分∠BAC;(2)解:连接CE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠CAD,tan∠DAC=,∴tan∠EAD=,∵tan∠DAC=,AC=8,∴CD=6,由勾股定理得,AD==10,∴=,解得,DE=,∴AE==,∴⊙O的半径为.六、(本题满分12分)21.某省是劳务输出大省,农民外出务工增长家庭收入的同时,也一定程度影响了子女的管理和教育,缺少管理和教育的留守儿童的学习和心理健康状况等问题日趋显现,成为社会关注的焦点.该省相关部门就留守儿童学习和心理健康状况等问题进行调查,本次抽样调查了该省某县部分留守儿童,将调查出现的情况分四类,即A类:基本情况正常;B类;有轻度问题;C类:有较为严重问题;D 类:有特别严重问题.通过调查,得到下面两幅不完整的统计图,请根据图中的信息解决下面的问题.(1)在这次随机抽样调查中,共抽查了多少名学生留守儿童?(2)扇形统计图中C类所占的圆心角是144°;这次调查中为D类的留守儿童有20人;(3)请你估计该县20000名留守儿童中,出现较为严重问题及以上的人数.【考点】条形统计图;全面调查与抽样调查;用样本估计总体;扇形统计图.【分析】(1)根据A类人数是10,所占的百分比是10%,据此即可求得总人数;(2)利用360°乘以对应的百分比即可求得C类圆心角的度数;利用总人数乘以对应的百分比求得D类的人数;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)抽查的人数是10÷10%=100(人);(2)C类所占的圆心角是360°×=144°,D类的留守儿童人数所占的百分比是:=40%,则D类的人数是100×(1﹣10%﹣30%﹣40%)=20(人),故答案是:144;20;(3)出现较为严重问题及以上的人数是:20000×(40%+20%)=12000.七、(本题满分12分)22.某企业生成一种节能产品,投放市场供不应求.若该企业每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于120万元.已知这种产品的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=190﹣2x.月产量x(套)与生成总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2(2)与x之间的函数关系式;(3)求月产量x的取值范围;(4)当月产量x(套)为多少时,这种产品的利润W(万元)最大?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题意可以设出y2与x之间的函数关系式,然后根据图象中的数据即可求得函数的解析式;(2)根据题意可以列出相应的不等式组,从而可以求得x的取值范围;(3)根据题意可以得到W与x函数关系式,然后化为顶点式,再根据x的取值范围,即可求得W的最大值.【解答】解:(1)设y2与x的函数关系式为y2=kx+b,,得,∴y2与x之间的函数关系式是y2=30x+500;(2)由题意可得,,解得,25≤x≤35,即月产量x的取值范围是25≤x≤35;(3)由题意可得,W=x[190﹣2x﹣]=﹣2(x﹣40)2+2700,∵25≤x≤35,∴x=35时,W取得最大值,此时W=2650,即当月产量x(套)为35套时,这种产品的利润W(万元)最大,最大利润是2650万元.八、(本题满分14分)23.如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD.我们称该四边形为“可分四边形”,∠DAB称为“可分角”.(1)如图2,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;(2)如图3,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则求∠DAB的度数;(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,则△DAB 的最大面积等于8.【考点】相似形综合题.【分析】(1)由已知得出∠DAC=∠CAB=30°,由三角形内角和定理得出∠D+∠ACD=150°,由∠BCD=∠ACD+∠ACB=150°,得出∠D=∠ACB,证明△ADC∽△ACB.得出对应边成比例,得出AC2=AB•AD,即可得出结论;(2)由已知条件可证得△ADC∽△ACB,得出D=∠ACB,再由已知条件和三角形内角和定理得出∠DAC+2∠DAC=180°,求出∠DA=60°,即可得出∠DAB的度数;(3)根据“可分四边形”的定义求出AB•AD,计算即可.【解答】(1)证明:∵∠DAB=60°,AC平分∠DAB,∴∠DAC=∠CAB=30°,∴∠D+∠ACD=180°﹣30°=150°,∵∠BCD=∠ACD+∠ACB=150°,∴∠D=∠ACB,∴△ADC∽△ACB.∴AD:AC=AC:AB,∴AC2=AB•AD,∴四边形ABCD为“可分四边形”;(2)解:∵AC平分∠DAB,∴∠DAC=∠BAC,∵AC2=AB•AD,∴AD:AC=AC:AB,∴△ADC∽△ACB,∴∠D=∠ACB,∵∠DCB=∠DAB,∴∠DCB=∠DCA+∠ACB=2∠DAC,∵∠DAC+∠D+∠ACB=180°,∴∠DAC+2∠DAC=180°,解得:∠DAC=60°,∴∠DAB=120°;(3)∵四边形ABCD为“可分四边形”,AC=4,∴AB•AD=AC2=16,当DA⊥DB时,△DAB的最大,最大面积为8,故答案为:8.2017年3月29日7、我们各种习气中再没有一种象克服骄傲那麽难的了。
2017年九年级数学中考模拟试卷一、选择题:1.如果两个数的和是负数,那么这两个数()A.同是正数B.同为负数C.至少有一个为正数D.至少有一个为负数2.计算(﹣3x)(2x2﹣5x﹣1)的结果是()A.﹣6x2﹣15x2﹣3xB.﹣6x3+15x2+3xC.﹣6x3+15x2D.﹣6x3+15x2﹣13.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106 B.3×105 C.0.3×106 D.30×1044.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()5.下列分式中,最简分式有()A.2个B.3个C.4个D.5个6.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值是()A.﹣1B.1C.﹣5D.157.下列调查中,调查方式的选取不合适的是()A.为了了解全班同学的睡眠状况,采用普查的方式B.对“天宫二号”空间实验室零部件的检查,采用抽样调查的方式C.为了解一批 LED 节能灯的使用寿命,采用抽样调查的方式D.为了解全市初中生每天完成作业所需的时间,采取抽样调查的方式8.如图,若A、B、C、P、Q、甲、乙、丙、丁都是方格纸的格点,为使△ABC∽△PQR,则点R应是甲、乙、丙、丁4点中的( )A.甲B.乙C.丙D.丁9.函数y=x+x-1的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.当x>0时,该函数在x=1时取得最小值2C.在每个象限内,y的值随x值的增大而减小D.y的值不可能为110.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A. B. C. D.1二、填空题:11.已知关于x,y的方程组的解为正数,则 .12.把多项式4x2y﹣4xy2﹣x3分解因式的结果是13.扇形的圆心角为120°,弧长为6πcm,那么这个扇形的面积为 cm2.14.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移动,点Q从点C出发,以1cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t= 时,△CPQ与△CBA相似.三、计算题:15.计算:16.解方程:x2+x﹣2=0.四 、解答题:17.如图,在平面直角坐标系xOy 中,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)求出△ABC 的面积.(2)在图中作出△ABC 关于y 轴的对称图形△A 1B 1C 1.(3)写出点A 1,B 1,C 1的坐标.18.已知函数y=0.5x 2+x ﹣2.5.请用配方法写出这个函数的对称轴和顶点坐标.19.如图,直升飞机在资江大桥AB 的上方P 点处,此时飞机离地面的高度PO=450米,且A 、B 、O 三点在一条直线上,测得大桥两端的俯角分别为α=30°,β=45°,求大桥的长AB .20.如图,点P(+1,﹣1)在双曲线y=kx-1(x>0)上.(1)求k的值;(2)若正方形ABCD的顶点C,D在双曲线y=kx-1(x>0)上,顶点A,B分别在x轴和y轴的正半轴上,求点C的坐标.21.八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:(1)扇形图中跳绳部分的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是.(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.五、综合题:22.如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).(1)求抛物线的函数表达式;(2)当0<x<3时,求线段CD的最大值;(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;(4)过点B,C,P的外接圆恰好经过点A时,x的值为.(直接写出答案)23.如图①,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与点A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F、D.(1)问题发现:直接写出∠NDE= 度;(2)拓展探究:试判断,如图②当∠EAC为钝角时,其他条件不变,∠NDE的大小有无变化?请给出证明.(3)如图③,若∠EAC=15°,BD=,直线CM与AB交于点G,其他条件不变,请直接写出AC的长.参考答案1.D2.B3.B4.D5.C.6.A7.B8.C9.D10.B.11.答案为:7;12.答案为:﹣x(x﹣2y)213.答案为:6π×9÷2=27πcm2.14.答案为4.8或.15.解:原式.16.【解答】解:分解因式得:(x﹣1)(x+2)=0,可得x﹣1=0或x+2=0,解得:x1=1,x2=﹣2.17.解:(1)S△ABC=0.5×5×3=7.5(平方单位).(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).18.【解答】解:y=x2+x﹣,=(x2+2x+1)﹣﹣,=(x+1)2﹣3,19.,,,,20.21.【解答】解:(1)扇形图中跳绳部分的扇形圆心角为360°×(1﹣50%﹣20%﹣10%﹣10%)=36度;该班共有学生(2+5+7+4+1+1)÷50%=40人;训练后篮球定时定点投篮平均每个人的进球数是=5,故答案为:36,40,5.(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)的结果有6种,∴P(M)==.22.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),∴﹣9+3b+c=0,c=3,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(3,0),B(0,3),∴直线AB解析式为y=﹣x+3,∵P(x,0).∴D(x,﹣x+3),C(x,﹣x2+2x+3),∵0<x<3,∴CD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x=﹣(x﹣)2+,当x=时,CD最大=;(3)由(2)知,CD=|﹣x2+3x|,DP=|﹣x+3|①当S△PDB=2S△CDB时,∴PD=2CD,即:2|﹣x2+3x|=|﹣x+3|,∴x=±或x=3(舍),②当2S△PDB=S△CDB时,∴2PD=CD,即:|﹣x2+3x|=2|﹣x+3|,∴x=±2或x=3(舍),即:综上所述,x=±或x=±2;(4)直线AB解析式为y=﹣x+3,∴线段AB的垂直平分线l的解析式为y=x,∵过点B,C,P的外接圆恰好经过点A,∴过点B,C,P的外接圆的圆心既是线段AB的垂直平分线上,也在线段PC的垂直平分线上,∴,∴x=±,故答案为:23.。
2017年九年级数学中考模拟试卷一、选择题:1.计算(﹣3)﹣(﹣5)的结果等于()A.﹣2B.2C.﹣8D.152.下列运算正确的是()A.3a2+5a2=8a4B.a6•a2=a12C.(a+b)2=a2+b2D.(a2+1)0=13.计算:,,,,,归纳各计算结果中的个位数字规律,猜测的个位数字是()A.1 B.3 C.7 D.54.如图,1,2,3,4,T是五个完全相同的正方体,将两部分构成一个新的几何体得到其正视图,则应将几何体T 放在()A.几何体1的上方B.几何体2的左方C.几何体3的上方D.几何体4的上方5.化简的结果是( )6.下列各题去括号错误的是()A.x-(3y-0.5)=x-3y+0.5B.m+(-n+a﹣b)=m-n+a﹣bC.﹣0.5(4x-6y+3)=-2x+3y+3D.(a+0.5b)-(-c+)=a+0.5b+c﹣7.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时8.如果x:(x+y)=3:5,那么x:y=( )A.t≥-1B.-1≤t<3C.3<t<8D.-1≤t<810.在半径为6cm的圆中,长为6cm的弦所对的圆周角...的度数为()A.30°B.60°C.30°或150°D.60°或120°二、填空题:11.如图的天平中各正方体的质量相同,各小球质量相同,第一架天平是平衡的,若使第二架天平平衡,则下面天平右端托盘上正方体的个数为.12.因式分解:m(x﹣y)+n(x﹣y)= .13.圆内接正六边形的边心距为2,则这个正六边形的面积为 cm2.14.如图,在▱ABCD中,AE⊥BC,垂足为E,AB=5,BC=8,sinB=0.8,那么S△CDE= .三、计算题:15.计算:.16.用适当的方法解方程:x2=2x+35.四、解答题:17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△AB1C1的各顶点坐标,并画出△ABC关于y对称的1△A2B2C2.并求△ABC的面积。
安徽省合肥市蜀山区中考数学二模试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)如图,在数轴上点A所表示的数的绝对值为()A.1 B.﹣1 C.0 D.2【解答】解:由数轴可得,点A表示的数是﹣1,∵|﹣1|=1,∴数轴上点A所表示的数的绝对值为1.故选:A.2.(4分)下列计算正确的是()A.a3+a3=2a6B.(﹣a2)3=a6C.a6÷a2=a3D.a5•a3=a8【解答】解:A、a3+a3=2a3,故原题计算错误;B、(﹣a2)3=﹣a6,故原题计算错误;C、a6÷a2=a4,故原题计算错误;D、a5•a3=a8,故原题计算正确;故选:D.3.(4分)安徽电网今年来新能源装机发展迅速,截止2018年3月,全省新能源总装机达1190万千瓦,那么1190万用科学记数法可表示为()A.1190×104B.11.9×106C.1.19×107D.1.190×108【解答】解:数字1190万用科学记数法可简洁表示为:1.19×107.故选:C.4.(4分)一元一次不等式2(1+x)>1+3x的解集在数轴上表示为()A. B.C.D.【解答】解:2(1+x)>1+3x,2+2x>1+3x,2x﹣3x>1﹣2,﹣x>﹣1,x<1,在数轴上表示为:,故选:B.5.(4分)下列几何体的左视图既是中心对称又是轴对称图形的是()A.B.C. D.【解答】解:A、左视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;B、左视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;C、左视图是等腰梯形,是轴对称图形,不是中心对称图形,故错误;D、左视图是矩形,是轴对称图形,也是中心对称图形,故正确.故选:D.6.(4分)如图,平行四边形ABCD中,∠ABC的角平分线交边CD于点E,∠A=130°,则∠BEC 的度数是()A.20°B.25°C.30°D.50°【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∠C=∠A=130°,∴∠ABE=∠CEB,∵∠ABE=∠CBE,∴∠BEC=∠CBE,∴∠BEC=(180°﹣130°)=25°,故选:B.7.(4分)为了解班级学生参加体育锻炼的情况,现将九年级(1)班同学一周的体育锻炼情况绘制如图所示的统计图,那么,关于该班同学一周参加体育锻炼时间的说法错误的是()A.中位数是8小时B.众数是8小时C.平均数是8.5小时D.锻炼时间超过8小时的有20人【解答】解:A、中位数是=8小时,此选项正确;B、众数是8小时,此选项正确;C、平均数为=8.3小时,此选项错误;D、锻炼时间超过8小时的有15+5=20人,此选项正确;故选:C.8.(4分)如图,点E是矩形ABCD边AD上的一个动点,且与点A、点D不重合,连结BE、CE,过点B作BF∥CE,过点C作CF∥BE,交点为F点,连接AF、DF分别交BC于点G、H,则下列结论错误的是()A .GH=BCB .S △BGF +S △CHF =S △BCFC .S 四边形BFCE =AB •ADD .当点E 为AD 中点时,四边形BECF 为菱形 【解答】解:连接EF 交BC 于O .∵BF ∥CE ,CF ∥BE ,∴四边形BECF 是平行四边形, ∴EO=OF , ∵GH ∥AD , ∴AG=GF ,HD=FH ,∴GH=AD ,故选项A 正确, ∵BG+CH=GH ,∴S △BGF +S △CHF =S △BCF 故选项B 错误,∵S 四边形BFCE =2S △EBC =2××BC ×AB=BC ×ABAB •AD ,故选项C 正确, ∵当点E 为AD 中点时,易证EB=EC ,所以四边形BECF 为菱形, 故选:B .9.(4分)观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是( ) A .1008+1009+…+3025=20162 B .1009+1010+…+3026=20172 C .1009+1010+…+3027=20182 D .1010+1011+…+3029=20192【解答】解:由题意可得, 1008+1009+…+3025=()2+3025=20162+3025,故选项A 错误, 1009+1010+…+3026=()2+3026=20172+3026,故选项B 错误,1009+1010+…+3027=()2=20182,故选项C正确,1010+1011+…+3029=()2+3029=20192+3029故选项D错误,故选:C.10.(4分)如图,在平面直角坐标系中,抛物线y=﹣x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为()A. B. C.3 D.2【解答】解:连接AO、AB,PB,作PH⊥OA于H,BC⊥AO于C,如图,当y=0时,﹣x2+2x=0,解得x1=0,x2=2,则B(2,0),y=﹣x2+2x=﹣(x﹣)2+3,则A(,3),∴OA==2,而AB=AO=2,∴AB=AO=OB,∴△AOB为等边三角形,∴∠OAP=30°,∴PH=AP,∵AP垂直平分OB,∴PO=PB,∴OP+AP=PB+PH,当H、P、B共线时,PB+PH的值最小,最小值为BC的长,而BC=AB=×2=3,∴OP+AP的最小值为3.故选:C.二、填空题(共4小题,每小题5分,满分20分)11.(5分)分解因式:m2n﹣2mn+n= n(m﹣1)2.【解答】解:原式=n(m2﹣2m+1)=n(m﹣1)2.故答案为:n(m﹣1)212.(5分)《九章算术》有个题目,大意是:“五只雀、六只燕,共重16两,雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量分别为x两,y两,可得方程组是.【解答】解:设每只雀、燕的重量分别为x两,y两,由题意得:,故答案为:.13.(5分)关于x的一元二次方程ax2﹣x﹣=0有实数根,则a的取值范围为a≥﹣1且a ≠0 .【解答】解:根据题意得a≠0且△=(﹣1)2﹣4a•(﹣)≥0,解得a≥﹣1且a≠0;故答案为a≥﹣1且a≠0.14.(5分)如图,已知点A(0,4),B(8,0),C(8,4),连接AC,BC得到四边形AOBC,点D在边AC上,连接OD,将边OA沿OD折叠,点A的对应点为点P,若点P到四边形AOBC 较长两边的距离之比为1:3,则点P的坐标为(,3)或(,1)或(2,﹣2)【解答】解∵点A(0,4),B(8,0),C(8,4),∴BC=OA=4,OB=AC=8,分两种情况:(1)当点P在矩形AOBC的内部时,过P作OB的垂线交OB于F,交AC于E,如图1所示:①当PE:PF=1:3时,∵PE+PF=BC=4,∴PE=1,PF=3,由折叠的性质得:OP=OA=4,在Rt△OPF中,由勾股定理得:OF===,∴P(,3);②当PE:PF=3:1时,同理得:P(,1);(2)当点P在矩形AOBC的外部时,此时点P在第四象限,过P作OB的垂线交OB于F,交AC 于E,如图2所示:∵PF:PE=1:3,则PF:EF=1:2,∴PF=EF=BC=2,由折叠的性质得:OP=OA=4,在Rt△OA'F中,由勾股定理得:OF==2,∴P(2,﹣2);综上所述,点P的坐标为(,3)或(,1)或(2,﹣2);故答案为:(,3)或(,1)或(2,﹣2).(对一个得(1分),对两个得(3分),有错误答案不得分)三、解答题(共9小题,满分90分)15.(8分)先化简:()÷,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值.【解答】解:原式=•=•=,∵由题意,x不能取1,﹣1,﹣2,∴x取0,当x=0时,原式===1.16.(8分)“低碳环保,绿色出行”,自行车逐渐成为人们喜爱的交通工具.某品牌共享自行车在某区域的投放量自2018年逐月增加,据统计,该品牌共享自行车1月份投放了1600辆,3月份投放了2500辆.若该品牌共享自行车前4个月的投放量的月平均增长率相同,求4月份投放了多少辆?【解答】解:设月平均增长率为x,根据题意得1600(1+x)2=2500,解得:x 1=0.25=25%,x 2=﹣2.25(不合题意,舍去), ∴月平均增长率为25%,∴4月份投放了2500(1+x )=2500×(1+25%)=3125. 答:4月份投放了3125辆.17.(8分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点都在格点上. (1)在所给的网格中画出与△ABC 相似(相似比不为1)的△A 1B 1C 1(画出一个即可); (2)在所给的网格中,将△ABC 绕点C 顺时针旋转90°得到△A 2B 2C ,画出△A 2B 2C ,并直接写出在此旋转过程中点A 经过的路径长.【解答】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C ,即为所求, 点A 经过的路径长为:=π.18.(8分)如图,一艘轮船以每小时40海里的速度在海面上航行,当该轮船行驶到B 处时,发现灯塔C 在它的东北方向,轮船继续向北航行,30分钟后到达A 处,此时发现灯塔C 在它的北偏东75°方向上,求此时轮船与灯塔C 的距离.(结果保留根号)【解答】解:过点A作AD⊥BC于点D.由题意,AB=×40=20(海里)∵∠PAC=∠B+∠C,∴∠C=∠PAC﹣∠B=75°﹣45°=30°,在Rt△ABD中,sinB=,∴AD=AB•sinB=20×=10(海里),在Rt△ACD中,∵∠C=30°,∴AC=2AD=20(海里),答:此时轮船与灯塔C的距离为20海里.19.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(2,3),B(6,n)两点.(1)分别求出一次函数与反比例函数的解析式;(2)求△OAB的面积.【解答】解:(1)∵反比例函数y2=的图象过A(2,3),B(6,n)两点,∴m=2×3=6n.∴m=6,n=1,∴反比例函数的解析式为y=,B的坐标是(6,1).把A(2,3)、B(6,1)代入y1=kx+b.得:,解得,∴一次函数的解析式为y=﹣x+4.(2)如图,设直线y=﹣x+4与x轴交于C,则C(8,0).S△AOB =S△AOC﹣S△BOC=×8×3﹣×8×1=12﹣4=8.20.(10分)为进一步促进“美丽校园”创建工作,某校团委计划对八年级五个班的文化建设进行检查,每天随机抽查一个班级,第一天从五个班级随机抽取一个进行检查,第二天从剩余的四个班级再随机抽取一个进行检查,第三天从剩余的三个班级再随机抽取一个进行检查…,以此类推,直到检查完五个班级为止,且每个班级被选中的机会均等(1)第一天,八(1)班没有被选中的概率是;(2)利用网状图或列表的方法,求前两天八(1)班被选中的概率【解答】解:(1)第一天,八(1)班没有被选中的概率是.故答案为.(2)由树状图可知,一共有20种可能,八(1)班被选中的可能有8种可能,∴前两天八(1)班被选中的概率为=.21.(12分)如图,BC为⊙O的直径,点D在⊙O上,连结BD、CD,过点D的切线AE与CB的延长线交于点A,∠BCD=∠AEO,OE与CD交于点F.(1)求证:OF∥BD;(2)当⊙O的半径为10,sin∠ADB=时,求EF的长.【解答】(1)证明:连接OD,如图,∵AE与ʘO相切,∴OD⊥AE,∴∠ADB+∠ODB=90°,∵BC为直径,∴∠BDC=90°,即∠ODB+∠ODC=90°,∴∠ADB=∠ODC,∵OC=OD,∴∠ODC=∠C,而∠BCD=∠AEO,∴∠ADB=∠AEO,∴BD∥OF;(2)解:由(1)知,∠ADB=∠E=∠BCD,∴sin∠C=sin∠E=sin∠ADB=,在Rt△BCD中,sin∠C==,∴BD=×20=8,∵OF∥BD,∴OF=BD=4,在Rt△EOD中,sin∠E==,∴OE=25∴EF=OE﹣OF=25﹣4=21.22.(12分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、C两点,点A在点C的右边,与y轴交于点B,点B的坐标为(0,﹣3),且OB=OC,点D为该二次函数图象的顶点.(1)求这个二次函数的解析式及顶点D的坐标;(2)如图,若点P为该二次函数的对称轴上的一点,连接PC、PO,使得∠CPO=90°,请求出所有符合题意的点P的坐标;(3)在对称轴上是否存在一点P,使得∠OPC为钝角,若存在,请直接写出点P的纵坐标为y的取值范围,若没有,请说明理由.p【解答】解:(1)∵B(0,﹣3),∴OB=3,∵OB=OC,∴OC=3,∴C(0,﹣3),∴,∴,∴二次函数的解析式为y=x2+2x﹣3=﹣(x﹣1)2﹣4,∴D(﹣1,﹣4);(2)如图,过点P作PQ⊥x轴于点Q,设P(﹣1,p),∵∠COP+∠OPQ=90°,∠CPQ+∠OPQ=90°,∴∠COP=∠CPQ,∴tan∠COP=tan∠CPQ,在Rt△QOP中,tan∠COP=,在Rt△CPQ中,tan∠CPQ=,∴,∴PQ2=CQ×OQ=2(此处可以用射影定理,也可以判断出△CPQ∽△POQ),∵PQ>0,∴PQ=,∴p=或p=﹣,∴P(﹣1,)或(﹣1,﹣);(3)存在这样的点P,=时,理由:如图,由(2)知,yP∠OPC=90°,∵y=0时,∠OPC是平角,P≠0时,∠OPC是钝角.∴当﹣<yP<且yP23.(14分)如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.①求证:△ABE∽△ACD;②计算:BD2+CE2的值.【解答】解:(1)结论:BE=CD,BE⊥CD;理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.∵∠CAB=∠EAD=90°∴∠CAD=∠BAE.在△CAD和△BAE中,,∴△CAD≌△BAE.∴CD=BE,∠ACD=∠ABE.∵∠BFA=∠CFG,∠BFA+∠ABF=90°,∴∠CFG+∠ACD=90°.∴∠CGF=90°.∴BE⊥CD.(2)①证明:设AE与CD于点F,BE与DC的延长线交于点G,如图3.∵∠CABB=∠EAD=90°∴∠CAD=∠BAE.∵CA=3,AB=5,AD=6,AE=10,∴==2,∴△BAE∽△CAD,②∵△BAE∽△CAD,∴∠AEB=∠CDA,∵∠AFD=∠EFG,∠AFD+∠CDA=90°,∴∠EFG+∠AEB=90°,∴∠DGE=90°.∴DG⊥BE.∴∠AGD=∠BGD=90°.∴CE2=CG2+EG2,BD2=BG2+DG2.∴BD2+CE2=CG2+EG2+BG2+DG2.∵CG2+BG2=CB2,EG2+DG2=ED2,∴BD2+CE2=CB2+ED2=CA2+AB2+AD2+AD2=170.。
2017年安徽省六区中考数学二模试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)2017的相反数是()A.B.﹣C.﹣2017D.20172.(4分)下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a5 3.(4分)2016年11月10日,记者从民政部召开的会议了解到,目前全国农村留守儿童数量为902万人,“902万”用科学记数法表示为()A.9.02×102B.9.02×105C.9.02×106D.9.02×104 4.(4分)下面几何体的俯视图是()A.B.C.D.5.(4分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°6.(4分)若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?()A.16,17B.17,18C.18,19D.19,207.(4分)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁8.(4分)某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.9.(4分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣110.(4分)如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(5分)因式分解:2mx2﹣4mxy+2my2=.12.(5分)分式方程=的解是.13.(5分)观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=.14.(5分)已知四边形ABCD为矩形,延长CB到E,使CE=CA,连接AE,F为AE的中点,连接BF、DF,DF交AB于点G,下列结论:①BF⊥GF;②S△BDG=S△ADF;③EF2=FG•FD;④.其中正确的序号是.三、解答题(共9小题,满分90分)15.(8分)计算:(2﹣π)0+﹣()﹣1﹣|tan45°﹣3|.16.(8分)先化简,再求值:÷(1+),其中x=﹣1.17.(8分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.18.(8分)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)19.(10分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.20.(10分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.21.(12分)如图,已知一次函数y=x+b与反比例函数y=的图象交于A、B两点,其中点A的坐标为(2,3).(1)求一次函数与反比例函数的解析式;(2)求点B的坐标;(3)请根据图象直接写出不等式x+b>的解集.22.(12分)有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?23.(14分)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:F A=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.2017年安徽省六区中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)2017的相反数是()A.B.﹣C.﹣2017D.2017【解答】解:2017的相反数是﹣2017.故选:C.2.(4分)下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a5【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a5÷a3=a2,正确;D、(a2)3=a6,故此选项错误;故选:C.3.(4分)2016年11月10日,记者从民政部召开的会议了解到,目前全国农村留守儿童数量为902万人,“902万”用科学记数法表示为()A.9.02×102B.9.02×105C.9.02×106D.9.02×104【解答】解:将902万用科学记数法表示为:9.02×106.故选:C.4.(4分)下面几何体的俯视图是()A.B.C.D.【解答】解:图中几何体的俯视图是B在的图形,故选:B.5.(4分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°【解答】解:∵AB∥CD,∠1=40°,∠2=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选:A.6.(4分)若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?()A.16,17B.17,18C.18,19D.19,20【解答】解:∵周长为x公分,∴边长为公分,∴()2=20,∴=20,∴x2=320,又∵172=289,182=324,∴172<320<182,即172<x2<182,又∵x为正整数,∴x介于17和18之间,故选:B.7.(4分)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁【解答】解:∵==9.7,S2甲>S2丙,∴选择丙.故选:C.8.(4分)某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.【解答】解:设买了x张甲种票,y张乙种票,根据题意可得:.故选:B.9.(4分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1【解答】解:A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ac>0所以b2>4ac,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选:C.10.(4分)如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.【解答】解:由题意可得,FE=GE,AB=FG=4,∠FEG=90°,则FE=GE=2,点E到FG的距离为2,当点E从开始到点E到边BC上的过程中,S==﹣t2+4t(0≤t≤2),当点E从BC边上到边FG与DC重合时,S=(2≤t≤4),当边FG与DC重合到点E到边DC的过程中,S==(6﹣t)2(4≤t≤6),由上可得,选项B中函数图象符合要求,故选:B.二、填空题(共4小题,每小题5分,满分20分)11.(5分)因式分解:2mx2﹣4mxy+2my2=2m(x﹣y)2.【解答】解:2mx2﹣4mxy+2my2,=2m(x2﹣2xy+y2),=2m(x﹣y)2.故答案为:2m(x﹣y)2.12.(5分)分式方程=的解是x=2.【解答】解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.13.(5分)观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=(n+2)2.【解答】解:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52∴1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=(n+2)2.故答案为:(n+2)2.14.(5分)已知四边形ABCD为矩形,延长CB到E,使CE=CA,连接AE,F为AE的中点,连接BF、DF,DF交AB于点G,下列结论:①BF⊥GF;②S△BDG=S△ADF;③EF2=FG•FD;④.其中正确的序号是①③④.【解答】解:如图,连接CF,设AC与BD的交点为点O,∵点F是AE中点,∴AF=EF,∵CE=CA,∴CF⊥AE,∵四边形ABCD是矩形,∴AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵点F是Rt△ABE斜边上的中点,∴AF=BF,∴∠BAF=∠FBA,∴∠F AC=∠FBD,在△BDF和△ACF中,,∴△BDF≌△ACF,∴∠BFD=∠AFC=90°,∴BF⊥DF,所以①正确;过点F作FH⊥AD交DA的延长线于点H,在Rt△AFH中,FH<AF,在Rt△BFG中,BG>BF,∵AF=BF,∴BG>FH,∵S△ADF=FH×AD,S△BDG=BG×AD,∴S△BDG>S△ADF,所以②错误;∵∠ABF+∠BGF=∠ADG+∠AGD=90°,∴∠ABF=∠ADG,∵∠BAF=∠FBA,∴∠BAF=∠ADG,∵∠AFG=∠DF A,∴△AFG∽△DF A,∴=,∴AF2=FG•FD,∵EF=AF,∴EF2=FG•FD,所以③正确;∵BF=EF,∴BF2=FG•FD,∴=,∵∠BFG=∠DFB,∴△BFG∽△DFB,∴∠ABF=∠BDF,∵由③知,∠ABF=∠ADF∴∠ADF=∠BDF,∴=(利用角平分线定理),∵BD=AC,AD=BC,∴,所以④正确,故答案为:①③④.三、解答题(共9小题,满分90分)15.(8分)计算:(2﹣π)0+﹣()﹣1﹣|tan45°﹣3|.【解答】解:原式=1+3﹣3﹣2=﹣1.16.(8分)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:=÷(+)=÷=×=,把,代入原式====.17.(8分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.【解答】(1)C1的坐标是(﹣4,﹣1);(2)C2的坐标是:(4,1);(3)C3的坐标是(﹣2,1).18.(8分)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)【解答】解:延长AE交CD于点G.设CG=xm,在直角△CGE中,∠CEG=45°,则EG=CG=xm.在直角△ACG中,AG==xm.∵AG﹣EG=AE,∴x﹣x=30,解得:x=15(+1)≈15×2.732≈40.98(m).则CD=40.98+1.5=42.48(m).答:这栋建筑物CD的高度约为42m.19.(10分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.【解答】(1)证明:∵∠AEC=∠DEB,∠ACE=∠DBE,∴△AEC∽△DEB.(2)解:设⊙O的半径为r,则CE=2r﹣2.∵CD⊥AB,AB=8,∴AE=BE=AB=4.∵△AEC∽△DEB,∴,即,解得:r=5.20.(10分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.【解答】解:(1)画树状图如下:由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好是1男1女的有2种可能,∴P(恰好是1男1女的)=.(2)画树状图如下:或由树状图可知,生育两胎共有8种等可能结果,这三个小孩中至少有1个女孩的有7种结果,∴P(这三个小孩中至少有1个女孩)=.21.(12分)如图,已知一次函数y=x+b与反比例函数y=的图象交于A、B两点,其中点A的坐标为(2,3).(1)求一次函数与反比例函数的解析式;(2)求点B的坐标;(3)请根据图象直接写出不等式x+b>的解集.【解答】解:(1)把点A的坐标(2,3)代入一次函数的解析式中,可得:3=2+b,解得:b=1,所以一次函数的解析式为:y=x+1;把点A的坐标(2,3)代入反比例函数的解析式中,可得:k=6,所以反比例函数的解析式为:y=;(2)把一次函数与反比例函数的解析式联立得出方程组,可得:,解得:x1=2,x2=﹣3,所以点B的坐标为(﹣3,﹣2);(3)∵A(2,3),B(﹣3,﹣2),∴使一次函数值大于反比例函数值的x的范围是:﹣3<x<0或x>2.22.(12分)有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?【解答】解:(1)把(4,1)代入y1=ax2中得:16a=1,a=,∴y1=x2,把(2,1)代入y2=kx中得:2k=1,k=,∴y2=x;(2)设种植桃树的投资成本x万元,总利润为W万元,则种植柏树的投资成本(10﹣x)万元,则W=y1+y2=x2+(10﹣x)=(x﹣4)2+4,由图象得:当2≤x≤8时,当x=4时,W有最小值,W小=4,当x=8时,W有最大值,W大=(8﹣4)2+4=5,答:苗圃至少获得4万元利润,最多能获得5万元利润.23.(14分)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:F A=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.【解答】证明:(1)①∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE,∵∠ACB+∠ADE=180°,∴∠ADE=90°,∴∠BDE=90°,∵∠F AC=∠ACB+∠B=90°+∠B,∠CED=∠EDB+∠B=90°+∠B,∴∠F AC=∠CED,∵AC=CE,∴△AFC≌△EDC(ASA),∴F A=DE,②DE+AD=2CH,理由是:∵△AFC≌△EDC,∴CF=CD,∵CH⊥AB,∴FH=HD,在Rt△FCD中,CH是斜边FD的中线,∴FD=2DH,∴AF+AD=2CH,∴DE+AD=2CH;(2)AD+DE=2CH,理由是:如图b,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠EDA=60°,∴∠EDB=120°,∵∠F AC=120°+∠B,∠CED=120°+∠B,∴∠F AC=∠CED,∵AC=CE,∴△F AC≌△DEC,∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,在Rt△CHD中,tan60°=,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,即:AD+DE=2CH.。
2017年九年级数学中考模拟试卷一、选择题:1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有( )A.25.30千克B.25.51千克C.24.80千克D.24.70千克2.下列运算正确的是()A.(a+b)2=a2+b2 B.3a2﹣2a2=a2C.﹣2(a﹣1)=﹣2a﹣1 D.a6÷a3=a23.据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10B.11C.12D. 134.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A. B. C. D.5.使分式的值等于零的x是( )A.6B.-1或6C.-1D.-66.式子x+y,﹣2x,ax2+bx﹣c,0,,﹣a,中()A.有5个单项式,2个多项式B.有4个单项式,2个多项式C.有3个单项式,3个多项式D.有5个整式7.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组B.9组C.8组D.7组8.根据测试距离为5m的标准视力表制作一个测试距离为3m的视力表,如果标准视力表中“E”的长a是3.6cm,那么制作出的视力表中相应“E”的长b是( )A.1.44cmB.2.16cmC.2.4cmD.3.6cm9.如图,己知点A是双曲线y=kx-1(k>0)上的一个动点,连AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=mx-1(m<0)上运动,则m与k的关系是()A.m=-kB.m=-kC.m=-2kD. m=-3k10.如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()二、填空题:11.不等式2x+7﹥3x+4的正整数解是________.12.多项式-5mx3+25mx2-10mx各项的公因式是.13.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为 cm.14.如图,已知等边△ABC的边长为3,点E在AC上,点F在BC上,且AE=CF=1,则AP•AF的值为.三、计算题:15.计算:tan30°cos60°+tan45°cos30°.16. (x﹣1)(x+2)=6.四、解答题:17.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△AB1C1,写出△ABC关于X轴对称的△A2B2C21的各点坐标.18.2x …﹣2 ﹣1 0 1 2 3 …﹣x2+bx+c … 5 n c 2 ﹣3 ﹣10 …(1(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.19.如图,某大楼顶部有一旗杆AB,甲乙两人分别在相距6米的C、D两处测得B点和A点的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数)(参考数据:sin42°≈0.67,tan42°≈0.9,sin65°≈0.91,tan65°≈2.1)20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.21.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为 25 人,扇形统计图中短跑项目所对应圆心角的度数为 72 °;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.五、综合题:22.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为 (2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数关系式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度.....从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2.5时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.23.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F 之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)参考答案1.C2.B3.B4.C5.A6.B7.A8.B9.D10.B.11.答案为:1、212.答案为:5mx.13.答案为:4π.14.答案为:3.15.【解答】解:tan30°cos60°+tan45°cos30°===.16.x2+x﹣8=0,a=1,b=1,c=﹣8,△=b2﹣4ac=1+32=33>0,∴方程有两个不相等的实数根,∴x==,∴x1=,x2=.17.解答:解:△ABC的各顶点的坐标分别为:A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1);所画图形如下所示,其中△A2B2C2的各点坐标分别为:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).18.【解答】解:(1)根据表格数据可得,解得,∴﹣x2+bx+c=﹣x2﹣2x+5,当x=﹣1时,﹣x2﹣2x+5=6,即n=6;(2)根据表中数据得当0≤x≤2时,y的最大值是5.19.【解答】解:在直角△ADE中,∠ADE=65°,DE=15米,则tan∠ADE=,sin∠ADE=,即tan65°=≈2.1,解得 AE≈31.5(米),在直角△BCE中,∠BCE=42°,CE=CD+DE=21米,则tan∠BCE=,即tan42°=≈0.9,解得 BE≈18.9(米),则AB=AE﹣BE=31.5﹣18.9≈13(米).答:旗杆AB的长大约是13米.20.解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).21.【解答】解:(1)由扇形统计图和条形统计图可得:参加复选的学生总人数为:(5+3)÷32%=25(人);扇形统计图中短跑项目所对应圆心角的度数为:×360°=72°.故答案为:25,72;(2)长跑项目的男生人数为:25×12%﹣2=1,跳高项目的女生人数为:25﹣3﹣2﹣1﹣2﹣5﹣3﹣4=5.如下图:(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人,∴跳高项目中男生被选中的概率=.22.解:(1)(2)①点P不在直线ME上;②依题意可知:P(,),N(,)当0<t<3时,以P、N、C、D为顶点的多边形是四边形PNCD,依题意可得:=+=+==∵抛物线的开口方向:向下,∴当=,且0<t<<3时,=当时,点P、N都重合,此时以P、N、C、D为顶点的多边形是三角形依题意可得,==3综上所述,以P、N、C、D为顶点的多边形面积S存在最大值.23.。
2017年中考数学二模试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置)1.9的算术平方根是()A.±3 B.3 C.D.2.2016年,巴彦淖尔市计划投资42亿元,完成300个嘎查村的建设任务.农村牧区“十个全覆盖”推进正酣.将42亿用科学记数法应表示为()A.0.042×107B.0.42×108C.4.2×109D.42×10103.下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a34.不等式组的整数解的和是()A.﹣1 B.1 C.0 D.15.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°6.一个几何体的三视图如图所示,该几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm27.已知一组数据:1,2,6,3,3,下列说法错误的是()A.众数是3 B.中位数是6 C.平均数是3 D.方差是2.88.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1 B.2 C.3 D.49.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:2510.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.二、填空题(本题共6小题,每小题4分,共24分)11.分解因式:﹣3x3y+12x2y﹣12xy= .12.要使式子有意义,则a的取值范围为.13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.14.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m(结果不作近似计算).15.抛物线y=x2﹣2x+3的顶点坐标是,当x= 时,y随x的增大而减小.16.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD 的长为.三、解答题(共86分,解答应写成文字说明、证明过程、演算步骤)17.(1)计算:2sin60°﹣()﹣1+(﹣1)0(2)先化简,再求值:(1﹣)÷,其中a=2+.18.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?19.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?20.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.21.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.22.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.23.如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.24.已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.2017年中考数学二模试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置)1.9的算术平方根是()A.±3 B.3 C.D.【考点】22:算术平方根.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.2.2016年,巴彦淖尔市计划投资42亿元,完成300个嘎查村的建设任务.农村牧区“十个全覆盖”推进正酣.将42亿用科学记数法应表示为()A.0.042×107B.0.42×108C.4.2×109D.42×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42亿=42 0000 0000=4.2×109,故选:C.3.下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a3【考点】48:同底数幂的除法;47:幂的乘方与积的乘方;4C:完全平方公式.【分析】根据合并同类项法则;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3和a2不是同类项不能合并,故本选项错误;B、(﹣2a3)2=4a6,正确;C、应为(a+b)2=a2+b2+2ab,故本选项错误;D、应为a6÷a2=a4,故本选项错误.故选B.4.不等式组的整数解的和是()A.﹣1 B.1 C.0 D.1【考点】CC:一元一次不等式组的整数解.【分析】先解出不等式组的解集,从而可以得到不等式组的整数解,从而可以得到不等式组的整数解的和.【解答】解:解得,﹣2<x≤,∴的整数解是x=﹣1,x=0,x=1,∵(﹣1)+0+1=0,故的整数解得和是0,故选C.5.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°【考点】R2:旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.6.一个几何体的三视图如图所示,该几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm2【考点】U3:由三视图判断几何体;MP:圆锥的计算.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,进而得出圆锥的高以及母线长和底面圆的半径,再利用圆锥侧面积公式求出即可.【解答】解:依题意知母线l=4cm,底面半径r=2÷2=1,则由圆锥的侧面积公式得S=πrl=π×1×4=4πcm2.故选B.7.已知一组数据:1,2,6,3,3,下列说法错误的是()A.众数是3 B.中位数是6 C.平均数是3 D.方差是2.8【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.【解答】解:A、3出现了2次,出现的次数最多,则众数是3,故本选项正确;B、把这组数据从小到大排列为:1,2,3,3,6,最中间的数是3,则中位数是3,故本选项错误;C、这组数据的平均数是(1+2+6+3+3)÷5=3,故本选项正确;D、这组数据的方差是: [(1﹣3)2+(2﹣3)2+(6﹣3)2+(3﹣3)2+(3﹣3)2]=,故本选项正确;故选B.8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1 B.2 C.3 D.4【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,∴S正方形ABCD=2+,④说法正确,∴正确的有①②④.故选C.9.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:25【考点】S9:相似三角形的判定与性质;K3:三角形的面积;L5:平行四边形的性质.【分析】根据平行四边形的性质求出DC=AB,DC∥AB,求出DE:AB=2:5,根据相似三角形的判定推出△DEF∽△BAF,求出△DEF和△ABF的面积比,根据三角形的面积公式求出△DEF 和△EBF的面积比,即可求出答案.【解答】解:根据图形知:△DEF的边DF和△BFE的边BF上的高相等,并设这个高为h,∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵DE:EC=2:3,∴DE:AB=2:5,∵DC∥AB,∴△DEF∽△BAF,∴==, ==,∴====∴S△DEF:S△EBF:S△ABF=4:10:25,故选D.10.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.【解答】解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选C.二、填空题(本题共6小题,每小题4分,共24分)11.分解因式:﹣3x3y+12x2y﹣12xy= ﹣3xy(x﹣2)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3xy(x2﹣4x+4)=﹣3xy(x﹣2)2,故答案为:﹣3xy(x﹣2)212.要使式子有意义,则a的取值范围为a≥﹣2且a≠0 .【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:a+2≥0且a≠0,解得:a≥﹣2且a≠0.故答案为:a≥﹣2且a≠0.13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球12 个.【考点】X4:概率公式.【分析】设袋中共有球x个,根据概率公式列出等式解答.【解答】解:设袋中共有球x个,∵有3个白球,且摸出白球的概率是,∴=,解得x=12(个).故答案为:12.14.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为12m(结果不作近似计算).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先过点D作DE⊥AB于点E,可得四边形BCDE是矩形,然后分别在Rt△ABC与Rt △ADE中,利用正切函数的知识,求得AB与AE的长,继而可求得答案.【解答】解:过点D作DE⊥AB于点E,则四边形BCDE是矩形,根据题意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m,∴DE=BC=18m,CD=BE,在Rt△ABC中,AB=BC•tan∠ACB=18×tan60°=18(m),在Rt△ADE中,AE=DE•tan∠ADE=18×tan30°=6(m),∴DC=BE=AB﹣AE=18﹣6=12(m).故答案为:12.15.抛物线y=x2﹣2x+3的顶点坐标是(1,2),当x= <1 时,y随x的增大而减小.【考点】H3:二次函数的性质.【分析】由于二次函数的二次项系数a=1>0,由此可以确定抛物线开口方向,利用y=ax2+bx+c的顶点坐标公式为(﹣,),对称轴是x=﹣可以确定对称轴,然后即可确定在对称轴的左侧y随x的增大而减小,由此得到x的取值范围.【解答】解:∵y=x2﹣2x+3,∴二次函数的二次项系数a=1>0,∴抛物线开口向上,∵y=ax2+bx+c的顶点坐标公式为(﹣,),对称轴是x=﹣,∴此函数对称轴是x=1,顶点坐标是(1,2),∴当x<1时,y随x的增大而减小.故答案为:(1,2),<1.16.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为 a .【考点】MC:切线的性质;MH:切割线定理;S7:相似三角形的性质.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.【解答】解:如图,连接OE、OF,∵由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°,∴OECF是正方形,∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF,∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a,∵由切割线定理可得BF2=BH•BG,∴a2=BH(BH+a),∴BH=a或BH=a(舍去),∵OE∥DB,OE=OH,∴△OEH∽△BDH,∴=,∴BH=BD,CD=BC+BD=a+a=a.故答案为: a.三、解答题(共86分,解答应写成文字说明、证明过程、演算步骤)17.(1)计算:2sin60°﹣()﹣1+(﹣1)0(2)先化简,再求值:(1﹣)÷,其中a=2+.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=2×﹣2+1=﹣1;(2)原式=•=,当a=2+时,原式==+1.18.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?【考点】CE:一元一次不等式组的应用;8A:一元一次方程的应用.【分析】(1)设足球的单价为x元,则篮球的单价为(x+20)元,则根据所花的钱数为1600元,可得出方程,解出即可;(2)根据题意所述的不等关系:不超过3240元,且不少于3200元,等量关系:两种球共50个,可得出不等式组,解出即可;(3)分别求出三种方案的利润,继而比较可得出答案.【解答】解:(1)设足球的单价为x元,则篮球的单价为(x+20)元,根据题意,得8x+14(x+20)=1600,解得:x=60,x+20=80.即足球的单价为60元,则篮球的单价为80元;(2)设购进足球y个,则购进篮球(50﹣y)个.根据题意,得,解得:,∵y为整数,∴y=38,39,40.当y=38,50﹣y=12;当y=39,50﹣y=11;当y=40,50﹣y=10.故有三种方案:方案一:购进足球38个,则购进篮球12个;方案二:购进足球39个,则购进篮球11个;方案三:购进足球40个,则购进篮球10个;(3)商家售方案一的利润:38(60﹣50)+12(80﹣65)=560(元);商家售方案二的利润:39(60﹣50)+11(80﹣65)=555(元);商家售方案三的利润:40(60﹣50)+10(80﹣65)=550(元).故第二次购买方案中,方案一商家获利最多.19.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.20.如图有A 、B 两个大小均匀的转盘,其中A 转盘被分成3等份,B 转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A 转盘指针指向的数字记作一次函数表达式中的k ,将B 转盘指针指向的数字记作一次函数表达式中的b . (1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b 的图象经过一、二、四象限的概率.【考点】X6:列表法与树状图法;F7:一次函数图象与系数的关系. 【分析】(1)列表得出所有等可能的情况数即可;(2)找出满足一次函数y=kx+b 的图象经过一、二、四象限的情况,即可求出所求的概率. 【解答】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b 的图象经过一、二、四象限时,k <0,b >0,情况有4种, 则P==.21.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E .(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【考点】L8:菱形的性质;L7:平行四边形的判定与性质.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.22.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y=可计算出m的值;(3)设P点坐标为(t, t+),利用三角形面积公式可得到••(t+4)=•1•(2﹣t﹣),解方程得到t=﹣,从而可确定P点坐标.【解答】解:(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y=x+,把B(﹣1,2)代入y=得m=﹣1×2=﹣2;(3)设P点坐标为(t, t+),∵△PCA和△PDB面积相等,∴••(t+4)=•1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).23.如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.【考点】MD:切线的判定;S9:相似三角形的判定与性质.【分析】(1)根据BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°即可得出结论;(2)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.(3)根据△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.【解答】(1)BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°,∴△ABC∽△DEB;(2)证明:连结OB,OD,在△ABO和△DBO中,,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∴OB⊥BE,∴BE是⊙O的切线.(3)∵△BED∽△CBA,∴,即=,解得:DE=.24.已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.【考点】HF:二次函数综合题.【分析】(1)首先运用待定系数法求出二次函数的解析式,然后把点D(2,m)代入二次函数的解析式,就可求出点D的坐标;(2)过点D作DH⊥AB于点H,如图1,根据勾股定理可求出BD,易求出点A的坐标,从而得到AB长,然后分两种情况:①△QBE∽△ABD,②△QBE∽△DBA讨论,运用相似三角形的性质求出BQ,从而得到OQ,即可得到点Q的坐标;(3)根据待定系数法得到直线AD的解析式为:y=x+2,过点F作关于x轴的对称点F′,即F′(0,﹣2),连接DF′交对称轴于M′,x轴于N′,由条件可知,点C,D是关于对称轴x=1对称,则CF+F′N+M′N′+M′C=CF+DF′=2+2,得到四边形CFNM的最短周长为:2+2时直线DF′的解析式为:y=3x﹣2,从而得到满足条件的点M和点N的坐标.【解答】解:(1)由题可得:,解得:,则二次函数的解析式为y=﹣x2+x+4.∵点D(2,m)在抛物线上,∴m=﹣×22+2+4=4,∴点D的坐标为(2,4);(2)过点D作DH⊥AB于点H,如图1,∵点D(2,4),点B(4,0),∴DH=4,OH=2,OB=4,∴BH=2,∴DB==2.∵点E为DB的中点,∴BE=BD=.令y=0,得﹣x2+x+4=0,解得:x1=4,x2=﹣2,∴点A为(﹣2,0),∴AB=4﹣(﹣2)=6.①若△QBE∽△ABD,则=,∴=,解得:BQ=3,∴OQ=OB﹣BQ=4﹣3=1,∴点Q的坐标为(1,0);②若△QBE∽△DBA,则=,∴=,∴BQ=,∴OQ=OB﹣BQ=4﹣=,∴点Q的坐标为(,0).综上所述:点Q的坐标为(1,0)或(,0);(3)如图2,由A(﹣2,0),D(2,4),可求得直线AD的解析式为:y=x+2,即点F的坐标为:F(0,2),过点F作关于x轴的对称点F′,即F′(0,﹣2),连接DF′交对称轴于M′,x轴于N′,由条件可知,点C,D是关于对称轴x=1对称,则CF+F′N+M′N′+M′C=CF+DF′=2+2,则四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C,即四边形CFNM的最短周长为:2+2.此时直线DF′的解析式为:y=3x﹣2,所以存在点N的坐标为N(,0),点M的坐标为M(1,1).。
2017年安徽省合肥市蜀山区中考数学二模试卷一、选择题(每小题4分,共40分)1.(4分)的值为()A.±3B.3C.﹣3D.92.(4分)已知1纳米=10﹣9米,将0.0315纳米用科学记数法表示为()A.3.15×10﹣9米B.3.15×10﹣10米C.3.15×10﹣11米D.3.15×10﹣12米3.(4分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.4.(4分)下列运算中正确的是()A.(π﹣1)0=0B.3﹣2=﹣6C.(﹣a)2=a2D.(a3)2=a5 5.(4分)“倡导全民阅读”、“推动国民素质和社会文明程度显著提高”已成为“十三五”时期的重要工作.教育主管部门对某学校青年学校青年教师2016年度阅读情况进行了问卷调查,并将收集的数据统计如表,根据表中的信息判断,下列结论错误的是()A.该学校中参与调查的青年教师人数为40人B.该学校中青年教师2016年平均每人阅读8本书C.该学校中青年教师2016年度看书数量的中位数为4本D.该学校中青年教师2016年度看书数量的众数为4本6.(4分)如图,在四边形ABCD中,点D在线段AB、BC的垂直平分线上,若∠D=110°,则∠B度数为()A.110°B.115°C.120°D.125°7.(4分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示﹣1的点是()A.点M B.点N C.点P D.点Q8.(4分)如图,C、D是以AB为直径、O为圆心的半圆上的两点,OD∥BC,OD与AC 交于点E,下列结论中不一定成立的是()A.AD=DC B.∠ACB=90°C.△AOD是等边三角形D.BC=2EO9.(4分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣,y=的图象交于B、A两点,则tan∠OAB的值的变化趋势为:()A.逐渐变小B.逐渐变大C.时大时小D.保持不变10.(4分)如图,在平面直角坐标系中,点O为坐标原点,点A、B在x轴上、点C在y 轴上,点A、B、C的坐标分别为A(,0),B(3,0),C(0,5),点D在第一象限内,且∠ADB=60°,则线段CD长的最小值为()A.2B.2﹣2C.4D.2﹣4二、填空题(每小题5分,满分20分)11.(5分)方程:=1的解是.12.(5分)某农户2013年的年收入为5万元,由于党的惠农政策的落实,2015年的年收入增加到8万元,2014与2015年的年平均增长率相同,如果按这样的增长率,该农户2017年的年收入为万元.13.(5分)如图,在平面直角坐标系内,边长为4的等边△ABC的顶点B与原点重合,将△ABC绕顶点C顺时针旋转60°的△ACA1,将四边形ABCA1看作一个基本图形,将此基本图形不断复制并平移,则A2017的坐标为.14.(5分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1、3,与y轴负半轴交于点C,在下面四个结论中:①2a+b=0;②c=﹣3a;③只有当a=时,△ABD是等腰直角三角形;④使△ACB为等腰三角形的a的值有三个.其中正确的结论是.(请把正确结论的序号都填上)三、解答题(每小题8分,满分16分)15.(8分)先化简,再求值:﹣,其中x=tan60°﹣1.16.(8分)解不等式组:.四、(每小题8分,满分16分)17.(8分)如图,在已知的平面直角坐标系中,△ABC的顶点都在正方形网格的格点上,若A,B两点的坐标分别是A(﹣1,0),B(0,3).(1)将△ABC绕原点O顺时针旋转90°得到△A1B1C1,画出△A1B1C1;(2)以点O为位似中心,与△ABC位似的△A2B2C2满足A2B2:AB=2:1,请在网格内画出△A2B2C2,并直接填写△A2B2C2的面积为.18.(8分)如图,在合肥地铁3号线某站通道的建设中,建设工人将坡长为20米(AB=20米)、坡角为20°30′(∠BAC=20°30′)的斜坡通道改造成坡角为12°30′(∠BDC =12°30′)的斜坡通道,使斜坡的起点从点A处向左平移至点D处,求改造后的斜坡通道BD的长.(结果精确到0.1米.参考数据:sin12°30′≈0.22,sin20°30′≈0.35,sin69°30′≈0.94).五、(每小题10分,满分58分)19.(10分)如图,矩形ABCD的对角线AC,BD相交于点O,过点A作BD的平行线交CD的延长线于点E.(1)求证:AE=AC;(2)若AE=5,DE=3,连接OE,求tan∠OEC的值.20.(10分)某校决定在4月7日开展“世界无烟日”宣传活动,活动有A社区板报、B集会演讲、C喇叭广播、D发宣传画四种宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了两种不完整的统计图表:请结合统计图表,回答下列问题:(1)本次抽查的学生共人,m=,并将条形统计图补充完整;(2)若该校学生有1500人,请你估计该校喜欢“集会演讲”这项宣传方式的学生约有多少人?(3)学校采用抽签方式让每班在A、B、C、D四种宣传方式在随机抽取两种进行展示,请用树状图或列表法求某班所抽到的两种方式恰好是“集会演讲”和“喇叭广播”的概率.21.(12分)如图,已知一次函数y=﹣2x+3与反比例函数的图象相交于A(﹣1,m)、B (n,﹣2)两点.(1)求反比例函数解析式及m、n的值;(2)求△AOB的面积;(3)观察图象,直接写出反比例函数值大于一次函数值时自变量x的取值范围.22.(12分)某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y (万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?23.(14分)如图,在△ABC中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且∠DCB=∠EBC=∠A.(1)求证:△BOD∽△BAE;(2)求证:BD=CE;(3)若M、N分别是BE、CD的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?2017年安徽省合肥市蜀山区中考数学二模试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)的值为()A.±3B.3C.﹣3D.9【解答】解:的值为3.故选:B.2.(4分)已知1纳米=10﹣9米,将0.0315纳米用科学记数法表示为()A.3.15×10﹣9米B.3.15×10﹣10米C.3.15×10﹣11米D.3.15×10﹣12米【解答】解:0.0315纳米=0.0315×10﹣9米=3.15×10﹣11米,故选:C.3.(4分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.4.(4分)下列运算中正确的是()A.(π﹣1)0=0B.3﹣2=﹣6C.(﹣a)2=a2D.(a3)2=a5【解答】解:(A)原式=1,故A错误;(B)原式=()2=,故B错误;(D)原式=a6,故D错误;故选:C.5.(4分)“倡导全民阅读”、“推动国民素质和社会文明程度显著提高”已成为“十三五”时期的重要工作.教育主管部门对某学校青年学校青年教师2016年度阅读情况进行了问卷调查,并将收集的数据统计如表,根据表中的信息判断,下列结论错误的是()A.该学校中参与调查的青年教师人数为40人B.该学校中青年教师2016年平均每人阅读8本书C.该学校中青年教师2016年度看书数量的中位数为4本D.该学校中青年教师2016年度看书数量的众数为4本【解答】解:A、8+6+5+10+4+7=40(人),故该学校中参与调查的青年教师人数为40人是正确的,不符合题意;B、平均数为:×(15×8+11×6+8×5+4×10+3×4+2×7)=7.3,原来的说法错误,符合题意;C、中间两个数都是4,所以中位数为4,故该学校中青年教师2016年度看书数量的中位数为4本是正确的,不符合题意;D、4出现的次数最多,是10次,众数为4,故该学校中青年教师2016年度看书数量的众数为4本是正确的,不符合题意.故选:B.6.(4分)如图,在四边形ABCD中,点D在线段AB、BC的垂直平分线上,若∠D=110°,则∠B度数为()A.110°B.115°C.120°D.125°【解答】解:连接BD,∵点D在线段AB、BC的垂直平分线上,∴BD=AD,DC=BD,∴∠A=∠ABD,∠C=∠CBD,∴∠ABC=∠ABD+∠CBD=∠A+∠C,∴∠ABC=(360°﹣∠D)÷2=125°.故选:D.7.(4分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示﹣1的点是()A.点M B.点N C.点P D.点Q【解答】解:∵3.5<<4,∴2.5<﹣1<3,∴表示﹣1的点是Q点,故选:D.8.(4分)如图,C、D是以AB为直径、O为圆心的半圆上的两点,OD∥BC,OD与AC 交于点E,下列结论中不一定成立的是()A.AD=DC B.∠ACB=90°C.△AOD是等边三角形D.BC=2EO【解答】解:连接CD,∵AB为直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴DO⊥AC,∴AD=CD,故A、B正确;∵AO=DO,不一定等于AD,因此C错误;∵O为圆心,∴AO:AB=1:2,∵EO∥BC,∴△AEO∽△ACB,∴EO:AB=AO:BC=1:2,∴BC=2EO,故D正确;故选:C.9.(4分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣,y=的图象交于B、A两点,则tan∠OAB的值的变化趋势为:()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【解答】解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴=;设B(﹣m,),A(n,),则BM=,AN=,OM=m,ON=n,∴mn=,mn==4;∵∠AOB=90°,∴tan∠OAB=①;∵△BOM∽△OAN,∴====②,由①②知tan∠OAB=为定值,∴∠OAB的大小不变,故选:D.10.(4分)如图,在平面直角坐标系中,点O为坐标原点,点A、B在x轴上、点C在y 轴上,点A、B、C的坐标分别为A(,0),B(3,0),C(0,5),点D在第一象限内,且∠ADB=60°,则线段CD长的最小值为()A.2B.2﹣2C.4D.2﹣4【解答】解:作圆,使∠ADB=60°,设圆心为P,连结P A、PB、PC,PE⊥AB于E,如图所示:∵A(,0),B(3,0),∴E(2,0),又∠ADB=60°,∴∠APB=120°,∴PE=1,P A=2PE=2,∴P(2,1),∵C(0,5),∴PC==2,又∵PD=P A=2,∴只有点D在线段PC上时,CD最短(点D在别的位置时构成△CDP),∴CD最小值为:2﹣2.故选:B.二、填空题(每小题5分,满分20分)11.(5分)方程:=1的解是x=2.【解答】解:去分母,得2x﹣1=3,移项,得2x=3+1,合并同类项,得2x=4,系数化为1,得x=2,故答案为:x=2.12.(5分)某农户2013年的年收入为5万元,由于党的惠农政策的落实,2015年的年收入增加到8万元,2014与2015年的年平均增长率相同,如果按这样的增长率,该农户2017年的年收入为12.8万元.【解答】解:设农户年平均增长率为x,依题意得:5(1+x)2=8,则(1+x)2=1.6.故该农户2017年的年收入为:8(1+x)2=12.8.故答案是:12.8.13.(5分)如图,在平面直角坐标系内,边长为4的等边△ABC的顶点B与原点重合,将△ABC绕顶点C顺时针旋转60°的△ACA1,将四边形ABCA1看作一个基本图形,将此基本图形不断复制并平移,则A2017的坐标为(8070,2).【解答】解:∵边长为4的等边△ABC的顶点B与原点重合,∴OA=BC=4,∠AOC=60°,如图,过点A作AD⊥x轴于D,∴BD=DC=BC=2,AD=OA•sin∠AOD=4×=2,∴A(2,2).∵将△ABC绕顶点C顺时针旋转60°的△ACA1,∴四边形AOCA1是平行四边形,∴AA1=OC=4,AA1∥OC,∴A1(2+4,2),即A1(6,2);∵将四边形ABCA1看作一个基本图形,将此基本图形不断复制并平移,∴A2(2+4×2,2),即A2(10,2);A3(2+4×3,2),即A3(14,2);…∴A2017的坐标为(2+4×2017,2),即A2017(8070,2);故答案为(8070,2).14.(5分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1、3,与y轴负半轴交于点C,在下面四个结论中:①2a+b=0;②c=﹣3a;③只有当a=时,△ABD是等腰直角三角形;④使△ACB为等腰三角形的a的值有三个.其中正确的结论是①②③.(请把正确结论的序号都填上)【解答】解:①∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴AB=4,∴对称轴x=﹣=1,即2a+b=0.故①正确;②∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,即c=﹣3a.故②正确;③要使△ABD为等腰直角三角形,必须保证D到x轴的距离等于AB长的一半;D到x轴的距离就是当x=1时y的值的绝对值.当x=1时,y=a+b+c,即|a+b+c|=2,∵当x=1时y<0,∴a+b+c=﹣2,又∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴当x=﹣1时y=0,即a﹣b+c=0,x=3时y=0,即9a+3b+c=0,解这三个方程可得:b=﹣1,a=,c=﹣.故③正确;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵BO=3,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣,与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AB=AC=4时,∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣,与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AC=BC时,在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无解.经解方程组可知只有两个a值满足条件.所以④错误.故答案为:①②③.三、解答题(每小题8分,满分16分)15.(8分)先化简,再求值:﹣,其中x=tan60°﹣1.【解答】解:﹣,=﹣,=,=﹣.当x=tan60°﹣1即x=﹣1时,原式=﹣=﹣=﹣.16.(8分)解不等式组:.【解答】解:解不等式①,得:x>﹣2,解不等式②,得:x≤3,则不等式组的解集为﹣2<x≤3.四、(每小题8分,满分16分)17.(8分)如图,在已知的平面直角坐标系中,△ABC的顶点都在正方形网格的格点上,若A,B两点的坐标分别是A(﹣1,0),B(0,3).(1)将△ABC绕原点O顺时针旋转90°得到△A1B1C1,画出△A1B1C1;(2)以点O为位似中心,与△ABC位似的△A2B2C2满足A2B2:AB=2:1,请在网格内画出△A2B2C2,并直接填写△A2B2C2的面积为10.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,△A2B2C2的面积为:4×6﹣×2×6﹣×2×4﹣×2×4=10.故答案为:10.18.(8分)如图,在合肥地铁3号线某站通道的建设中,建设工人将坡长为20米(AB=20米)、坡角为20°30′(∠BAC=20°30′)的斜坡通道改造成坡角为12°30′(∠BDC =12°30′)的斜坡通道,使斜坡的起点从点A处向左平移至点D处,求改造后的斜坡通道BD的长.(结果精确到0.1米.参考数据:sin12°30′≈0.22,sin20°30′≈0.35,sin69°30′≈0.94).【解答】解:∵BC⊥DC,∠BAC=20°30′,AB=20米,∴sin∠BAC=,∴BC=AB•sin∠BAC=20×sin20°30′.在Rt△BDC中,∵∠BDC=12°30′,sin∠BDC=,即sin12°30′=,∴BD=≈≈31.8(米).答:改造后的斜坡通道BD的长约为31.8米.五、(每小题10分,满分58分)19.(10分)如图,矩形ABCD的对角线AC,BD相交于点O,过点A作BD的平行线交CD的延长线于点E.(1)求证:AE=AC;(2)若AE=5,DE=3,连接OE,求tan∠OEC的值.【解答】解:(1)∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BD∥AE,∴四边形ABDE是平行四边形,∴AE=BD,∴AE=AC;(2)如图,过点O作OF⊥CD于点F,∵四边形ABCD是矩形,∴∠CDA=90°.∵AE=AC=5,∴CD=DE=3.同理,可得CF=DF=CD=1.5,∴EF=4.5.在直角△ADE中,由勾股定理可得:AD=4.∵OA=OC,∴OF为△ACD的中位线,∴OF=BC=2,∴在直角△OEF中,tan∠OEC==.20.(10分)某校决定在4月7日开展“世界无烟日”宣传活动,活动有A社区板报、B集会演讲、C喇叭广播、D发宣传画四种宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了两种不完整的统计图表:请结合统计图表,回答下列问题:(1)本次抽查的学生共300人,m=30%,并将条形统计图补充完整;(2)若该校学生有1500人,请你估计该校喜欢“集会演讲”这项宣传方式的学生约有多少人?(3)学校采用抽签方式让每班在A、B、C、D四种宣传方式在随机抽取两种进行展示,请用树状图或列表法求某班所抽到的两种方式恰好是“集会演讲”和“喇叭广播”的概率.【解答】解:(1)本次调查的学生共有105÷35%=300(人),m=1﹣(35%+25%+10%)=30%,B项目的人数为:300×30%=90(人),补全条形图如下:故答案为:300,30%;(2)1500×30%=450(人),答:估计该校喜欢“集会演讲”这项宣传方式的学生约有450人;(3)画树状图为:共有12种等可能的结果数,其中所抽到的两项方式恰好是“集会演讲”和“喇叭广播”的结果数为2,∴所抽到的两种方式恰好是“集会演讲”和“喇叭广播”的概率为=.21.(12分)如图,已知一次函数y=﹣2x+3与反比例函数的图象相交于A(﹣1,m)、B (n,﹣2)两点.(1)求反比例函数解析式及m、n的值;(2)求△AOB的面积;(3)观察图象,直接写出反比例函数值大于一次函数值时自变量x的取值范围.【解答】解:(1)把A(﹣1,m)、B(n,﹣2)代入一次函数y=﹣2x+3,得m=2+3=5,﹣2=﹣2n+3,解得n=2.5,设反比例函数解析式为y=,把A(﹣1,5)代入反比例函数得:k=﹣1×5=﹣5,故反比例函数为y=﹣;(2)设直线AB和x轴的交点为C,令y=0,则0=﹣2x+3,∴x=1.5,∴C(1.5,0),∴OC=1.5,∴S△AOB=S△AOC+S△BOC=×1.5×5+×1.5×2=5.25;(3)反比例函数值大于一次函数值时自变量x的取值范围为﹣1<x<0或x>.22.(12分)某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y (万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?【解答】解:(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax2(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=,故y与x之间的关系式为y=x2.图②可得:函数经过点(0,30)、(100,20),设z=kx+b,则,解得:,故z与x之间的关系式为z=﹣x+30;(2)W=zx﹣y=﹣x2+30x﹣x2=﹣x2+30x=﹣(x2﹣150x)=﹣(x﹣75)2+1125,∵﹣<0,∴当x=75时,W有最大值1125,∴年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)令y=360,得x2=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=﹣(x﹣75)2+1125的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.23.(14分)如图,在△ABC中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且∠DCB=∠EBC=∠A.(1)求证:△BOD∽△BAE;(2)求证:BD=CE;(3)若M、N分别是BE、CD的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?【解答】(1)证明:∵∠BCO=∠CBO,∴∠DOB=∠BCO+CBO=2∠BCO,∵∠A=2∠BCO,∴∠DOB=∠A,∵∠ABE=∠ABE,∴△BOD∽△BAE;(2)解:延长CD,在CD延长线上取一点F,使BF=BD,∴∠BDF=∠BFD,∵∠BDF=∠ABO+∠DOB,∠BEC=∠ABO+∠A,由(1)得∠BOD=∠A,∴∠BDF=∠BEC,∴∠BFD=∠BEC,在△BFC与△CEB中,,∴△BFC≌△CEB,∴CE=BF,∴BD=CE;(3)解:AP=AQ,理由:取BC的中点G,连接GM,GN,∵M,N分别是BE,CD的中点,∴GM,GN是中位线,∴GM∥CE,GM=CE,GN∥BD,GN=BD,∵BD=CE,∴GM=GN,∴∠3=∠4,∵GM∥CE,∴∠2=∠4,∵GN∥BD,∴∠3=∠1,∴∠1=∠2,∴AP=AQ.。