2017年4月普陀区中考数学二模试卷及答案
- 格式:doc
- 大小:618.50 KB
- 文档页数:9
上海普陀中考数学二模试卷及答案(图片
版)
2019年4月上海普陀初三数学二模考了哪些题目?数学网中考频道第一时间为大家整理2019.4上海普陀中考数学二模试卷及答案,更多上海中考二模试卷及答案详见
2019.4上海黄浦中考数学二模试卷及答案
2019.4上海浦东中考数学二模试卷及答案
2019.4上海徐汇中考数学二模试卷及答案
2019.4上海长宁中考数学二模试卷及答案
2019.4上海静安中考数学二模试卷及答案
2019.4上海普陀中考数学二模试卷及答案
2019.4上海闸北中考数学二模试卷及答案
2019.4上海虹口中考数学二模试卷及答案
2019.4上海杨浦中考数学二模试卷及答案
2019.4上海闵行中考数学二模试卷及答案
2019.4上海宝山中考数学二模试卷及答案
2019.4上海嘉定中考数学二模试卷及答案
2019.4上海金山中考数学二模试卷及答案
2019.4上海松江中考数学二模试卷及答案
2019.4上海奉贤中考数学二模试卷及答案
2019.4上海崇明中考数学二模试卷及答案。
普陀区2017学年度第二学期初三质量调研数 学 试 卷(时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1. 下列计算中,错误的是 ················································································ (▲) (A)120180=; (B)422=-;(C )2421=; (D)3131=-.2.下列二次根式中,最简二次根式是 ·································································· (▲) (A)a 9; (B )35a ; (C)22b a +; (D)21+a . 3.如果关于的方程022=++c x x 没有实数根,那么c 在2、1、0、3-中取值是 ···· (▲) (A )2; (B)1; (C)0; (D )3-. 4.如图1,已知直线CD AB //,点E 、F 分别在AB 、CD 上,CFE ∠:EFB ∠3=:4,如果40B ∠=,那么BEF ∠=ﻩ(▲)(A)20; (B )40; (C )60; (D)80.5. 自1993年起,联合国将每年的3月22日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出20名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.x ABCDFE图1图2节约用水量(单位:吨) 1 1.2 1.4 2 2.5 家庭数46532这组数据的中位数和众数分别是 ········································································ (▲) (A )1.2,1.2; (B)1.4,1.2; (C)1.3,1.4; (D)1.3,1.2. 6. 如图2,已知两个全等的直角三角形纸片的直角边分别为a 、b )(b a ≠,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有 ·························· (▲) (A )3个; (B)4个; (C)5个; (D)6个.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:xy x 3122⋅= ▲ . 8.方程32x x =+的根是 ▲ .9.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是 ▲ .10.用换元法解方程312122=+-+x x x x 时,如果设y xx =+21,那么原方程化成以y 为“元”的方程是 ▲ .11.已知正比例函数的图像经过点M(2-,1)、、,如果21x x <,那么1y ▲ 2y .(填“>”、“=”、“<”)12.已知二次函数的图像开口向上,且经过原点,试写出一个符合上述条件的二次函数的解析式: ▲ .(只需写出一个)13.如果一个多边形的内角和是720,那么这个多边形的边有 ▲ 条.14.如果将“概率”的英文单词 pr obability 中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b 的概率是 ▲ .15.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人, 游客目的地分布情况的扇形图如图3所示,从中可知出境游东南亚 地区的游客约有 ▲ 万人.),(11y x A ),(22y x B A 东南亚欧美澳新16%港澳台 15%韩日11%其他13%y xO ABC图6ABCDE 图7ABCDEF图4BCDOA 图516. 如图4,在梯形ABCD 中,BC AD //,AD BC 3=,点E 、F 分别是边AB 、CD 的中点.设=,=,那么向量用向量、表示是 ▲ .17. 如图5,矩形ABCD 中,如果以AB 为直径的⊙O 沿着BC 滚动一周,点B 恰好与点C 重合,那么ABBC的值等于 ▲ .(结果保留两位小数)18. 如图6,在平面直角坐标系xOy 中,△的顶点、在坐标轴上,点的坐标是(22).将△沿轴向左平移得到△,点落在函数的图像上.如果此时四边形11AA C C 的面积等于,那么点的坐标是 ▲ .三、解答题:(本大题共7题,满分78分)ﻩ 19.(本题满分10分)先化简,再求值:42442222---++÷+x x x x x x x ,其中.20.(本题满分10分)求不等式组()7153,31>34x x x x ⎧++⎪⎨--⎪⎩≥的整数解.21.(本题满分10分)如图7,在Rt △ABC 中,90C ∠=,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,,. (1)求DE 的长;(2)求CDA ∠的余弦值.ABC A C B ,ABC x 111A B C 1B 6y x=-5521C 22x 45DAB ∠=3tan 4B =22.(本题满分10分)小张同学尝试运用课堂上学到的方法,自主研究函数21y x=的图像与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成: (1)函数的定义域是 ▲ ; (2)下表列出了y 与x 的几组对应值: x… 2-32- m34- 12- 1234 1 32 2… y…14491414914…表中m 的值是 ▲ ;(3)如图8,在平面直角坐标系xOy 中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图像; (4)结合函数21y x =的图像,写出这个 函数的性质: ▲ .(只需写一个)23.(本题满分12分)已知:如图9,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG EF =.(1)求证:四边形ABED 是菱形; (2)联结AE ,又知AC ⊥ED ,求证:212AE EF ED =.21y x =1694169图8AB CDE F G图924.(本题满分12分)如图10,在平面直角坐标系xOy 中,直线3y kx =+与x 轴、y 轴分别相交于点A 、B ,并与抛物线21742y x bx =-++的对称轴交于点()2,2C ,抛物线的顶点是点D . (1)求k 和b 的值;(2)点G 是y 轴上一点,且以点B 、、G 为顶点的三角形与△BCD 相似,求点G 的坐标; (3)在抛物线上是否存在点E :它关于直线AB 的对称点F 恰好在轴上.如果存在,直接写出点E 的坐标,如果不存在,试说明理由.25.(本题满分14分)已知P 是O ⊙的直径BA 延长线上的一个动点,P ∠的另一边交O ⊙于点C 、D ,两点位于AB 的上方,AB =6,OP m =,1sin 3P =,如图11所示.另一个半径为6的1O ⊙经过点C、D ,圆心距1OO n =. (1)当6m =时,求线段的长;(2)设圆心1O 在直线AB 上方,试用n 的代数式表示m ;(3)△1POO 在点P的运动过程中,是否能成为以1OO 为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.C y CD 图10xy1 1OOAB备用图P DOABC 图11普陀区2017学年度第二学期九年级数学期终考试试卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.(B); 2.(C); 3.(A); 4.(C ); 5.(D); 6.(B). 二、填空题:(本大题共12题,每题4分,满分48分) 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解:原式()()22+22(2)22x x x x x x x -=-+-+ ················································ (3分)122x x x =-++ 2)ﻩ分) 12x x -=+. ···············································································(1分) 当2x =时,原式=(1分)=ﻩ(1分) 22-=. ························································· (2分) 20.解:由①得,2x ≥-. ·············································································· (3分)由②得,x <3.ﻩ(3分)∴原不等式组的解集是2<3x -≤. ················································· (2分) 所以,原不等式组的整数解是2-、1-、0、1、2.ﻩ(2分)7.323x y ; 8. 3x =; 9. 810027.4⨯ ; 10. 32=-yy ; 11.>;12. 2y x =等;13.6; 14.112 ; 15.315; 16.b a212+; 17.3.14;18.(5-,211).21.解:(1)∵DE ⊥AB ,∴︒=∠90DEA又∵,∴AE DE =. ···················································· (1分) 在Rt △DEB 中,︒=∠90DEB ,43tan =B ,∴43=BE DE . ························ (1分) 设x DE 3=,那么x AE 3=,x BE 4=. ∵7AB =,∴743=+x x ,解得1=x .2)ﻩ分) ∴3=DE .ﻩ(1分)(2) 在Rt △ADE 中,由勾股定理,得23=AD . ······································· (1分)同理得5=BD . ··········································································· (1分)ﻩ 在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC .(1分)·······················································································································∴53=CD .ﻩ(1分)ﻩ ∴102cos ==∠AD CD CDA .1)ﻩ分)ﻩ 即CDA ∠. 22.解:(1)0x ≠的实数; ·················································································· (2分) (2)1-; ····························································································· (2分) (3)图(略);ﻩ)4分) (4)图像关于y 轴对称; 图像在x 轴的上方;在对称轴的左侧函数值y 随着x 的增大而增大,在对称轴的右侧函数值y 随着的增大而减小;函数图像无限接近于两坐标轴,但永远不会和坐标轴相交等. ·················· (2分) 23.证明:(1)∵ AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形.ﻩ(2分)∵FG ∥AD ,∴FG CFAD CA=. ···························································· (1分) 45DAB ∠=x同理EF CFAB CA =. ··············································································· (1分) 得FG AD =EF AB∵FG EF =,∴AD AB =. ······························································· (1分) ∴四边形ABED 是菱形. ······································································ (1分) (2)联结BD ,与AE 交于点H .∵四边形ABED 是菱形,∴,BD ⊥AE . ···························· (2分) 得90DHE ∠= .同理90AFE ∠=.∴DHE AFE ∠∠=. ········································································ (1分) 又∵AED ∠是公共角,∴△DHE ∽△AFE .1)ﻩ分)∴EH DEEF AE =. ··············································································· (1分) ∴212AE EF ED =. ············································································ (1分) 24.解:(1) 由直线3y kx =+经过点()2,2C ,可得12k =-. ······································ (1分) 由抛物线21742y x bx =-++的对称轴是直线2x =,可得1b =. ················ (1分) (2) ∵直线132y x =-+与x 轴、y 轴分别相交于点A 、B ,∴点A 的坐标是()6,0,点B 的坐标是()0,3.ﻩ(2分)∵抛物线的顶点是点D ,∴点D 的坐标是92,2⎛⎫⎪⎝⎭. ···································· (1分)∵点G 是y 轴上一点,∴设点G 的坐标是()0,m . ∵△BC G与△BCD 相似,又由题意知,GBC BCD ∠=∠, ∴△BCG 与△BCD 相似有两种可能情况:1(ﻩ分) ①如果BG BC CB CD =,2,解得1m =,∴点G 的坐标是()0,1.ﻩ(1分)②如果BG BC CD CB =,那么352m -,解得12m =,∴点G 的坐标是10,2⎛⎫⎪⎝⎭.ﻩ(1分) 12EH AE =综上所述,符合要求的点G 有两个,其坐标分别是()0,1和10,2⎛⎫⎪⎝⎭ .(3)点E 的坐标是91,4⎛⎫- ⎪⎝⎭或92,2⎛⎫ ⎪⎝⎭.2(ﻩ分+2分)25.解:(1)过点O 作OH ⊥CD ,垂足为点H ,联结OC .在Rt △POH 中,∵1sin 3P =,6PO =,∴2OH =. ·································· (1分) ∵AB =6,∴3OC =. ···································································· (1分)由勾股定理得 CH = ······························································· (1分)∵OH ⊥DC ,∴2CD CH == ················································· (1分) (2)在Rt △POH 中,∵1sin 3P =, PO m =,∴3mOH =. ···························· (1分) 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. ························································ (1分)在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. ·················································· (1分)可得 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -=. ································ (2分)(3)△1POO 成为等腰三角形可分以下几种情况:● 当圆心1O 、O 在弦CD 异侧时①1OP OO =,即m n =,由23812n n n-=解得9n =. ﻩ(1分)即圆心距等于O ⊙、1O ⊙的半径的和,就有O ⊙、1O ⊙外切不合题意舍去.1)ﻩ分)②11O P OO =,n =,解得23m n =,即23n 23812n n -=,解得n ······························· (1分) ● 当圆心1O 、O 在弦CD 同侧时,同理可得 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n -=,解得n .错误!未定义书签。
本解析由华东师范大学出版社《挑战压轴题》作者马学斌老师独家提供。
可作学习材料,切勿做其他用途。
更多信息,欢迎关注“挑战压轴题”微信公众号(ti ao z han y azho u ti).《2017年上海市各区中考数学二模压轴题图文解析》目录2017 年上海市宝山区中考模拟第 24、25 题/ 22017 年上海市崇明区中考模拟第 24、25 题/ 62017 年上海市奉贤区中考模拟第 24、25 题/ 102017 年上海市虹口区中考模拟第 24、25 题/ 142017 年上海市黄浦区中考模拟第 24、25 题/ 182017 年上海市嘉定区中考模拟第 24、25 题/ 232017 年上海市静安区中考模拟第 24、25 题/ 272017 年上海市闵行区中考模拟第 24、25 题/ 312017 年上海市浦东新区中考模拟第 24、25 题/ 342017 年上海市普陀区中考模拟第 24、25 题/ 382017 年上海市松江区中考模拟第 24、25 题/ 422017 年上海市徐汇区中考模拟第 24、25 题/ 472017 年上海市杨浦区中考模拟第 24、25 题/ 522017 年上海市长宁区青浦区金山区中考模拟第 24、25 题/ 552017 年上海市宝山区中考模拟第 18 题/ 592017 年上海市崇明区中考模拟第 18 题/ 602017 年上海市奉贤区中考模拟第 18 题/ 612017 年上海市虹口区中考模拟第 18 题/ 622017 年上海市黄浦区中考模拟第 18 题/ 632017 年上海市嘉定区中考模拟第 18 题/ 642017 年上海市静安区中考模拟第 18 题/ 652017 年上海市闵行区中考模拟第 18 题/ 662017 年上海市浦东新区中考模拟第 18 题/ 672017 年上海市普陀区中考模拟第 18 题/ 682017 年上海市松江区中考模拟第 18 题/ 692017 年上海市徐汇区中考模拟第 18 题/ 702017 年上海市杨浦区中考模拟第 18 题/ 712017 年上海市长宁区青浦区金山区中考模拟第 18 题/ 722015 年上海市中考第 24、25 题/ 732016 年上海市中考第 24、25 题/ 77例2017年上海市宝山区中考模拟第24题如图 1,已知直线y x与x轴交于点B,与y轴交于点C,抛物线1 22 12y x b x2 2与x 轴交于A、B 两点(A 在B 的左侧),与y 轴交于点C.(1)求抛物线的解析式;(2)点M 是上述抛物线上一点,如果△ABM 和△ABC 相似,求点M 的坐标;(3)联结AC,求顶点D、E、F、G 在△ABC 各边上的矩形DEFG 面积最大时,写出该矩形在AB 边上的顶点的坐标.图 1动感体验请打开几何画板文件名“17 宝山 24”,拖动点D 在BC 上运动,可以体验到,当点D是BC 的中点时,矩形DEFG 的面积最大,最大值是△ABC 面积的一半.思路点拨1.第(2)题△ABM 和△ABC 相似,只存在这两个三角形全等的情形,此时M、C 关于抛物线的对称轴对称.2.第(3)题的矩形DEFG 存在两种情况.用二次函数表示矩形的面积,求二次函数的最大值,然后看看最大值时矩形顶点的位置具有什么特殊性.图文解析(1)由1y x 2 ,得B(4, 0),C(0,-2).2将点B(4, 0)代入y 1 x2 bx 2 ,得 8+4b-2=0.解得 3b .2 2所以抛物线的解析式为 1 2 3 2 1 ( 1)( 4)y x x x x .所以A(-1, 0).2 2 2(2)如图 2,由A(-1, 0)、B(4, 0)、C(0,-2),可得 tan∠CAO=tan∠BCO=2.又因为∠CAO 与∠ACO 互余,所以∠BCO 与∠ACO 互余.所以△ABC 是直角三角形.过点A、B 分别作x 轴的垂线,不可能存在点M.所以只存在∠AMB=90°的情况,此时点M 在x 轴的下方(如图 3 所示).图 2 图 32如图 3,如果△ABM 和△ABC 相似,那么△ABM ≌△BAC .所以点 M 与点 C 关于抛物线的对称轴对称,点 M 的坐标为(3,-2).(3)矩形 DEFG 有两种情况:1①如图 4,在 AB 边上的顶点有两个,坐标分别为(2, 0)和( ,0) .23②如图 5,在 AB 边上的顶点有一个,坐标为( ,0).2考点伸展第(3)题的解题思路是这样的:在 Rt △ABC 中,AB =5,高 CO =2.情形一,如图 4,F 、G 两点在 AB 上.设 DE =m ,DG =n .根据相似三角形对应高的比等于对应边的比,得 2 .所以 5(2 )n m nm . 2 52 所以 S =mn = 5 2 n n = 5 ( 1)2 5 (2 )n . 2 2所以当 n =1 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面积 最大,最大值是△ABC 面积的一半.情形二,如图 5,点 G 在 AB 上.同样的,设 DE =m ,DG =n .由 BD DG ,得 2 5.所以 2 5 n . m n m BE EA 22 55 所以 S =m n = (2 5 ) m m 2 = 1 ( 5)2 5 m .2 2所以当 m 5 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面 积最大,最大值也是△ABC 面积的一半.此时点 G 为 AB 的中点.图 4 图 53例2017年上海市宝山区中考模拟第25题如图 1,在△ABC 中,∠ACB 为直角,AB=10,∠A=30°,半径为 1 的动圆Q 的圆心从点C 出发,沿着CB 方向以 1 个单位长度/秒的速度匀速运动,同时动点P 从点B 出发,沿着BA 方向也以 1 个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t≤5),以P 为圆心、PB 为半径的⊙P 与AB、BC 的另一个交点分别为E、D,联结ED、EQ.(1)判断并证明ED 与BC 的位置关系,并求当点Q 与点D 重合时t 的值;(2)当⊙P 和AC 相交时,设CQ 为x,⊙P 被AC 解得的弦长为y,求y 关于x 的函数解析式,并求当⊙Q 过点B 时⊙P 被AC 截得的弦长;(3)若⊙P 与⊙Q 相交,写出t 的取值范围.图 1动感体验请打开几何画板文件名“17 宝山 25”,拖动Q 由C 向B 运动,可以体验到,⊙P 与⊙Q 的位置关系依次为外离、外切和相交.思路点拨1.第(1)题Q、D 重合时,根据CQ+BD=BC 列关于t 的方程.2.第(2)题⊙Q 过点B 时,CQ=5-1=4.3.第(3)题求⊙P 与⊙Q 相交,先求临界位置外切时t 的值.图文解析(1)如图 2,根据直径所对的圆周角是直角,可以知道ED⊥BC.在 Rt△ABC 中,AB=10,∠A=30°,所以BC=5.在 Rt△BDE 中,BE=2BP=2t,∠BED=30°,所以BD=t,DE= 3 t.如图 3,当点Q 与点D 重合时,BD+CQ=BC=5.所以 2t=5.解得t=2.5.图 2 图 3(2)如图 4,设⊙P 和AC 相交于M、N 两点.作PH⊥MN 于H,那么MH=NH.在 Rt△PAH 中,PA=10-t,∠A=30°,所以PH=12(10t)t.=5 12在 Rt△PMH 中,PM=PB=t,由勾股定理,得MH2=PM2-PH2= 2 (5 1 )2t t .2 于是得到y=MN=2MH=3t2 20t 100 .4如图 5,当⊙Q 过点B 时,CQ=x=4,此时MN=y=316 20 4 100 =2 7 .图 4 图 5<t≤5.(3)当⊙P与⊙Q相交时,t的取值范围是17974考点伸展第(3)题的解题过程分三步:第一步,罗列三要素.对于圆P,r P=t;对于圆Q,r Q=1;圆心距PQ 需要求一下.如图 6,作PF⊥BC 于F.在Rt△PFQ 中,由勾股定理,得PQ=( 3 )2 (5 3 )2t t .2 2第二步,列方程.如图 7,当⊙P 与⊙Q 外切时,r P+r Q=PQ.所以t 1( 3 t)2 (5 3t)2 .整理,得 2t2-17t+24=0.解得17 97t .2 2 4第三步,写结论.图 6 图 75例2017年上海市崇明区中考模拟第 24题 如图 1,已知抛物线 y =ax 2-2x +c 经过△ABC 的三个顶点,其中点 A (0, 1),点 B (9, 10),AC //x 轴. (1)求这条抛物线的解析式;(2)求 tan ∠ABC 的值;(3)若点 D 为抛物线的顶点,点 E 是直线 AC 上一点,当△CDE 与△ABC 相似时,求 点 E 的坐标.图 1动感体验请打开几何画板文件名“17 崇明 24”,拖动点 E 在点 C 左侧运动,可以体验到,△CDE 与△ABC 相似存在两种情况.思路点拨1.求 tan ∠ABC 的值,首先要将∠ABC 放在某个直角三角形中.作 AB 边上的高 CH 以 后,有两种解法:一种解法是∠BAC =45°为特殊值;另一种解法是一般性的,已知三角形 的三边,作高不设高,设 AH =m .2.探究△CDE 与△ABC 相似,首选的方法是寻找一组等角,然后按照对应边成比例分 两种情况列方程.图文解析 c1,(1)将 A (0, 1)、B (9, 10)两点分别代入 y =ax 2-2x +c ,得81a 18 c 10.1 3 解得 a = ,c =1.所以这条抛物线的解析式为 12 2 1y x x . 3(2)由于 AC //x 轴,抛物线的对称轴为 x =3,所以 C (6, 1).如图 2,作 BM ⊥AC ,垂足为 M .作 CH ⊥AB 于 H .由 A (0, 1)、B (9, 10),可知 AM =BM =9,所以∠BAC =45°,AB =9 2 .在 Rt △ACH 中,AC =6,所以 AH =CH =3 2 .在 Rt △BCH 中,BH =AB -AH =6 2 ,所以 tan ∠ABC = C H B H= 3 2 6 2 = 1 2 . 6(3)由 1 2 2 1 1 ( 3)2 2y x x x ,得顶点D 的坐标为(3,-2).3 3由C(6, 1)、D(3,-2),可知∠ACD=45°,CD=3 2 .当点E 在点C 左侧时,∠DCE=∠BAC.分两种情况讨论△CDE 与△ABC 相似:①当C E A B时,CE 9 2 .解得CE=9.此时E(-3, 1)(如图 3 所示).C D A C32 6②CE AC 时,CE 6 .解得CE=2.此时E(4, 1)(如图 4 所示).C D A B329 2图 2 图 3 图 4考点伸展第(2)题还有一般的解法:如图 2,△ABC 的三边长是确定的,那么作AB 边上的高CH,设AH=m,就可以求得AH,进而求得CH、BH 的长.由A(0, 1)、B(9, 10)、C(6, 1),可得AB=9 2 ,BC=3 10 ,AC=6.由CH2=CA2-AH2,CH2=CB2-BH2,得CA2-AH2=CB2-BH2.解方程62 m2 (3 10)2 (9 2 m)2 ,得m 3 2 .于是得到BH=6 2 ,CH=3 2 .7例 2017年上海市崇明区中考模拟第 25题如图,梯形 ABCD 中,AB //CD ,∠ABC =90°,AB =6,BC =8,tan D =2,点 E 是射线 CD 上一动点(不与点 C 重合),将△BCE 沿着 BE 进行翻折,点 C 的对应点记为点 F .(1)如图 1,当点 F 落在梯形 ABCD 的中位线 MN 上时,求 CE 的长;S (2)如图 2,当点 E 在线段 CD 上时,设 CE =x , △BFCS△E F C=y ,求 y 与 x 之间的函数关系式,并写出定义域;(3)如图 3,联结 AC ,线段 BF 与射线 CA 交于点 G ,当△CBG 是等腰三角形时,求 CE 的长.图 1 图 2 图 3动感体验请打开几何画板文件名“17 崇明 25”,拖动点 E 运动,可以体验到,等腰三角形 BCG 存在三种情况,每种情况的点 G 的位置都具有特殊性.思路点拨1.第(1)题点 F 到 AB 的距离等于 BF 的一半,得到∠FBA =30°.2.第(2)题△BFC 与△EFC 的面积比等于 BH 与 EH 的比,通过 Rt △BCH ∽Rt △CEH 得到 BH 与 EH 的比.3.第(3)题先求 CG 的长,再求 CE 的长.延长 BF 交 CD 的延长线于 K ,得到△KEF ∽△KBC .图文解析(1)如图 4,在 Rt △FNB 中,BN = 所以∠B F N =30°. 1 2 B C = 1 2B F ,所以∠FBA =30°.所以∠FBC =60°. 所以∠FBE =∠CBE =30°.= 8 3 3所以 C E =B C t a n 30°=83 3. 图 4(2)如图 5,设 BE 垂直平分 FC 于点 H ,那么∠CBH =∠ECH . 所以△CBH ∽△ECH .S 所以CBH△S△ECHBH = ( )2EH= 64 x 2 S .所以 y = BFC △S△EFC= 2S △CBHC2S △ECH = 64 x2. 定义域是 0<x ≤10.8图 5图 6(3)①如图 6,当 CG =CB =8 时,AG =2.CK CG 延长 BF 交 CD 的延长线于 K .由 4 ,得 CK =4AB =24.AB AG1 3在 Rt △KBC 中,BC =8,CK =24,所以 tan ∠K =.所以 sin ∠K = 10 10. 在 Rt △KEF 中,FE =CE =x ,EK =CK -CE =24-x .由 sin ∠K =F E E K = 10 10,得10 x 24 x 10.解得 x =CE = 8 10 83.②如图 7,当 GC =GB 时,点 G 在 BC 的垂直平分线上,此时四边形 ABCK 为矩形. 在 Rt △EKF 中,sin ∠EKF =B C B K = 8 10 = 4 5,FE =CE =x ,KE =CK -CE =6-x .所以 4 x6 x 5.解得 x =CE = 8 3.③如图 8,当 BG =BC =8 时,由于 BC =BF ,所以 F 、G 重合.此时 BE ⊥AC .由 tan ∠CEB =tan ∠ACB = 3 4 ,得B C C E 3 .所以 CE = 432 3.图 7 图 8考点伸展第(3)题的①、②两种情况,解 Rt △KEF ,可以用勾股定理列方程.9例 2017年上海市奉贤区中考模拟第 24题如图 1,在平面直角坐标系中,抛物线 y =-x 2+bx +c 经过点 A (3, 0)和点 B (2, 3),过点1 3A 的直线与 y 轴的负半轴相交于点 C ,且 tan ∠CAO =(1)求这条抛物线的表达式及对称轴;. (2)联结 AB 、BC ,求∠ABC 的正切值;(3)若点 D 在 x 轴下方的对称轴上,当 S △ABC =S △ADC 时,求点 D 的坐标.图 1动感体验请打开几何画板文件名“17 奉贤 24”,可以体验到,△ABC 是等腰直角三角形,B 、D 两点到直线 AC 的距离相等.思路点拨1.直觉告诉我们,△ABC 是直角三角形.2.第(3)题的意思可以表达为:B 、D 在直线 AC 的两侧,到直线 AC 的距离相等.于 是我们容易想到,平行线间的距离处处相等.图文解析(1)将 A (3, 0)、B (2, 3)两点分别代入 y =-x 2+bx +c ,得93b c 0,4 2b c 3.解得 b =2,c =3.所以 y =-x 2+2x +3.对称轴是直线 x =1.O C OA (2)由 t a n ∠C A O == 1 3,OA =3,得 OC =1.所以 C (0,-1). 由两点间的距离公式,得 AB 2=12+32=10,AC 2=32+12=10,BC 2=22+42=20. 所以∠BAC =90°,且 AB =AC .所以△ABC 是等腰直角三角形,tan ∠ABC =1.(3)因为△ABC 与△ADC 有公共底边 AC ,当 S △ABC =S △ADC 时,B 、D 到直线 AC 的距离相等.如图 2,因为点 B (2, 3)关于点 A (3, 0)的对称点为 E (4,-3),那么过点 E 作 AC 的平行线 与抛物线的对称轴的交点即为所求的点 D .由 A (3, 0)、C (0,-1)可得直线 AC 的解析式为1y x 1.3设直线 DE 的解析式为y x b ,代入点 E (4,-3),得 13 1b .3 3 10所以直线DE 的解析式为11 3 y x .当x=1 时,y=-4.3 3所以点D 的坐标为(1,-4).考点伸展第(2)题也可以构造 Rt△ABM 和 Rt△CAN(如图 3),用“边角边”证明△ABM≌△CAN,从而得到等腰直角三角形ABC.图 2 图 3第(3)题也可以这样思考:如图 4,过点B 与直线AC 平行的直线为y 1 x 7 ,与y 轴交于点F(0, 7)33 3.F、C 两点间的距离为710(1) .3 3把直线AC:y 1 x 向下平移1013 3个单位,得到直线113y x .3 3感谢网友上海交大昂立教育张春莹老师第(3)题的解法:如图 5,如果把BL、KD 分别看作△ABC 和△ADC 的底边,那么它们的高都是A、C 两点间的水平距离,当△ABC 与△ADC 的面积相等时,BL=KD.1 ),K(1,2 ).所以3 ( 1) ( 2) 由直线AC 的解析式可以求得L (y .2,D3 3 3 3解得y D=-4.所以D(1,-4).图 4 图 511例2017年上海市奉贤区中考模拟第25题如图 1,线段AB=4,以AB 为直径作半圆O,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC,过点C 作CD//AB,且CD=PC,过点D 作DE//PC,交射线PB 于点E,PD 与CE 相交于点Q.(1)若点P 与点A 重合,求BE 的长;PD=y,当点P 在线段AO 上时,求y 关于x 的函数关系式及定义域;C E(2)设P C=x,(3)当点Q 在半圆O 上时,求PC 的长.图 1 备用图动感体验请打开几何画板文件名“17 奉贤 25”,拖动点P 在AO 上运动,可以体验到,PD 与CE的比就是菱形的对角线的比,可以转化为PQ 与EQ 的比,进而转化为∠PEQ 的正切值.拖动点P 在OB 上运动,可以体验到,当点Q 落在圆上时,点Q 到AB 的距离等于圆的半径的一半.思路点拨1.四边形PCDE 是菱形,对角线互相垂直平分.2.第(2)题根据∠PEQ 和∠CEO 是同一个角,用正切值得到关系式.3.第(3)题画图的步骤是:点Q 在OC 的中垂线与圆的交点处,延长CQ 交AB 的延长线于点E,过点Q 作CE 的垂线得到点P、D.图文解析(1)如图 2,由CD//AB,DE//PC,得四边形PCDE 是平行四边形.又因为CD=PC,所以四边形PCDE 是菱形.在等腰直角三角形AOC 中,AC= 2 OA=2 2 .当点P 与点A 重合,PE=AC=2 2 .所以BE=AB-PE=4-2 2 .图 2 图 3(2)如图 3,在 Rt△CPO 中,PC=x,CO=2,所以PO=x 2 4 .所以EO=PE-PO=PC-PO=x x 2 4 .12因为PD 与CE 互相垂直平分于Q,所以y=P DC E=PQE Q =tan∠PEQ=tan∠CEO=C OE O.所以y2x x 42x x2 442.定义域是2≤x≤22 .(3)如图 4,作QH⊥AB 于H.因为菱形PCDE 的对边CD 与PE 间的距离保持不变,等于圆的半径CO=2,当点Q在半圆O 上时,QH=12OQ=1.所以∠QOH=30°.此时∠COQ=60°,△COQ 是等边三角形.所以∠DCE=30°.所以∠PCE=30°.在 Rt△COP 中,∠OCP=30°,CO=2,所以PC=C O= 2c o s3032=4 33.图 4 图 5考点伸展在本题情境下,当点P 从A 运动到B 的过程中,求点Q 运动过的路径长.因为点Q 是CE 的中点,所以点Q 的运动轨迹与点E 的运动轨迹平行,点Q 的路径长等于点E 路径长的一半.如图 2,当点P 与点A 重合时,AE=AC=2 2 .如图 5,当点P 与点B 重合时,BE=BC=2 2 .所以点E 运动的路径长为 4,点Q 运动的路径长为 2.13例2017年上海市虹口区中考模拟第24题如图 1,在平面直角坐标系中,抛物线1y x bx c 经过点A(-2, 0)和原点,点B 在4抛物线上且 tan∠BAO=12,抛物线的对称轴与x 轴相交于点P.(1)求抛物线的解析式,并直接写出点P 的坐标;(2)点C 为抛物线上一点,若四边形AOBC为等腰梯形且AO//BC,求点C 的坐标;(3)点D 在AB 上,若△ADP 与△ABO 相似,求点D 的坐标.图 1动感体验请打开几何画板文件名“17 虹口 24”,拖动点D 在AB 上运动,可以体验到,△ADP与△ABO 相似存在两种情况.点击屏幕左下角的按钮“第(2)题”,可以体验到,以A、O、B、C 为顶点的等腰梯形存在三种情况,其中AO//BC 时,点C 与点B 关于抛物线的对称轴对称.思路点拨1.已知二次函数的二次项系数和抛物线与x 轴的两个交点,可以直接写出交点式.2.等腰梯形AOBC 当AO//BC 时,C、B 两点关于抛物线的对称轴对称.3.分两种情况讨论△ADP 与△ABO 相似.由于∠A 是公共角,根据夹∠A 的两边对应成比例,分两种情况列方程,先求AD 的长,再求点D 的坐标.图文解析(1)因为抛物线1y x bx c 与x 轴交于点A(-2, 0)和原点,所以411 1y x(x2)x x.244 2抛物线的对称轴是直线x=-1,点P 的坐标为(-1, 0).1(2)作BH⊥x 轴于H.设点B 的坐标为(x, x(x 2)) .4由 tan∠BAO=B HA H=121,得AH=2BH.所以(x 2) 2x(x 2) .4解得x=2,或x=-2(B、A 重合,舍去).所以B(2, 2).若四边形AOBC 为等腰梯形且AO//BC,那么B、C 关于抛物线的对称轴x=-1 对称.所以点C 的坐标为(-4, 2).图 2 图 314(3)作DE⊥x 轴于E.在 Rt△ADE 中,已知 tan∠A=12,所以DE=55A D,AE=2 55 A D.由于△ADP 与△ABO 有公共角∠A,分两种情况讨论相似:①当AD AB 时,AD 2 5 .所以AD=5 .A P A O1 2此时DE=1,AE=2.所以点D 的坐标为(0, 1).②当A D A O时,A D 2.所以A D= 5 A P A B125 5.此时DE=15,AE=25.所以OE=OA-AE=858 1(,).5 5.所以点D的坐标为图 4 图 5考点伸展如果第(2)题改为以A、O、B、C 为顶点的四边形是等腰梯形,那么就要分三种情况:△AOB 的三边的垂直平分线都可以是等腰梯形的对称轴.第二种情况:如果OC//AB,那么点C 与点O 关于直线AB 的垂直平分线对称.点C 在直线1y x 上,设C(2m, m).2由CB=OA=2,得CB2=4.所以(2m-2)2+(m-2)2=4.解得m=254 2 ,或m=2(此时四边形AOCB 是平行四边形).所以C( , ).5 5第三种情况:如果AC//OB,那么点C 与点A 关于直线OB 的垂直平分线对称.点C 在直线y=x+2 上,设C(n, n+2).由CB=AO=2,得CB2=4.所以(n-2)2+n2=4.解得n=2,或n=0(舍去).所以C(2, 4).图 6 图 715例2017年上海市虹口区中考模拟第25题如图 1,在△ABC 中,AB=AC=5,cos B=45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D,∠BPD=∠BAC.以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E,联结CE,设BD=x,CE=y.(1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出定义域;(3)如果⊙O 与⊙P 相交于点C、E,且⊙O 经过点B,当O P=54时,求AD 的长.图 1动感体验请打开几何画板文件名“17 虹口 25”,拖动点P 运动,可以体验到,△BPD 与△BAC 保持相似,PN 与BD 保持平行.观察度量值,可以体验到,OP=1.25 存在两种情况.思路点拨1.作圆P 的弦CE 对应的弦心距PN,把图形中与∠B 相等的角都标记出来.2.第(3)题的圆O 经过B、C、E 三点,事实上OP 与BD 是平行的.图文解析(1)如图 2,作AM⊥BC 于M,那么BM=CM.在 Rt△ABM 中,AB=5,cos B=B MA B=45,所以BM=4,sin B=35.如图 3,设⊙P 与AB 切于点H,那么 sin B=PHBP=35.所以r8 r 35=.解得r=3.图 2 图 3 图 4 (2)如图 4,由于∠B=∠B,∠BPD=∠BAC,所以△BPD∽△BAC.因为AB=AC,所以PB=PD.如图 5,设圆P 与BC 的另一个交点为F,因此所以F E//B D.所以∠E F C=∠B.P F P E.P B P D在△PBD 中,B P B A 5,所以5 5BP BD x .B D B C888在△EFC 中,由PC=PE=PF,可知∠FEC=90°,所以 sin∠EFC=C EC F3.516所以CF5 CE 5 y .所以 PC = 13 3 2 CF = 5 6y .由 BC =BP +PC =8,得5 x 5 y .整理,得 48 3 y x .定义域是 5<x < 64886545.(3)因为⊙O 经过 B 、C 、E 三点,所以圆心 O 是 BC 和 CE 的垂直平分线的交点. 如图 6,设 CE 的中点为 N ,那么 OP ⊥CE 于 N . 所以 OP //FE //BA .所以 cos ∠OPM =cos B = 4 5 .当 OP = 5 4时,MP =1.①如图 6,当 P 在 M 右侧时,BP =4+1=5.此时 BD = 所以 A D =B D -B A =8-5=3.8 5BP =8.②如图 7,当 P 在 M 左侧时,BP =4-1=3.此时 BD = 8 5 B P = 24 5.2 4 所以 AD =BA -BD = 5 = 51 5.图 5 图 6 图 7考点伸展第(2)题不证明 FE //BA 的话,可以证明∠CPN =∠B .如图 8,由于∠CPE =∠B +∠D =2∠B ,∠CPE =2∠CPN ,所以∠CPN =∠B .在 Rt △CPE 中, 1 2 3 5 C E =PC .所以 PC =5 6 C E = 5 6 5 y .所以 BP =8 y .6 在△BPD 中, 1 2 B D = 4 5 BP .所以 1 x 4 5 y .整理,得 48 3 (8 ) y x .2 5 6 5 4定义域中 x = 64 5的几何意义如图 9 所示.图 8 图 917例 2017年上海市黄浦区中考模拟第 24题如图 1,点 A 在函数 y4(x >0)的图像上,过点 A 作 x 轴和 y 轴的平行线分别交函 x数 y 1的图像于点 B 、C ,直线 BC 与坐标轴的交点为 D 、E . x(1)当点 C 的横坐标为 1 时,求点 B 的坐标;(2)试问:当点 A 在函数 y4(x >0)的图像上运动时,△ABC 的面积是否发生变 x 化?若不变,请求出△ABC 的面积;若变化,请说明理由;(3)试说明:当点 A 在函数 y4(x >0)的图像上运动时,线段 BD 与 CE 的长始终 x相等.图 1动感体验请打开几何画板文件名“17 黄浦 24”,拖动点 A 运动,可以体验到,△DBM 与△CEN 保持全等,MN 与 BC 保持平行.思路点拨1.设点 A 的横坐标为 m ,A 、C 两点的横坐标相等,A 、B 两点的纵坐标相等,用 m 表 示 A 、B 、C 三点的坐标和 AB 、AC 的长.2.证明 BD =CE ,因为四点共线,只要证明 B 、D 两点间的竖直距离等于 C 、E 两点间 的竖直距离就可以了.图文解析(1)当点 C 的横坐标为 1 时,C (1, 1),A (1, 4).由 1 x4 ,得x 1 .所以点 B 的坐标为(1 ,4) 4 4 . (2)△ABC 的面积为定值.计算如下:4 如图 2,设点 A 的坐标为(m , ) m 1 ,那么 C (m , ) mm 4 ,B ( , ). 4 m3m 所以 A B = 4 ,AC = 3 m .所以 S △ABC = 1 2 A B A C = 1 3 3 = m2 4 m9 8 . (3)如图 3,延长 AB 交 y 轴于 M ,延长 AC 交 x 轴于 N .在 Rt △DBM 中,tan ∠DBM =tan ∠ABC = A C A B = 3 3m = m 44 m 2 ,BM = m 4,所以DM=BM tan∠DBM=m44=m21m.所以DM=CN.18又因为 sin∠DBM=sin∠CEN,所以DB=CE.图 2 图 3考点伸展如图 4,第(2)题中,面积为定值的有:矩形AMON、△ABC、△BOM、△CON,所以△BOC 的面积也为定值.如图 5,联结MN,那么MN 与BC 保持平行,这是因为M B N C 1.M A N A 4还有一个有趣的结论,随着点A 的运动,直线MN 与双曲线y 1(x>0)保持相切.x直线MN 的解析式为44,与y1y x 联立方程组,消去y,得m m x214 4x.x m m2整理,得(2x-m)2=0.所以直线MN 与双曲线有一个交点,保持相切.感谢网友上海交大昂立教育张春莹老师提供的第(3)题的简练解法:如图 4,因为B D B M 1,C E C N 1,所以B D=C E.B C B A3C B C A 3图 4 图 519例2017年上海市黄浦区中考模拟第25题已知 Rt△ABC 斜边AB 上的D、E 两点满足∠DCE=45°.(1)如图 1,当AC=1,BC= 3 ,且点D 与点A 重合时,求线段BE 的长;(2)如图 2,当△ABC 是等腰直角三角形时,求证:AD2+BE2=DE2;(3)如图 3,当AC=3,BC=4 时,设AD=x,BE=y,求y 关于x 的函数关系式,并写出定义域.图 1 图 2 图 3动感体验请打开几何画板文件名“17 黄浦 25”,可以体验到,四边形CMEN 是正方形.点击屏幕左下方的按钮“第(2)题”,可以体验到,直角三角形DEF 的边FD=AD,FE=BE.点击按钮“第(3)题”,可以体验到,△CDP∽△ECQ.思路点拨1.第(1)题过点E 向两条直角边作垂线段,围成一个正方形,然后根据对应线段成比例求正方形的边长,再得到BE 的长等于正方形边长的 2 倍.2.第(2)题的目标是把AD、BE 和DE 围成一个直角三角形.经典的解法有翻折和旋转两种.图文解析(1)当AC=1,BC= 3 时,AB=2,∠B=30°.如图 4,作EM⊥BC 于M,作EN⊥AC 于N,那么四边形CMEN 是正方形.设正方形的边长为a.由EM BM,得a 3 a .AC BC 1 3解得 3 3a .2所以BE=2EM=3 3 .图 4【解法二】如图 4,因为1C B E MS C B△C B E21S C A E N C A△C B E2S B E,△C B ES E A△C B E,所以C B B E.C A E A.解得BE=3 3 .所以3B E12B E20(2)如图5,以CE 为对称轴,构造△CFE≌△CBE,那么FE=BE,∠CFE=∠B=45°.联结DF.由“边角边”证明△CFD≌△CAD,所以FD=AD,∠CFD=∠A=45°.所以△DEF 是直角三角形,FD2+FE2=DE2.所以AD2+BE2=DE2.【解法二】如图 6,绕点C 将△CBE 逆时针旋转 90°得到△CAG,那么AG=BE,CE =CG,∠CAG=∠B=45°.由“边角边”证明△CDG≌△CDE,所以DG=DE.在 Rt△GDA 中,AD2+AG2=DG2.所以AD2+BE2=DE2.图 5 图 6(3)如图 7,作CH⊥AB 于H.在 Rt△ABC 中,AC=3,BC=4,所以AB=5.于是可得CH 12 ,BH 16 ,9AH .5 5 5所以DH 9 x,16EH y .5 5如图 8,以H 为旋转中心,将点D 逆时针旋转 90°得到点P,将点E 顺时针旋转 90°得到点Q.于是可得△CDP∽△ECQ.由PD QC,得PD QE PC QC .PC QE所以2(9 x) 2(16 y ) 12 (9 x )12 (16 y )5 5 5 5 5 5.整理,得2860xy5x 21.157 定义域是0≤x≤15 7.当B、E 重合时x=.图 7 图 821考点伸展第(3)题解法多样,再介绍三种解法:如图 9,过点C 作AB 的平行线KL.构造等腰直角三角形KDD′和LEE′.由△CDE∽△KCD,△CDE∽△LEC,得△KCD∽△LEC.所以KC DK,即KC CL=LE DK .LE CL所以12 (9 )12 (16 ) 12 2 12 2x y55555 5.整理即可.如图 10,分别以CD、CE 为对称轴,作CH 的对应线段CK、CL,再围成正方形CKRL.在 Rt△DER 中,由DR2+ER2=DE2,得2 2129121 6(x)(y)(5x y)25555.整理即可.如图 11,类似第(2)题的第一种解法,在 Rt△A′B′T 中,A′B′=CB-CA=1,所以A′T=35 ,B′T= 4 5.在 Rt△DET 中,DE=5-x-y,TE=y 4,T D= 3x ,由勾股定理,得5 52 4 23 2(5x y ) (y ) (x ) .整理即可.5 5图 9 图 10 图 1122例2017年上海市嘉定区中考模拟第24题如图 1,在平面直角坐标系中,已知点A 的坐标为(3, 1),点B 的坐标为(6, 5),点C 的坐标为(0, 5),某二次函数的图像经过A、B、C 三点.(1)求这个二次函数的解析式;(2)假如点Q 在该二次函数图像的对称轴上,且△ACQ 是等腰三角形,请直接写出点Q 的坐标;(3)如果点P 在(1)中求出的二次函数的图像上,且 tan∠PCA=12,求∠PCB 的正弦值.图 1动感体验请打开几何画板文件名“17 嘉定 24”,可以体验到,当AD⊥AC,且AC=2AD 时,点D 的位置是确定的,射线CD 与抛物线的交点就是点P.思路点拨1.由B、C 两点的坐标可知抛物线的对称轴是直线x=3,再由点A 的坐标可知点A 就是抛物线的顶点,因此设顶点式比较简便.2.分三种情况讨论等腰三角形ACQ:AQ=AC,CQ=CA,QA=QC.3.第(3)题的解题策略是:根据 tan∠PCA=12,过点A 作AC 的垂线,在垂线上截取AD=12AC,那么点P 就是射线CD 与抛物线的交点,∠DCB 就是∠PCB.不用求点P的坐标,求点D 的坐标就好了.图文解析(1)由B(6, 5)、C(0, 5),可知抛物线的对称轴是直线x=3.由A(3, 1),可知点A 是抛物线的顶点.设二次函数的解析式为y=a(x-3)2+1,代入点B(6, 5),得 9a+1=5.4 4 4 8解得a .所以y (x 3)2 1x 2 x 5.9 9 9 33 3(2)点Q 的坐标为(3, 6),(3,-4),(3, 9)或(3, )8.(3)如图 2,绕着点A 将线段AC 的中点旋转 90°得到点D,那么射线CD 与抛物线的交点就是要求的点P.当点D 在CA 左侧时,射线CD 与抛物线没有交点.如图 3,当点D 在CA 右侧时,作DE⊥x 轴于E,那么∠DCE 就是∠PCB.过点A 作x 轴的平行线交y 轴于M,过点D 作DN⊥AM 于N.CM MA AC由△CMA∽△AND,得 2 .AN ND DA所以A N 1C M ,1 32N D M A .22 223在 Rt△CDE 中,CE=MA+AN=3+2=5,ED=CM-ND=3 5 4,2 2所以 tan∠DCE=E DC E=12.所以 sin∠DCE=55,即 sin∠PCB=55.图 2 图 3考点伸展第(2)题分三种情况讨论等腰三角形ACQ:①如图 4,当AQ=AC=5 时,以A 为圆心、以AC 为半径的圆与对称轴有两个交点,所以点Q 的坐标为(3, 6) 或(3,-4).②如图 5,当CQ=CA 时,点C 在AQ 的垂直平分线上,此时点Q 的坐标为(3, 9).③如图 6,当QA=QC 时,点Q 在AC 的垂直平分线上,此时1 4A C A Q.2 5所以AQ=58AC =2583 3.此时点Q 的坐标为(3, )8.图 4 图 5 图 6 24例2017年上海市嘉定区中考模拟第25题已知AB=8,⊙O 经过点A、B,以AB 为一边画平行四边形ABCD,另一边CD 经过点O(如图 1).以点B 为圆心,BC 长为半径画弧,交线段OC 于点E(点E 不与点O、点C 重合).(1)求证:OD=OE;(2)如果⊙O 的半径长为 5(如图 2),设OD=x,BC=y,求y 与x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为 5,联结AC,当BE⊥AC 时,求OD 的长.图 1 图 2 备用图动感体验请打开几何画板文件名“17 嘉定 25”,拖动点D 运动,可以体验到,四边形ABED 保持等腰梯形的形状,△BCE 保持等腰三角形的形状,垂足H 的位置保持不变,MH 的位置保持不变.双击按钮“AC⊥BE”,可以体验到,点C 恰好落在圆上,MH 等于EC 与AB 和的一半.思路点拨1.根据等腰梯形是轴对称图形,很容易知道点O 是DE 的中点.2.第(2)题中,等腰三角形BCE 的高BH 为定值,先用x 表示EC,再用勾股定理就可以表示BC 了.3.第(3)题如何利用BE⊥AC,常规的方法是过点C 作BE 的平行线得到直角三角形.图文解析(1)如图 3,因为四边形ABCD 是平行四边形,所以AD=BC.又因为BE=BC,所以AD=BE.所以四边形ABED 是等腰梯形.因为圆心O 在弦AB 的垂直平分线上,所以点O 是上底DE 的中点,即OD=OE.图 3 图 425例2017年上海市静安区中考模拟第24题如图 1,已知二次函数 1 2y x bx c 的图像与x 轴的正半轴交于点A(2, 0)和点B,2与y 轴交于点C,它的顶点为M,对称轴与x 轴相交于点N.(1)用b 的代数式表示点M 的坐标;(2)当 tan∠MAN=2 时,求此二次函数的解析式及∠ACB 的正切值.图 1动感体验请打开几何画板文件名“17 静安 24”,拖动点N 运动,观察∠MAN 的正切值的度量值,可以体验到,当 tan∠MAN=2 时,△OBC 是等腰直角三角形.思路点拨1.第(1)题分三步:根据抛物线的解析式写出对称轴x=b;代入点A 的坐标,用b表示c;求x=b 时y 的值,得到顶点的纵坐标.2.第(2)题先根据 tan∠MAN=2 求b 的值,确定点B、C 的坐标,再作BC 边上的高AH,解直角三角形ABH 和直角三角形ACH.图文解析(1)由 1 2y x bx c ,得抛物线的对称轴为直线x=b.2将点A(2, 0)代入 1 2y x bx c ,得-2+2b+c=0.所以c=2-2b.2当x=b 时, 1 2 2 2 1 2 2 2 1 ( 2)2y x bx b b b b .2 2 2所以抛物线的顶点M 的坐标可以表示为( , 1 ( 2)2 )b b .2MN(2)当 tan∠MAN=2 时, 2 ,即MN=2AN.AN解方程1 ( 2)2 2( 2)b b ,得b=6,或b=2(与A 重合,舍去).2此时抛物线的解析式为 1 2 6 10y x x ,A(2, 0),B(6, 0),C(0,-10).2所以AB=8,OB=OC=10.所以BC=10 2 ,∠B=45°.27作AH⊥BC 于H,那么AH=BH=4 2 .在 Rt△ACH 中,CH=BC-BH=6 2 ,所以 tan∠ACB=A HC H=23 .图 2考点伸展第(2)题上面的解法是利用“边角边”,作高先求高.也可以利用“边边边”,作高不设高.由A(2, 0),B(6, 0),C(0,-10),得AB=8,BC=10 2 ,AC=104 .设CH=m,那么BH=10 2 m.由AH2=AC2-CH2,AH2=AB2-BH2,得AC2-CH2=AB2-BH2.解方程( 104)2 m2 82 (10 2 m)2 ,得m CH 6 2 .所以AH2=AC2-CH2=( 104)2 (6 2)2 =32.所以AH=4 2 .28例2017年上海市静安区中考模拟第25题如图 1,已知⊙O 的半径OA 的长为 2,点B 是⊙O 上的动点,以AB 为半径的⊙A 与线段OB 相交于点C,AC 的延长线与⊙O 相交于点D.设线段AB 的长为x,线段OC 的长为y.(1)求y 关于x 的函数解析式,并写出定义域;(2)当四边形ABDO 是梯形时,求线段OC 的长.图 1图文解析(1)如图 1,因为OA=OB,所以∠OAB=∠B.因为AC=AB,所以∠ACB=∠B.所以∠OAB=∠ACB.所以△OAB∽△ACB.所以B O B A,即2xB A B Cx 2 y.整理,得 2 1 2y x .定义域是 0≤x≤2.x=2 的几何意义如图 2 所示.2图 1 图 2(2)梯形ABDO 存在两种情况:①如图 3,当AB//OD 时,A B C B,即x2y.整理,得(x+2)y=4.D O C O2y代入y 2 1 x2 ,得( 2)(2 1 2 ) 4x x .整理,得x2+2x-4=0.2 2解得x= 5 1,或x= 5 1(舍去).所以CO=y=2 1 2 =2 1 ( 5 1)2x= 5 1.事实上,此时点C 是线段OB 的黄2 2金分割点.。
普陀区2016学年度第二学期初三质量调研数 学 试 卷(时间:100分钟,满分:150分)一、选择题(本大题共6题,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的, 选择正确项的代号并填涂在答题纸的相应位置上]1.下列计算正确的是( )A. 236a a a ⋅=B. 33a a a ÷=C. 333a b ab +=D. ()236a a =2.是同类二次根式,那么这个根式是( )A. B. C. D. 3.在学校举办的“中华诗词大赛”中,有11名选手进入决赛,他们的决赛成绩各不相同,其中一名参赛选手想知道自己是否能进入前6名,他需要了解这11名学生成绩的( )A. 中位数B. 平均数C. 众数D. 方差4.如图1,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果50A ∠=°,那么12∠+∠的大小为( )A. 130°B. 180°C. 230°D. 260°5.如图2,在△ABC 中,中线AD 、CE 交于点O ,设AB a = ,BC b = ,那么向量AO 用向量a 、b 表示为( ) A. 12a b + B. 2133a b + C. 2233a b + D, 1124a b +6.在△ABC 中,6AB AC ==,2cos 3B ∠=,以点B 为圆心,AB 为半径作圆B ,以点C 为圆心,半径长为13作圆C ,圆B 与圆C 的位置关系是( )A. 外切B. 相交C. 内切D. 内含二、填空题(本大题共12题,每题4分,满分48分)7.分解因式:34a a −=____________8.方程x =____________9.不等式组23030x x −< ≥的解集是____________ 10.函数y =的定义域是____________ 11.如果关于x 的方程230x x c −+=没有实数根,那么c 的取值范围是____________12.已知反比例函数k y x=(k 是常数,0k ≠)的图像在第二、四象限,点()11,A x y 和点()22,B x y 在函数的图像上,当120x x <<时,可得1y ______2y (填“>”、“=”、“<”)13.一次抽奖活动设置了翻奖牌(图3展示的分别是翻奖牌的正反两面),抽奖时,你只能看到正面,你可以在9个数字中任意选中一个数字,可见抽中一副球拍的概率是19,那么请你根据题意写出一个事件,使这个事件发生的概率是13,这个事件是____________14.正八边形的中心角等于____________度15.如图4,在△ABC 中,D 、E 分别是边AB 、AC 上的点,如果12ADAE DB EC ==,那么△ADE 与△ABC 周长的比是____________16某班学生参加环保知识竞赛,已知竞赛得分都是整数,把参赛学生的成绩整理后分为6个小组,画出竞赛成绩的频数分布直方图(如图5所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是____________17.一个滑轮起重装置如图6所示,滑轮的半径是10cm ,当滑轮的一条半径OA 绕轴心O 按逆时针方向旋转的角度为120°时,重物上升____________cm (结果保留π)18.如图7,将△ABC 绕点B 按逆时针方向旋转得到△ EBD ,点E 、点D 分别与点A 、点C 对应,且点D 在边AC 上,边DE 交边AB 于点F ,△BDC ∽△ABC ,已知BC =,5AC =,那么△DBF的面积等于____________三、解答题(本大题共7题,满分78分)19.(本题满分10分) 计算:()32017113sin 602− +−+−°20.(本题满分10分)解方程组:22320449x y x xy y −+= ++=21.(本题满分10分)在平面直角坐标系xOy 中,已知正比例函数的图像与反比例函数8y x=的图像交于点(),4A m . (1)求正比例函数的解析式;(2)将正比例函数的图像向下平移6个单位得到直线l ,设直线l 与x 轴的交点为B ,求∠ABO 的正弦值.22.(本题满分10分)上海首条中运量公交线路71路已正式开通,这线路西起沪青平公路申昆路,东至延安东路中山东一路,全长17.5千米,71路车行驶于专设的公交车道,又配以专用的公交信号灯,经测试,早晚高峰时段71路车在专用车道内行驶的平均速度比在非专用车道每小时快6千米,因此单程可节省时间22.5分钟,求早晚高峰时段71路车在专用车道内行驶的平均车速.23.(本题满分12分)已知:如图8,在平行四边形ABCD 中,AC 为对角线,E 是边AD 上一点,BE ⊥AC 交AC 于点F ,BE 、CD 的延长线交于点G ,且∠ABE =∠CAD .(1)求证:四边形ABCD 是矩形;(2)如果AE EG =,求证:2AC BC BG =⋅.24.(本题满分12分)如图9,在平面直角坐标系xOy 中,二次函数()220y x x m m =−+>的对称轴与比例系数为5的反比例函数图像交于点A ,与x 轴交于点B ,抛物线的图像与y 轴交于点C ,且3OC OB =.(1)求点A 的坐标;(2)求直线AC 的表达式;(3)点E 是直线AC 上一动点,点F 在x 轴上方的平面内,且使以A 、B 、E 、F 为顶点的四边形是菱形,直接写出点F 的坐标.25.(本题满分14分)如图10,半圆O 的直径10AB =,有一条定长为6的动弦CD 在弧AB 上滑动(点C 、点D 分别不与点A 、点B 重合),点E 、F 在AB 上,EC CD ⊥,FD CD ⊥.(1)求证:EO OF =;(2)联络OC ,如果△ECO 中有一个内角等于45°,求线段EF 的长;(3)当动弦CD 在弧AB 上滑动时,设变量CE x =,四边形CDFE 面积为S ,周长为l ,问:S 与l 是否分别随着x 的变化而变化?试用所学的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.参考答案1-6:DCACBB7、()()22a a a +−8、1x =9、302x ≤< 10、5x ≠11、94c > 12、<13、抽中一张唱片14、4515、1:316、80%17、203π 18、451619、9−20、11x y = = 或13515x y =− =−21、(1)2y x =,(222、20千米/小时 23、(1)证明略;(2)证明略.24、(1)(1,5)A ;(2)23y x =+;(3)(1或95,42 25、(1)证明略;(2;(3)面积为定值,24S =;14l =+定义域:08x <<。
xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图11-1,已知梯形ABCD中,AD∥BC,∠D=90°,BC=5,CD=3,cotB=1,P是边BC上的一个动点(不与点B、点C重合),过点P作射线PE,使射线PE交射线BA于点E,∠BPE=∠CPD。
(1)如图11-2,当点E与点A重合时,求∠DPC的正切值;(2)当点E落在线段AB上时,设BP=,BE=,试求与之间的函数解析式,并写出的取值范围;(3)设以BE长为半径的和以AD长为直径的相切,求BP的长。
试题2:如图10,在平面直角坐标系中,二次函数的图像经过点,,,点D是点C关于原点的对称点,联结BD,点E是轴上的一个动点,设点E的坐标为,过点E作轴的垂线交抛物线于点P。
(1)求这个二次函数解析式;(2)当点E在线段OB上运动时,直线交BD于点Q,当四边形CDQP是平行四边形时,求的值;评卷人得分(3)是否存在点P,使△BDP是不以BD为斜边的直角三角形,如果存在,请直接写出点P的坐标;如果不存在,请说明理由。
试题3:如图9,在△ABC中,点D、E分别在边BC、AC上,BE、AD相交于点G,EF∥AD交BC于点F,且,联结FG。
(1)求证:FG∥CE;(2)设∠BAD=∠C,求证:四边形AGFE是菱形。
试题4:本市为了给市容营造温馨和谐的夜间景观,准备在一条宽7.4米的道路上空利用轻轨桥墩,安装呈大中小三个同心圆的景观灯带,如图8,已知EF表示路面宽度,轻轨桥墩上设有两处限高标志,分别表示等腰梯形的下底边到路面的距离为2.9米和等腰梯形的上底边到路面的距离为3.8米,大圆直径等于AD,三圆半径的比等于1:2:3.试求这三个圆形灯带的总长为多少米?(结果保留π)(参考数据:)试题5:已知,如图7,在平面直角坐标系中,直线与轴交于点A,在第一象限内与反比例函数图像交于点B,BC垂直于轴,垂足为点C,且OC=2OA。
2016-2017年上海市普陀区高三下学期质量调研(二模)数学一、填空题:共12题1. 计算:.【答案】【解析】由题意,得;故答案为1.2. 函数的定义域为.【答案】【解析】要使有意义,须,即,解得或,即函数的定义域为;故答案为.3. 若,则.【答案】【解析】因为,所以,即,即,解得或,又因为,所以;故答案为3.4. 若复数表示虚数单位),则.【答案】【解析】因为,所以;故答案为.5. 曲线为参数)的两个顶点之间的距离为.【答案】【解析】因为,则,即曲线的两个顶点为,即两个顶点之间的距离为2;故答案为2.6. 若从一副张的扑克牌中随机抽取张,则在放回抽取的情形下,两张牌都是的概率为.(结果用最简分数表示).【答案】【解析】由题意,得从一副张的扑克牌中随机抽取张,则在放回抽取的情形下,两张牌都是K的概率为;故答案为.7. 若关于的方程在区间上有解,则实数的取值范围是.【答案】【解析】将化成,即,因为,所以,,即;故答案为.8. 若一个圆锥的母线与底面所成的角为,体积为,则此圆锥的高为.【答案】【解析】设圆锥的高为,底面圆的半径为,因为圆锥的母线与底面所成的角为,体积为,所以,解得;故答案为5.9. 若函数)的反函数为,则= .【答案】【解析】令,即,解得或,即或(舍);故答案为.10. 若三棱锥的所有的顶点都在球的球面上,平面,,,则球的表面积为.【答案】【解析】由题意,得三棱锥是长方体的一部分(如图所示)球是该长方体的外接球,其中,设球的半径为,则,则球O的表面积为;故答案为.11. 设,若不等式对于任意的恒成立,则的取值范围是.【答案】【解析】因为不等式对于任意的恒成立,所以不等式对于任意的恒成立,令,即对于任意的恒成立,因为,所以,则,即,解得或(舍);故答案为.【方法点晴】本题主要考查三角函数的有界性以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数恒成立(可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数.本题是利用方法③求得的最大值.12. 在△中,、分别是、的中点,是直线上的动点.若△的面积为,则的最小值为.【答案】【解析】因为、分别是、的中点,且是直线上的动点,所以到直线的距离等于到直线的距离的一半,所以,则,所以,则,由余弦定理,得,显然,都为正数,所以,,,令,则,令,则,当时,,当时,,即当时,取得最小值为;故答案为.二、选择题:共4题13. 动点在抛物线上移动,若与点连线的中点为,则动点的轨迹方程为A. B. C. D.【答案】B【解析】设,因为与点连线的中点为,所以,又因为点在抛物线上移动,所以,即;故选B.14. 若、,则“”是“”成立的A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件【答案】D【解析】因为,所以“”不是“”成立的充分条件,若,则不存在,所以“若,,则”为真命题,即“”不是“”成立的必要条件,所以“”是“”成立的既非充分也非必要条件;故选D.15. 设、是不同的直线,、是不同的平面,下列命题中的真命题为A. 若,则B. 若,则C. 若,则D. 若,则【答案】C【解析】若,则相交或平行,故A错误,若,则相交或平行,故B错误,若,则由面面垂直的判定定理得,故D错误、C正确;故选C.【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.16. 关于函数的判断,正确的是A. 最小正周期为,值域为,在区间上是单调减函数B. 最小正周期为,值域为,在区间上是单调减函数C. 最小正周期为,值域为,在区间上是单调增函数D. 最小正周期为,值域为,在区间上是单调增函数【答案】C............三、解答题:共5题17. 在正方体中,、分别是、的中点.(1)求证:四边形是菱形;(2)求异面直线与所成角的大小 (结果用反三角函数值表示) .【答案】(1)证明见解析;(2).【解析】试题分析:(1)建立空间直角坐标系,如图所示:先证其是平行四边形,再根据空间向量模相等说明邻边相等即可;(2)可得,利用空间向量夹角余弦公式可得结果.试题解析:(1)设正方体的棱长为1,建立空间直角坐标系,如图所示:则,,,,所以,即且,故四边形是平行四边形又因为,所以故平行四边形是菱形(2)因为设异面直线与所成的角的大小为所以, 故异面直线与所成的角的大小为.【方法点晴】本题主要考查异面直线所成的角以及空间向量的应用,属于难题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.18. 已知函数、为常数且).当时,取得最大值.(1)计算的值;(2)设,判断函数的奇偶性,并说明理由.【答案】(1);(2)偶函数.【解析】试题分析:首先,根据辅助角公式得到,然后根据最值建立等式,得到,再化简函数.(1)将代入解析式求值;(2)求出解析式,利用奇偶函数定义判断奇偶性.试题解析:(1),其中根据题设条件可得,即化简得,所以即,故所以(2)由(1)可得,,即故所以)对于任意的)即,所以是偶函数.19. 某人上午7时乘船出发,以匀速海里/小时从港前往相距50海里的港,然后乘汽车以匀速千米/小时()自港前往相距千米的市,计划当天下午4到9时到达市.设乘船和汽车的所要的时间分别为、小时,如果所需要的经费(单位:元)(1)试用含有、的代数式表示;(2)要使得所需经费最少,求和的值,并求出此时的费用.【答案】(1);(2).【解析】试题分析:(1)分析题意,先用表示,先用表示,代入,化简即可;(2)求出满足的约束条件,由约束条件画出可行域,要求走得最经济,即求可行域中的最优解,将目标函数看成是一条直线,分析目标函数与直线截距的关系,进而求出最优.试题解析:(1),得,得所以(其中)(2)其中,令目标函数, 可行域的端点分别为则当时,所以(元),此时答:当时,所需要的费用最少,为元.【方法点晴】本题主要考查线性规划的应用及求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.20. 已知曲线,直线经过点与相交于、两点.(1)若且,求证:必为的焦点;(2)设,若点在上,且的最大值为,求的值;(3)设为坐标原点,若,直线的一个法向量为,求面积的最大值.【答案】(1)证明见解析;(2)或;(3).【解析】试题分析:(1)利用两点之间距离公式,即可求得的值,由椭圆的方程,即可求得焦点坐标,即可证必为的焦点;(2)利用两点之间距离公式,根据二次函数的单调性,当时,取最大值,代入即可求得的值;(3)求得直线的方程,代入方程,由韦达定理,弦长公式及点到直线的距离公式,利用基本不等式的性质,即可求得面积的最大值.试题解析:(1),解得,所以点由于,故的焦点为,所以在的焦点上.(2)设,则(其中)对称轴,所以当时,取到最大值,故,即,解得或因为,所以.(3),,将直线方程与椭圆方程联立,消去得,其中恒成立。
一、选择题(每小题3分,共计36分) 1.下列计算正确的是( ) A .(﹣a +b )(﹣a ﹣b )=b 2﹣a 2 B .x +2y =3xyC =0D .(﹣a 3)2=﹣a 52.在中考复习中,老师出了一道题”化简23224x xx x +-++-“.下列是甲、乙、丙三位同学的做法,下列判断正确的是( )甲:原式2222232232284444x x x x x x x x x x x +--+----=-==----()()()(); 乙:原式=(x +3)(x ﹣2)+(2﹣x )=x 2+x ﹣6+2﹣x =x 2﹣4 丙:原式323131222222x x x x x x x x x x +-++-=-=-==++-+++()() 1 A .甲正确 B .乙正确 C .丙正确D .三人均不正确3.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD 边上,请问它们第2015次相遇在( )边上.A .ADB .DC C .BCD .AB4..方程70050020x x =-的解为( ) A .x =0B .x =20C .x =70D .x =505.下列结论正确的是( ) A .如果a >b ,c >d ,那么a ﹣c >b ﹣dB .如果a >b ,那么1a b>C .如果a >b ,那么11a b<D .如果22a b c c<,那么a <b 6.在一次函数y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第( )象限. A .一B .二C .三D .四7.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,则∠BCF 度数为( )A .15°B .18°C .25°D .30°8.如图,▱ABCD 的对角线AC 与BD 相交于点O ,过点O 作OE ⊥AD 于点E ,若AB =4,∠ABC =60°,则OE 的长是( )A B .C .2 D .589.如图,线段BC 的两端点的坐标分别为B (3,8),C (6,3),以点A (1,0)为位似中心,将线段BC 缩小为原来的12后得到线段DE ,则端点D 的坐标为( )A.(1,4) B.(2,4) C.(32,4) D.(2,2)10.知正六边形的边心距是,则正六边形的边长是A.B.C.D.11.如图,将△ABC沿BC边上的高线AD平移到△A′B′C′的位置,已知△ABC的面积为18,阴影部分三角形的面积为2,若AA′=4,则AD的长度为A.2 B.6C.4 D.812.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤二、填空题(每小题3分,共计12分)13.25的平方根是__________,16的算术平方根是__________,﹣8的立方根是__________. 14.设α、β是方程x 2﹣x ﹣2018=0的两根,则α3+2019β﹣2018的值为__________.15.在平面直角坐标系xOy 中,点A (4,3)为⊙O 上一点,B 为⊙O 内一点,请写出一个符合条件要求的点B 的坐标__________.16.如图,在△A 1B 1C 1中,已知A 1B 1=8,B 1C 1=6,A 1C 1=7,依次连接△A 1B 1C 1的三边中点,得到△A 2B 2C 2,再依次连接△A 2B 2C 2的三边中点,得到△A 3B 3C 3,…,按这样的规律下去,△A 2019B 2019C 2019的周长为__________.三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简再求值:24)44222(22--÷+----+x x x x x x x x ,其中x=4tan45°+2cos30°.18.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC△△ECB;(2)求证:OB=OC.19.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)”数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢”A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园”金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.20.如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角45°,再由D 走到E 处测量,DE ∥AC,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).21.如图,一次函数与反比例函数的图象交于点A (﹣4,﹣2)和B (a ,4),直线AB 交y 轴于点C ,连接QA 、O B . (1)求反比例函数的解析式和点B 的坐标:(2)根据图象回答,当x 的取值在什么范围内时,一次函数的值大于反比例函数的值; (3)求△AOB 的面积.22.”莓好河南,幸福家园”,2019年河南省草莓旅游文化节期间,甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,且推出了如下的优惠方案:甲园游客进园需购买20元/人的门票,采摘的草莓六折优惠乙园游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠活动期间,小雪与爸爸妈妈决定选一个周末一同去采摘草莓,若设他们的草莓采摘量为x(千克)(出园时欲将自己采摘的草莓全部购买),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)求y1、y2与x之间的函数关系式;(2)请在图中画出y1与x之间大致的函数图象;(3)若小雪和爸爸妈妈当天所采摘的草莓不少于10千克,则选择哪个草莓园更划算?请说明理由.23.四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结A C.B D.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.24.如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A.B两点,过A.B两点分别作x轴的垂线,垂足分别为点D.点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A.E.F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.答案与解析一、选择题(每小题3分,共计36分) 1.下列计算正确的是( ) A .(﹣a +b )(﹣a ﹣b )=b 2﹣a 2 B .x +2y =3xyC =0D .(﹣a 3)2=﹣a 5【答案】C【解析】A .原式=a 2﹣b 2,故A 错误;B .x 与2y 不是同类项,不能合并,原式=x +2y ,故B 错误;C .原式=0,故C 正确;D .原式=a 6,故D 错误.2.在中考复习中,老师出了一道题”化简23224x xx x +-++-“.下列是甲、乙、丙三位同学的做法,下列判断正确的是( )甲:原式2222232232284444x x x x x x x x x x x +--+----=-==----()()()(); 乙:原式=(x +3)(x ﹣2)+(2﹣x )=x 2+x ﹣6+2﹣x =x 2﹣4 丙:原式323131222222x x x x x x x x x x +-++-=-=-==++-+++()() 1 A .甲正确 B .乙正确 C .丙正确 D .三人均不正确【答案】C【解析】原式2222223226244444x x x x x x x x x x x +--+-+--=+===----()()1,则丙正确.3.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD边上,请问它们第2015次相遇在( )边上.A.AD B.DC C.BC D.AB【答案】C【解析】设正方形的边长为a,因为甲的速度是乙的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,乙行的路程为2a33a132⨯=+,甲行的路程为2a11132⨯=+a,在AD边的中点相遇;②第二次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在CD边的中点相遇;③第三次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在BC边的中点相遇;④第四次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在AB边的中点相遇;⑤第五次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在AD边的中点相遇;…四次一个循环,因为2015=503×4+3,所以它们第2015次相遇在边BC上.故选C .4..方程70050020x x =-的解为( ) A .x =0 B .x =20C .x =70D .x =50【答案】C【解析】去分母得:700x ﹣14000=500x , 移项合并得:200x =14000, 解得:x =70,经检验x =70是分式方程的解. 5.下列结论正确的是( ) A .如果a >b ,c >d ,那么a ﹣c >b ﹣dB .如果a >b ,那么1ab>C .如果a >b ,那么11a b<D .如果22a b c c<,那么a <b 【答案】D【解析】∵c >d ,∴﹣c <﹣d ,∴如果a >b ,c >d ,那么a ﹣c >b ﹣d 不一定成立,∴选项A 不符合题意;∵b =0时,ab 无意义, ∴选项B 不符合题意;∵a >0>b 时,11ab>,∴选项C 不符合题意;∵如果22a b c c<,那么a <b ,∴选项D 符合题意.6.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第( )象限.A.一B.二C.三D.四【答案】D【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.7.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠BCF度数为( )A.15°B.18°C.25°D.30°【答案】D【解析】由题意可得:∠ABC=30°,∵AB∥CF,∴∠BCF=∠ABC=30°.8.如图,▱ABCD的对角线AC与BD相交于点O,过点O作OE⊥AD于点E,若AB=4,∠ABC=60°,则OE的长是( )A B.C.2 D.5 8【答案】A【解析】作CF⊥AD于F,如图所示:∵四边形ABCD是平行四边形, ∴∠ADC=∠ABC=60°,CD=AB=4,OA=OC,∴∠DCF=30°,∴DF 12=CD =2,∴CF =∵CF ⊥AD ,OE ⊥AD ,CF ∥OE ,∵OA =OC ,∴OE 是△ACF 的中位线,∴OE 12=CF =9.如图,线段BC 的两端点的坐标分别为B (3,8),C (6,3),以点A (1,0)为位似中心,将线段BC 缩小为原来的12后得到线段DE ,则端点D 的坐标为( )A .(1,4)B .(2,4)C .(32,4) D .(2,2)【答案】B【解析】∵将线段BC 缩小为原来的12后得到线段DE , ∴△ADE ∽△ABC ,∴12AD DE AB BC ==, ∴点D 是线段AB 的中点,∵A (1,0),B (3,8), ∴点D 的坐标为(2,4),10.知正六边形的边心距是,则正六边形的边长是A .B .C .D .【答案】A【解析】∵正六边形的边心距为,∴OB ,∠OAB =60°,∴ABtan60OB ===︒,∴AC =2AB11.如图,将△ABC 沿BC 边上的高线AD 平移到△A ′B ′C ′的位置,已知△ABC 的面积为18,阴影部分三角形的面积为2,若AA ′=4,则AD 的长度为A .2B .6C .4D .8【答案】B【解析】设AD =x ,则A ′D =x ﹣4,根据平移性质可知△ABC 与阴影部分三角形相似,则222418x x-=(),解得x =6. 12.在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,现给出下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b +c <0;④b ﹣4a =0;⑤ax 2+bx =0的两个根为x 1=0,x 2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤【答案】B【解析】∵抛物线开口向下,∴a <0, ∵2ba-=-2,∴b =4a ,ab >0,∴b ﹣4a =0,∴①错误,④正确, ∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4, ∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b +c >0,∴③错误, 故正确的有②④⑤.故选B . 二、填空题(每小题3分,共计12分)13.25的平方根是__________,16的算术平方根是__________,﹣8的立方根是__________. 【答案】±5,4,﹣2. 【解析】25的平方根是±5,16的算术平方根是4,﹣8的立方根是﹣2.14.设α、β是方程x 2﹣x ﹣2018=0的两根,则α3+2019β﹣2018的值为__________. 【答案】2019【解析】由根与系数关系α+β=1, α3+2019β﹣2018=α3﹣2019α+(2019α+2019β)﹣2018=α3﹣2019α+2019(α+β)﹣2018=α3﹣2019α+2019﹣2018=α3﹣2019α+1=α(α2﹣2019)+1=α(α+2018﹣2019)+1=α(α﹣1)+1=α2﹣α+1=2018+1=2019.15.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标__________.【答案】故答案为:(2,2).【解析】如图,连结OA,OA=5,∵B为⊙O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.16.如图,在△A1B1C1中,已知A1B1=8,B1C1=6,A1C1=7,依次连接△A1B1C1的三边中点,得到△A2B2C2,再依次连接△A2B2C2的三边中点,得到△A3B3C3,…,按这样的规律下去,△A2019B2019C2019的周长为__________.【答案】2018212【解析】∵A 1B 1=8,B 1C 1=6,A 1C 1=7,∴△A 1B 1C 1的周长是8+6+7=21,依次连接△A 1B 1C 1的三边中点,得到△A 2B 2C 2, ∴A 2B 212=A 1B 1=4,B 2C 212=B 1C 1=3,A 2C 212=A 1C 1=3.5, ∴△A 2B 2C 2的周长为4+3+3.5=10.512=⨯21, 同理△A 3B 3C 3的周长1122=⨯⨯21214=,… 所以,△A 2019B 2019C 2019的周长为(12)2018×212018212=.三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简再求值:24)44222(22--÷+----+x x x x x x x x ,其中x=4tan45°+2cos30°. 【答案】见解析.【解析】先根据分式的混合运算顺序和运算法则化简原式,再据特殊锐角三角函数值求得x 的值,代入计算可得.原式=[22x x +-﹣2(2)(2)x x x --]÷42x x -- =(22x x +-﹣2x x -)•24x x --=2x x -•24x x -- =4x x -当x =4tan45°+2cos30°=4×1+2=时,18.如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O . (1)求证:△DBC △△ECB ; (2)求证:OB =OC .【答案】见解析.【解析】(1)根据等腰三角形的性质得到△ECB =△DBC 根据全等三角形的判定定理即可得到结论; 证明:△AB =AC , △△ECB =△DBC ,在△DBC 与△ECB 中,△△DBC △△ECB (SAS );(2)根据全等三角形的性质得到△DCB =△EBC 根据等腰三角形的判定定理即可得到OB =OC证明:由(1)知△DBC△△ECB,△△DCB=△EBC,△OB=OC.19.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)”数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢”A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园”金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.【答案】见解析.【解析】(1)此次调查的总人数为40÷20%=200(人),故答案为:200;(2)D类型人数为200×25%=50(人),B类型人数为200﹣(40+30+50+20)=60(人),补全图形如下:(3)”数学兴趣与培优”所在扇形的圆心角的度数为360°×=108°,故答案为:108°;(4)估计该校喜欢A、B、C三类活动的学生共有2000×=1300(人);(5)画树状图如下:,由树状图知,共有12种等可能结果,其中一男一女的有8种结果,∴刚好一男一女参加决赛的概率=.20.如图所示,某施工队要测量隧道长度BC,AD=600米,AD ⊥BC,施工队站在点D 处看向B,测得仰角45°,再由D 走到E 处测量,DE ∥AC,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【答案】隧道BC 的长度为700米.【解析】作EM ⊥AC 于点M,构建直角三角形,解直角三角形解决问题. 如图,△ABD 是等腰直角三角形,AB=AD=600. 作EM ⊥AC 于点M,则AM=DE=500,∴BM=100.在Rt △CEM 中,tan53°=CM EM ,即600CM =43, ∴CM=800,∴BC=CM -BM=800-100=700(米), ∴隧道BC 的长度为700米. 答:隧道BC 的长度为700米.21.如图,一次函数与反比例函数的图象交于点A (﹣4,﹣2)和B (a ,4),直线AB 交y 轴于点C ,连接QA 、O B . (1)求反比例函数的解析式和点B 的坐标:(2)根据图象回答,当x 的取值在什么范围内时,一次函数的值大于反比例函数的值; (3)求△AOB 的面积.【解析】(1)设反比例函数的解析式为y kx =(k ≠0), ∵反比例函数图象经过点A (﹣4,﹣2),∴﹣24k =-, ∴k =8,∴反比例函数的解析式为y 8x=, ∵B (a ,4)在y 8x =的图象上,∴48a=, ∴a =2,∴点B 的坐标为B (2,4);(2)根据图象得,当x >2或﹣4<x <0时,一次函数的值大于反比例函数的值; (3)设直线AB 的解析式为y =ax +b ,∵A (﹣4,﹣2),B (2,4),∴24a b ⎨+=⎩,解得2b ⎨=⎩,∴直线AB 的解析式为y =x +2,∴C (0,2),∴S △AOB =S △AOC +S △BOC 12=⨯2×41222+⨯⨯=6. 22.”莓好河南,幸福家园”,2019年河南省草莓旅游文化节期间,甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,且推出了如下的优惠方案: 甲园 游客进园需购买20元/人的门票,采摘的草莓六折优惠乙园游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠活动期间,小雪与爸爸妈妈决定选一个周末一同去采摘草莓,若设他们的草莓采摘量为x (千克)(出园时欲将自己采摘的草莓全部购买),在甲采摘园所需总费用为y 1(元),在乙采摘园所需总费用为y 2(元),图中折线OAB 表示y 2与x 之间的函数关系.(1)求y 1、y 2与x 之间的函数关系式;(2)请在图中画出y 1与x 之间大致的函数图象;(3)若小雪和爸爸妈妈当天所采摘的草莓不少于10千克,则选择哪个草莓园更划算?请说明理由. 【解析】(1)根据题意,结合图象可知:甲乙两园的草莓单价为:300÷10=30(元/千克), y 1=30×0.6x +20×3=18x +60; 由图可得,当0≤x ≤10时,y 2=30x ,当x >10时,设y 2=kx +b ,将(10,300)和(20,450)代入y 2=kx +b ,20450k b ⎨+=⎩,解得150b ⎨=⎩, ∴当x >10时,y 2=15x +150,∴2300101515010x x y x x ≤≤⎧=⎨+>⎩()();(2)y 2与x 之间大致的函数图象如图所示:(3)y 1<y 2(x ≥10),即18x +60<15x +150,解得x <30; y 1=y 2,即18x +60=15x +150,解得x =30; y 1>y 2,即18x +60>5x +150,解得x >30,答:当草莓采摘量x 的范围为:10≤x <30时,甲采摘园更划算; 当草莓采摘量x =30时,两家采摘园所需费用相同; 当草莓采摘量x 的范围为x >30时,乙采摘园更划算.23.四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结A C.B D .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交与点P .(1)求证:四边形ADCH 是平行四边形; (2)若AC =BC ,PB =PD ,AB +CD =2(+1)①求证:△DHC 为等腰直角三角形; ②求CH 的长度.【答案】见解析.【解析】本题是圆的综合题,考查了圆的有关知识,平行四边形的判定和性质,相似三角形的判定和性质等知识,求CD的长度是本题的关键.(1)由圆周角的定理可得∠DBC=∠DAC=∠ACH,可证AD∥CH,由一组对边平行且相等的是四边形是平行四边形可证四边形ADCH是平行四边形;(2)①由平行线的性质可证∠ADH=∠CHD=90°,由∠CDB=∠CAB=45°,可证△DH为等腰直角三角形;②通过证明△ADP∽△CBP,可得,可得,通过证明△CHD∽△ACB,可得,可得AB=CD,可求CD=2,由等腰直角三角形的性质可求CH的长度.证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD∴∠DAC=∠ACH,∴AD∥CH,且AD=CH∴四边形ADCH是平行四边形(2)①∵AB是直径∴∠ACB=90°=∠ADB,且AC=BC∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°∵AD∥CH∴∠ADH=∠CHD=90°,且∠CDB=45°∴∠CDB=∠DCH=45°,∴CH=DH,且∠CHD=90°∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P,∴△ADP∽△CBP∴,且PB=PD,∴,AD=CH,∴∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°∴△CHD∽△ACB∴AB=CD∴,∵AB+CD=2(+1),∴CD+CD=2(+1)∴CD=2,且△DHC为等腰直角三角形,∴CH=24.如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A.B两点,过A.B两点分别作x轴的垂线,垂足分别为点D.点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A.E.F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.【答案】见解析.【解析】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m的方程;(3)分0<t≤4,4<t≤7,7<t≤8三种情况,利用平行四边形的性质找出关于t的一元二次方程.(1)将(0,0),(8,0)代入y=﹣x2+bx+c,得:,解得:,∴该二次函数的解析式为y=﹣x2+x.(2)当y=m时,﹣x2+x=m,解得:x1=4﹣,x2=4+,∴点A的坐标为(4﹣,m),点B的坐标为(4+,m),∴点D的坐标为(4﹣,0),点C的坐标为(4+,0).∵矩形ABCD为正方形,∴4+﹣(4﹣)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.(3)以A.E.F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将A(2,4),C(6,0)代入y=kx+a,得:,解得:,∴直线AC的解析式为y=﹣x+6.当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,∴点E的坐标为(2+t,﹣t2+t+4),点F的坐标为(2+t,﹣t+4).∵以A.E.F、Q四点为顶点构成的四边形为平行四边形,且AQ∥EF,∴AQ=EF,分三种情况考虑:①当0<t≤4时,如图1所示,AQ=t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t=﹣t2+t,解得:t1=0(舍去),t2=4;②当4<t≤7时,如图2所示,AQ=t﹣4,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t﹣4=﹣t2+t,解得:t3=﹣2(舍去),t4=6;③当7<t≤8时,AQ=t﹣4,EF=﹣t+4﹣(﹣t2+t+4)=t2﹣t,∴t﹣4=t2﹣t,解得:t5=5﹣(舍去),t6=5+(舍去).综上所述:当以A.E.F、Q四点为顶点构成的四边形为平行四边形时,t的值为4或6.。
本解析由华东师范大学出版社《挑战压轴题》作者马学斌老师独家提供。
可作学习材料,切勿做其他用途。
更多信息,欢迎关注“挑战压轴题”微信公众号(ti ao z han y azho u ti).《2017年上海市各区中考数学二模压轴题图文解析》目录2017 年上海市宝山区中考模拟第 24、25 题/ 22017 年上海市崇明区中考模拟第 24、25 题/ 62017 年上海市奉贤区中考模拟第 24、25 题/ 102017 年上海市虹口区中考模拟第 24、25 题/ 142017 年上海市黄浦区中考模拟第 24、25 题/ 182017 年上海市嘉定区中考模拟第 24、25 题/ 232017 年上海市静安区中考模拟第 24、25 题/ 272017 年上海市闵行区中考模拟第 24、25 题/ 312017 年上海市浦东新区中考模拟第 24、25 题/ 342017 年上海市普陀区中考模拟第 24、25 题/ 382017 年上海市松江区中考模拟第 24、25 题/ 422017 年上海市徐汇区中考模拟第 24、25 题/ 472017 年上海市杨浦区中考模拟第 24、25 题/ 522017 年上海市长宁区青浦区金山区中考模拟第 24、25 题/ 552017 年上海市宝山区中考模拟第 18 题/ 592017 年上海市崇明区中考模拟第 18 题/ 602017 年上海市奉贤区中考模拟第 18 题/ 612017 年上海市虹口区中考模拟第 18 题/ 622017 年上海市黄浦区中考模拟第 18 题/ 632017 年上海市嘉定区中考模拟第 18 题/ 642017 年上海市静安区中考模拟第 18 题/ 652017 年上海市闵行区中考模拟第 18 题/ 662017 年上海市浦东新区中考模拟第 18 题/ 672017 年上海市普陀区中考模拟第 18 题/ 682017 年上海市松江区中考模拟第 18 题/ 692017 年上海市徐汇区中考模拟第 18 题/ 702017 年上海市杨浦区中考模拟第 18 题/ 712017 年上海市长宁区青浦区金山区中考模拟第 18 题/ 722015 年上海市中考第 24、25 题/ 732016 年上海市中考第 24、25 题/ 77例2017年上海市宝山区中考模拟第24题如图 1,已知直线y x与x轴交于点B,与y轴交于点C,抛物线1 22 12y x b x2 2与x 轴交于A、B 两点(A 在B 的左侧),与y 轴交于点C.(1)求抛物线的解析式;(2)点M 是上述抛物线上一点,如果△ABM 和△ABC 相似,求点M 的坐标;(3)联结AC,求顶点D、E、F、G 在△ABC 各边上的矩形DEFG 面积最大时,写出该矩形在AB 边上的顶点的坐标.图 1动感体验请打开几何画板文件名“17 宝山 24”,拖动点D 在BC 上运动,可以体验到,当点D是BC 的中点时,矩形DEFG 的面积最大,最大值是△ABC 面积的一半.思路点拨1.第(2)题△ABM 和△ABC 相似,只存在这两个三角形全等的情形,此时M、C 关于抛物线的对称轴对称.2.第(3)题的矩形DEFG 存在两种情况.用二次函数表示矩形的面积,求二次函数的最大值,然后看看最大值时矩形顶点的位置具有什么特殊性.图文解析(1)由1y x 2 ,得B(4, 0),C(0,-2).2将点B(4, 0)代入y 1 x2 bx 2 ,得 8+4b-2=0.解得 3b .2 2所以抛物线的解析式为 1 2 3 2 1 ( 1)( 4)y x x x x .所以A(-1, 0).2 2 2(2)如图 2,由A(-1, 0)、B(4, 0)、C(0,-2),可得 tan∠CAO=tan∠BCO=2.又因为∠CAO 与∠ACO 互余,所以∠BCO 与∠ACO 互余.所以△ABC 是直角三角形.过点A、B 分别作x 轴的垂线,不可能存在点M.所以只存在∠AMB=90°的情况,此时点M 在x 轴的下方(如图 3 所示).图 2 图 32如图 3,如果△ABM 和△ABC 相似,那么△ABM ≌△BAC .所以点 M 与点 C 关于抛物线的对称轴对称,点 M 的坐标为(3,-2).(3)矩形 DEFG 有两种情况:1①如图 4,在 AB 边上的顶点有两个,坐标分别为(2, 0)和( ,0) .23②如图 5,在 AB 边上的顶点有一个,坐标为( ,0).2考点伸展第(3)题的解题思路是这样的:在 Rt △ABC 中,AB =5,高 CO =2.情形一,如图 4,F 、G 两点在 AB 上.设 DE =m ,DG =n .根据相似三角形对应高的比等于对应边的比,得 2 .所以 5(2 )n m nm . 2 52 所以 S =mn = 5 2 n n = 5 ( 1)2 5 (2 )n . 2 2所以当 n =1 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面积 最大,最大值是△ABC 面积的一半.情形二,如图 5,点 G 在 AB 上.同样的,设 DE =m ,DG =n .由 BD DG ,得 2 5.所以 2 5 n . m n m BE EA 22 55 所以 S =m n = (2 5 ) m m 2 = 1 ( 5)2 5 m .2 2所以当 m 5 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面 积最大,最大值也是△ABC 面积的一半.此时点 G 为 AB 的中点.图 4 图 53例2017年上海市宝山区中考模拟第25题如图 1,在△ABC 中,∠ACB 为直角,AB=10,∠A=30°,半径为 1 的动圆Q 的圆心从点C 出发,沿着CB 方向以 1 个单位长度/秒的速度匀速运动,同时动点P 从点B 出发,沿着BA 方向也以 1 个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t≤5),以P 为圆心、PB 为半径的⊙P 与AB、BC 的另一个交点分别为E、D,联结ED、EQ.(1)判断并证明ED 与BC 的位置关系,并求当点Q 与点D 重合时t 的值;(2)当⊙P 和AC 相交时,设CQ 为x,⊙P 被AC 解得的弦长为y,求y 关于x 的函数解析式,并求当⊙Q 过点B 时⊙P 被AC 截得的弦长;(3)若⊙P 与⊙Q 相交,写出t 的取值范围.图 1动感体验请打开几何画板文件名“17 宝山 25”,拖动Q 由C 向B 运动,可以体验到,⊙P 与⊙Q 的位置关系依次为外离、外切和相交.思路点拨1.第(1)题Q、D 重合时,根据CQ+BD=BC 列关于t 的方程.2.第(2)题⊙Q 过点B 时,CQ=5-1=4.3.第(3)题求⊙P 与⊙Q 相交,先求临界位置外切时t 的值.图文解析(1)如图 2,根据直径所对的圆周角是直角,可以知道ED⊥BC.在 Rt△ABC 中,AB=10,∠A=30°,所以BC=5.在 Rt△BDE 中,BE=2BP=2t,∠BED=30°,所以BD=t,DE= 3 t.如图 3,当点Q 与点D 重合时,BD+CQ=BC=5.所以 2t=5.解得t=2.5.图 2 图 3(2)如图 4,设⊙P 和AC 相交于M、N 两点.作PH⊥MN 于H,那么MH=NH.在 Rt△PAH 中,PA=10-t,∠A=30°,所以PH=12(10t)t.=5 12在 Rt△PMH 中,PM=PB=t,由勾股定理,得MH2=PM2-PH2= 2 (5 1 )2t t .2 于是得到y=MN=2MH=3t2 20t 100 .4如图 5,当⊙Q 过点B 时,CQ=x=4,此时MN=y=316 20 4 100 =2 7 .图 4 图 5<t≤5.(3)当⊙P与⊙Q相交时,t的取值范围是17974考点伸展第(3)题的解题过程分三步:第一步,罗列三要素.对于圆P,r P=t;对于圆Q,r Q=1;圆心距PQ 需要求一下.如图 6,作PF⊥BC 于F.在Rt△PFQ 中,由勾股定理,得PQ=( 3 )2 (5 3 )2t t .2 2第二步,列方程.如图 7,当⊙P 与⊙Q 外切时,r P+r Q=PQ.所以t 1( 3 t)2 (5 3t)2 .整理,得 2t2-17t+24=0.解得17 97t .2 2 4第三步,写结论.图 6 图 75例2017年上海市崇明区中考模拟第 24题 如图 1,已知抛物线 y =ax 2-2x +c 经过△ABC 的三个顶点,其中点 A (0, 1),点 B (9, 10),AC //x 轴. (1)求这条抛物线的解析式;(2)求 tan ∠ABC 的值;(3)若点 D 为抛物线的顶点,点 E 是直线 AC 上一点,当△CDE 与△ABC 相似时,求 点 E 的坐标.图 1动感体验请打开几何画板文件名“17 崇明 24”,拖动点 E 在点 C 左侧运动,可以体验到,△CDE 与△ABC 相似存在两种情况.思路点拨1.求 tan ∠ABC 的值,首先要将∠ABC 放在某个直角三角形中.作 AB 边上的高 CH 以 后,有两种解法:一种解法是∠BAC =45°为特殊值;另一种解法是一般性的,已知三角形 的三边,作高不设高,设 AH =m .2.探究△CDE 与△ABC 相似,首选的方法是寻找一组等角,然后按照对应边成比例分 两种情况列方程.图文解析 c1,(1)将 A (0, 1)、B (9, 10)两点分别代入 y =ax 2-2x +c ,得81a 18 c 10.1 3 解得 a = ,c =1.所以这条抛物线的解析式为 12 2 1y x x . 3(2)由于 AC //x 轴,抛物线的对称轴为 x =3,所以 C (6, 1).如图 2,作 BM ⊥AC ,垂足为 M .作 CH ⊥AB 于 H .由 A (0, 1)、B (9, 10),可知 AM =BM =9,所以∠BAC =45°,AB =9 2 .在 Rt △ACH 中,AC =6,所以 AH =CH =3 2 .在 Rt △BCH 中,BH =AB -AH =6 2 ,所以 tan ∠ABC = C H B H= 3 2 6 2 = 1 2 . 6(3)由 1 2 2 1 1 ( 3)2 2y x x x ,得顶点D 的坐标为(3,-2).3 3由C(6, 1)、D(3,-2),可知∠ACD=45°,CD=3 2 .当点E 在点C 左侧时,∠DCE=∠BAC.分两种情况讨论△CDE 与△ABC 相似:①当C E A B时,CE 9 2 .解得CE=9.此时E(-3, 1)(如图 3 所示).C D A C32 6②CE AC 时,CE 6 .解得CE=2.此时E(4, 1)(如图 4 所示).C D A B329 2图 2 图 3 图 4考点伸展第(2)题还有一般的解法:如图 2,△ABC 的三边长是确定的,那么作AB 边上的高CH,设AH=m,就可以求得AH,进而求得CH、BH 的长.由A(0, 1)、B(9, 10)、C(6, 1),可得AB=9 2 ,BC=3 10 ,AC=6.由CH2=CA2-AH2,CH2=CB2-BH2,得CA2-AH2=CB2-BH2.解方程62 m2 (3 10)2 (9 2 m)2 ,得m 3 2 .于是得到BH=6 2 ,CH=3 2 .7例 2017年上海市崇明区中考模拟第 25题如图,梯形 ABCD 中,AB //CD ,∠ABC =90°,AB =6,BC =8,tan D =2,点 E 是射线 CD 上一动点(不与点 C 重合),将△BCE 沿着 BE 进行翻折,点 C 的对应点记为点 F .(1)如图 1,当点 F 落在梯形 ABCD 的中位线 MN 上时,求 CE 的长;S (2)如图 2,当点 E 在线段 CD 上时,设 CE =x , △BFCS△E F C=y ,求 y 与 x 之间的函数关系式,并写出定义域;(3)如图 3,联结 AC ,线段 BF 与射线 CA 交于点 G ,当△CBG 是等腰三角形时,求 CE 的长.图 1 图 2 图 3动感体验请打开几何画板文件名“17 崇明 25”,拖动点 E 运动,可以体验到,等腰三角形 BCG 存在三种情况,每种情况的点 G 的位置都具有特殊性.思路点拨1.第(1)题点 F 到 AB 的距离等于 BF 的一半,得到∠FBA =30°.2.第(2)题△BFC 与△EFC 的面积比等于 BH 与 EH 的比,通过 Rt △BCH ∽Rt △CEH 得到 BH 与 EH 的比.3.第(3)题先求 CG 的长,再求 CE 的长.延长 BF 交 CD 的延长线于 K ,得到△KEF ∽△KBC .图文解析(1)如图 4,在 Rt △FNB 中,BN = 所以∠B F N =30°. 1 2 B C = 1 2B F ,所以∠FBA =30°.所以∠FBC =60°. 所以∠FBE =∠CBE =30°.= 8 3 3所以 C E =B C t a n 30°=83 3. 图 4(2)如图 5,设 BE 垂直平分 FC 于点 H ,那么∠CBH =∠ECH . 所以△CBH ∽△ECH .S 所以CBH△S△ECHBH = ( )2EH= 64 x 2 S .所以 y = BFC △S△EFC= 2S △CBHC2S △ECH = 64 x2. 定义域是 0<x ≤10.8图 5图 6(3)①如图 6,当 CG =CB =8 时,AG =2.CK CG 延长 BF 交 CD 的延长线于 K .由 4 ,得 CK =4AB =24.AB AG1 3在 Rt △KBC 中,BC =8,CK =24,所以 tan ∠K =.所以 sin ∠K = 10 10. 在 Rt △KEF 中,FE =CE =x ,EK =CK -CE =24-x .由 sin ∠K =F E E K = 10 10,得10 x 24 x 10.解得 x =CE = 8 10 83.②如图 7,当 GC =GB 时,点 G 在 BC 的垂直平分线上,此时四边形 ABCK 为矩形. 在 Rt △EKF 中,sin ∠EKF =B C B K = 8 10 = 4 5,FE =CE =x ,KE =CK -CE =6-x .所以 4 x6 x 5.解得 x =CE = 8 3.③如图 8,当 BG =BC =8 时,由于 BC =BF ,所以 F 、G 重合.此时 BE ⊥AC .由 tan ∠CEB =tan ∠ACB = 3 4 ,得B C C E 3 .所以 CE = 432 3.图 7 图 8考点伸展第(3)题的①、②两种情况,解 Rt △KEF ,可以用勾股定理列方程.9例 2017年上海市奉贤区中考模拟第 24题如图 1,在平面直角坐标系中,抛物线 y =-x 2+bx +c 经过点 A (3, 0)和点 B (2, 3),过点1 3A 的直线与 y 轴的负半轴相交于点 C ,且 tan ∠CAO =(1)求这条抛物线的表达式及对称轴;. (2)联结 AB 、BC ,求∠ABC 的正切值;(3)若点 D 在 x 轴下方的对称轴上,当 S △ABC =S △ADC 时,求点 D 的坐标.图 1动感体验请打开几何画板文件名“17 奉贤 24”,可以体验到,△ABC 是等腰直角三角形,B 、D 两点到直线 AC 的距离相等.思路点拨1.直觉告诉我们,△ABC 是直角三角形.2.第(3)题的意思可以表达为:B 、D 在直线 AC 的两侧,到直线 AC 的距离相等.于 是我们容易想到,平行线间的距离处处相等.图文解析(1)将 A (3, 0)、B (2, 3)两点分别代入 y =-x 2+bx +c ,得93b c 0,4 2b c 3.解得 b =2,c =3.所以 y =-x 2+2x +3.对称轴是直线 x =1.O C OA (2)由 t a n ∠C A O == 1 3,OA =3,得 OC =1.所以 C (0,-1). 由两点间的距离公式,得 AB 2=12+32=10,AC 2=32+12=10,BC 2=22+42=20. 所以∠BAC =90°,且 AB =AC .所以△ABC 是等腰直角三角形,tan ∠ABC =1.(3)因为△ABC 与△ADC 有公共底边 AC ,当 S △ABC =S △ADC 时,B 、D 到直线 AC 的距离相等.如图 2,因为点 B (2, 3)关于点 A (3, 0)的对称点为 E (4,-3),那么过点 E 作 AC 的平行线 与抛物线的对称轴的交点即为所求的点 D .由 A (3, 0)、C (0,-1)可得直线 AC 的解析式为1y x 1.3设直线 DE 的解析式为y x b ,代入点 E (4,-3),得 13 1b .3 3 10所以直线DE 的解析式为11 3 y x .当x=1 时,y=-4.3 3所以点D 的坐标为(1,-4).考点伸展第(2)题也可以构造 Rt△ABM 和 Rt△CAN(如图 3),用“边角边”证明△ABM≌△CAN,从而得到等腰直角三角形ABC.图 2 图 3第(3)题也可以这样思考:如图 4,过点B 与直线AC 平行的直线为y 1 x 7 ,与y 轴交于点F(0, 7)33 3.F、C 两点间的距离为710(1) .3 3把直线AC:y 1 x 向下平移1013 3个单位,得到直线113y x .3 3感谢网友上海交大昂立教育张春莹老师第(3)题的解法:如图 5,如果把BL、KD 分别看作△ABC 和△ADC 的底边,那么它们的高都是A、C 两点间的水平距离,当△ABC 与△ADC 的面积相等时,BL=KD.1 ),K(1,2 ).所以3 ( 1) ( 2) 由直线AC 的解析式可以求得L (y .2,D3 3 3 3解得y D=-4.所以D(1,-4).图 4 图 511例2017年上海市奉贤区中考模拟第25题如图 1,线段AB=4,以AB 为直径作半圆O,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC,过点C 作CD//AB,且CD=PC,过点D 作DE//PC,交射线PB 于点E,PD 与CE 相交于点Q.(1)若点P 与点A 重合,求BE 的长;PD=y,当点P 在线段AO 上时,求y 关于x 的函数关系式及定义域;C E(2)设P C=x,(3)当点Q 在半圆O 上时,求PC 的长.图 1 备用图动感体验请打开几何画板文件名“17 奉贤 25”,拖动点P 在AO 上运动,可以体验到,PD 与CE的比就是菱形的对角线的比,可以转化为PQ 与EQ 的比,进而转化为∠PEQ 的正切值.拖动点P 在OB 上运动,可以体验到,当点Q 落在圆上时,点Q 到AB 的距离等于圆的半径的一半.思路点拨1.四边形PCDE 是菱形,对角线互相垂直平分.2.第(2)题根据∠PEQ 和∠CEO 是同一个角,用正切值得到关系式.3.第(3)题画图的步骤是:点Q 在OC 的中垂线与圆的交点处,延长CQ 交AB 的延长线于点E,过点Q 作CE 的垂线得到点P、D.图文解析(1)如图 2,由CD//AB,DE//PC,得四边形PCDE 是平行四边形.又因为CD=PC,所以四边形PCDE 是菱形.在等腰直角三角形AOC 中,AC= 2 OA=2 2 .当点P 与点A 重合,PE=AC=2 2 .所以BE=AB-PE=4-2 2 .图 2 图 3(2)如图 3,在 Rt△CPO 中,PC=x,CO=2,所以PO=x 2 4 .所以EO=PE-PO=PC-PO=x x 2 4 .12因为PD 与CE 互相垂直平分于Q,所以y=P DC E=PQE Q =tan∠PEQ=tan∠CEO=C OE O.所以y2x x 42x x2 442.定义域是2≤x≤22 .(3)如图 4,作QH⊥AB 于H.因为菱形PCDE 的对边CD 与PE 间的距离保持不变,等于圆的半径CO=2,当点Q在半圆O 上时,QH=12OQ=1.所以∠QOH=30°.此时∠COQ=60°,△COQ 是等边三角形.所以∠DCE=30°.所以∠PCE=30°.在 Rt△COP 中,∠OCP=30°,CO=2,所以PC=C O= 2c o s3032=4 33.图 4 图 5考点伸展在本题情境下,当点P 从A 运动到B 的过程中,求点Q 运动过的路径长.因为点Q 是CE 的中点,所以点Q 的运动轨迹与点E 的运动轨迹平行,点Q 的路径长等于点E 路径长的一半.如图 2,当点P 与点A 重合时,AE=AC=2 2 .如图 5,当点P 与点B 重合时,BE=BC=2 2 .所以点E 运动的路径长为 4,点Q 运动的路径长为 2.13例2017年上海市虹口区中考模拟第24题如图 1,在平面直角坐标系中,抛物线1y x bx c 经过点A(-2, 0)和原点,点B 在4抛物线上且 tan∠BAO=12,抛物线的对称轴与x 轴相交于点P.(1)求抛物线的解析式,并直接写出点P 的坐标;(2)点C 为抛物线上一点,若四边形AOBC为等腰梯形且AO//BC,求点C 的坐标;(3)点D 在AB 上,若△ADP 与△ABO 相似,求点D 的坐标.图 1动感体验请打开几何画板文件名“17 虹口 24”,拖动点D 在AB 上运动,可以体验到,△ADP与△ABO 相似存在两种情况.点击屏幕左下角的按钮“第(2)题”,可以体验到,以A、O、B、C 为顶点的等腰梯形存在三种情况,其中AO//BC 时,点C 与点B 关于抛物线的对称轴对称.思路点拨1.已知二次函数的二次项系数和抛物线与x 轴的两个交点,可以直接写出交点式.2.等腰梯形AOBC 当AO//BC 时,C、B 两点关于抛物线的对称轴对称.3.分两种情况讨论△ADP 与△ABO 相似.由于∠A 是公共角,根据夹∠A 的两边对应成比例,分两种情况列方程,先求AD 的长,再求点D 的坐标.图文解析(1)因为抛物线1y x bx c 与x 轴交于点A(-2, 0)和原点,所以411 1y x(x2)x x.244 2抛物线的对称轴是直线x=-1,点P 的坐标为(-1, 0).1(2)作BH⊥x 轴于H.设点B 的坐标为(x, x(x 2)) .4由 tan∠BAO=B HA H=121,得AH=2BH.所以(x 2) 2x(x 2) .4解得x=2,或x=-2(B、A 重合,舍去).所以B(2, 2).若四边形AOBC 为等腰梯形且AO//BC,那么B、C 关于抛物线的对称轴x=-1 对称.所以点C 的坐标为(-4, 2).图 2 图 314(3)作DE⊥x 轴于E.在 Rt△ADE 中,已知 tan∠A=12,所以DE=55A D,AE=2 55 A D.由于△ADP 与△ABO 有公共角∠A,分两种情况讨论相似:①当AD AB 时,AD 2 5 .所以AD=5 .A P A O1 2此时DE=1,AE=2.所以点D 的坐标为(0, 1).②当A D A O时,A D 2.所以A D= 5 A P A B125 5.此时DE=15,AE=25.所以OE=OA-AE=858 1(,).5 5.所以点D的坐标为图 4 图 5考点伸展如果第(2)题改为以A、O、B、C 为顶点的四边形是等腰梯形,那么就要分三种情况:△AOB 的三边的垂直平分线都可以是等腰梯形的对称轴.第二种情况:如果OC//AB,那么点C 与点O 关于直线AB 的垂直平分线对称.点C 在直线1y x 上,设C(2m, m).2由CB=OA=2,得CB2=4.所以(2m-2)2+(m-2)2=4.解得m=254 2 ,或m=2(此时四边形AOCB 是平行四边形).所以C( , ).5 5第三种情况:如果AC//OB,那么点C 与点A 关于直线OB 的垂直平分线对称.点C 在直线y=x+2 上,设C(n, n+2).由CB=AO=2,得CB2=4.所以(n-2)2+n2=4.解得n=2,或n=0(舍去).所以C(2, 4).图 6 图 715例2017年上海市虹口区中考模拟第25题如图 1,在△ABC 中,AB=AC=5,cos B=45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D,∠BPD=∠BAC.以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E,联结CE,设BD=x,CE=y.(1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出定义域;(3)如果⊙O 与⊙P 相交于点C、E,且⊙O 经过点B,当O P=54时,求AD 的长.图 1动感体验请打开几何画板文件名“17 虹口 25”,拖动点P 运动,可以体验到,△BPD 与△BAC 保持相似,PN 与BD 保持平行.观察度量值,可以体验到,OP=1.25 存在两种情况.思路点拨1.作圆P 的弦CE 对应的弦心距PN,把图形中与∠B 相等的角都标记出来.2.第(3)题的圆O 经过B、C、E 三点,事实上OP 与BD 是平行的.图文解析(1)如图 2,作AM⊥BC 于M,那么BM=CM.在 Rt△ABM 中,AB=5,cos B=B MA B=45,所以BM=4,sin B=35.如图 3,设⊙P 与AB 切于点H,那么 sin B=PHBP=35.所以r8 r 35=.解得r=3.图 2 图 3 图 4 (2)如图 4,由于∠B=∠B,∠BPD=∠BAC,所以△BPD∽△BAC.因为AB=AC,所以PB=PD.如图 5,设圆P 与BC 的另一个交点为F,因此所以F E//B D.所以∠E F C=∠B.P F P E.P B P D在△PBD 中,B P B A 5,所以5 5BP BD x .B D B C888在△EFC 中,由PC=PE=PF,可知∠FEC=90°,所以 sin∠EFC=C EC F3.516所以CF5 CE 5 y .所以 PC = 13 3 2 CF = 5 6y .由 BC =BP +PC =8,得5 x 5 y .整理,得 48 3 y x .定义域是 5<x < 64886545.(3)因为⊙O 经过 B 、C 、E 三点,所以圆心 O 是 BC 和 CE 的垂直平分线的交点. 如图 6,设 CE 的中点为 N ,那么 OP ⊥CE 于 N . 所以 OP //FE //BA .所以 cos ∠OPM =cos B = 4 5 .当 OP = 5 4时,MP =1.①如图 6,当 P 在 M 右侧时,BP =4+1=5.此时 BD = 所以 A D =B D -B A =8-5=3.8 5BP =8.②如图 7,当 P 在 M 左侧时,BP =4-1=3.此时 BD = 8 5 B P = 24 5.2 4 所以 AD =BA -BD = 5 = 51 5.图 5 图 6 图 7考点伸展第(2)题不证明 FE //BA 的话,可以证明∠CPN =∠B .如图 8,由于∠CPE =∠B +∠D =2∠B ,∠CPE =2∠CPN ,所以∠CPN =∠B .在 Rt △CPE 中, 1 2 3 5 C E =PC .所以 PC =5 6 C E = 5 6 5 y .所以 BP =8 y .6 在△BPD 中, 1 2 B D = 4 5 BP .所以 1 x 4 5 y .整理,得 48 3 (8 ) y x .2 5 6 5 4定义域中 x = 64 5的几何意义如图 9 所示.图 8 图 917例 2017年上海市黄浦区中考模拟第 24题如图 1,点 A 在函数 y4(x >0)的图像上,过点 A 作 x 轴和 y 轴的平行线分别交函 x数 y 1的图像于点 B 、C ,直线 BC 与坐标轴的交点为 D 、E . x(1)当点 C 的横坐标为 1 时,求点 B 的坐标;(2)试问:当点 A 在函数 y4(x >0)的图像上运动时,△ABC 的面积是否发生变 x 化?若不变,请求出△ABC 的面积;若变化,请说明理由;(3)试说明:当点 A 在函数 y4(x >0)的图像上运动时,线段 BD 与 CE 的长始终 x相等.图 1动感体验请打开几何画板文件名“17 黄浦 24”,拖动点 A 运动,可以体验到,△DBM 与△CEN 保持全等,MN 与 BC 保持平行.思路点拨1.设点 A 的横坐标为 m ,A 、C 两点的横坐标相等,A 、B 两点的纵坐标相等,用 m 表 示 A 、B 、C 三点的坐标和 AB 、AC 的长.2.证明 BD =CE ,因为四点共线,只要证明 B 、D 两点间的竖直距离等于 C 、E 两点间 的竖直距离就可以了.图文解析(1)当点 C 的横坐标为 1 时,C (1, 1),A (1, 4).由 1 x4 ,得x 1 .所以点 B 的坐标为(1 ,4) 4 4 . (2)△ABC 的面积为定值.计算如下:4 如图 2,设点 A 的坐标为(m , ) m 1 ,那么 C (m , ) mm 4 ,B ( , ). 4 m3m 所以 A B = 4 ,AC = 3 m .所以 S △ABC = 1 2 A B A C = 1 3 3 = m2 4 m9 8 . (3)如图 3,延长 AB 交 y 轴于 M ,延长 AC 交 x 轴于 N .在 Rt △DBM 中,tan ∠DBM =tan ∠ABC = A C A B = 3 3m = m 44 m 2 ,BM = m 4,所以DM=BM tan∠DBM=m44=m21m.所以DM=CN.18又因为 sin∠DBM=sin∠CEN,所以DB=CE.图 2 图 3考点伸展如图 4,第(2)题中,面积为定值的有:矩形AMON、△ABC、△BOM、△CON,所以△BOC 的面积也为定值.如图 5,联结MN,那么MN 与BC 保持平行,这是因为M B N C 1.M A N A 4还有一个有趣的结论,随着点A 的运动,直线MN 与双曲线y 1(x>0)保持相切.x直线MN 的解析式为44,与y1y x 联立方程组,消去y,得m m x214 4x.x m m2整理,得(2x-m)2=0.所以直线MN 与双曲线有一个交点,保持相切.感谢网友上海交大昂立教育张春莹老师提供的第(3)题的简练解法:如图 4,因为B D B M 1,C E C N 1,所以B D=C E.B C B A3C B C A 3图 4 图 519例2017年上海市黄浦区中考模拟第25题已知 Rt△ABC 斜边AB 上的D、E 两点满足∠DCE=45°.(1)如图 1,当AC=1,BC= 3 ,且点D 与点A 重合时,求线段BE 的长;(2)如图 2,当△ABC 是等腰直角三角形时,求证:AD2+BE2=DE2;(3)如图 3,当AC=3,BC=4 时,设AD=x,BE=y,求y 关于x 的函数关系式,并写出定义域.图 1 图 2 图 3动感体验请打开几何画板文件名“17 黄浦 25”,可以体验到,四边形CMEN 是正方形.点击屏幕左下方的按钮“第(2)题”,可以体验到,直角三角形DEF 的边FD=AD,FE=BE.点击按钮“第(3)题”,可以体验到,△CDP∽△ECQ.思路点拨1.第(1)题过点E 向两条直角边作垂线段,围成一个正方形,然后根据对应线段成比例求正方形的边长,再得到BE 的长等于正方形边长的 2 倍.2.第(2)题的目标是把AD、BE 和DE 围成一个直角三角形.经典的解法有翻折和旋转两种.图文解析(1)当AC=1,BC= 3 时,AB=2,∠B=30°.如图 4,作EM⊥BC 于M,作EN⊥AC 于N,那么四边形CMEN 是正方形.设正方形的边长为a.由EM BM,得a 3 a .AC BC 1 3解得 3 3a .2所以BE=2EM=3 3 .图 4【解法二】如图 4,因为1C B E MS C B△C B E21S C A E N C A△C B E2S B E,△C B ES E A△C B E,所以C B B E.C A E A.解得BE=3 3 .所以3B E12B E20(2)如图5,以CE 为对称轴,构造△CFE≌△CBE,那么FE=BE,∠CFE=∠B=45°.联结DF.由“边角边”证明△CFD≌△CAD,所以FD=AD,∠CFD=∠A=45°.所以△DEF 是直角三角形,FD2+FE2=DE2.所以AD2+BE2=DE2.【解法二】如图 6,绕点C 将△CBE 逆时针旋转 90°得到△CAG,那么AG=BE,CE =CG,∠CAG=∠B=45°.由“边角边”证明△CDG≌△CDE,所以DG=DE.在 Rt△GDA 中,AD2+AG2=DG2.所以AD2+BE2=DE2.图 5 图 6(3)如图 7,作CH⊥AB 于H.在 Rt△ABC 中,AC=3,BC=4,所以AB=5.于是可得CH 12 ,BH 16 ,9AH .5 5 5所以DH 9 x,16EH y .5 5如图 8,以H 为旋转中心,将点D 逆时针旋转 90°得到点P,将点E 顺时针旋转 90°得到点Q.于是可得△CDP∽△ECQ.由PD QC,得PD QE PC QC .PC QE所以2(9 x) 2(16 y ) 12 (9 x )12 (16 y )5 5 5 5 5 5.整理,得2860xy5x 21.157 定义域是0≤x≤15 7.当B、E 重合时x=.图 7 图 821考点伸展第(3)题解法多样,再介绍三种解法:如图 9,过点C 作AB 的平行线KL.构造等腰直角三角形KDD′和LEE′.由△CDE∽△KCD,△CDE∽△LEC,得△KCD∽△LEC.所以KC DK,即KC CL=LE DK .LE CL所以12 (9 )12 (16 ) 12 2 12 2x y55555 5.整理即可.如图 10,分别以CD、CE 为对称轴,作CH 的对应线段CK、CL,再围成正方形CKRL.在 Rt△DER 中,由DR2+ER2=DE2,得2 2129121 6(x)(y)(5x y)25555.整理即可.如图 11,类似第(2)题的第一种解法,在 Rt△A′B′T 中,A′B′=CB-CA=1,所以A′T=35 ,B′T= 4 5.在 Rt△DET 中,DE=5-x-y,TE=y 4,T D= 3x ,由勾股定理,得5 52 4 23 2(5x y ) (y ) (x ) .整理即可.5 5图 9 图 10 图 1122例2017年上海市嘉定区中考模拟第24题如图 1,在平面直角坐标系中,已知点A 的坐标为(3, 1),点B 的坐标为(6, 5),点C 的坐标为(0, 5),某二次函数的图像经过A、B、C 三点.(1)求这个二次函数的解析式;(2)假如点Q 在该二次函数图像的对称轴上,且△ACQ 是等腰三角形,请直接写出点Q 的坐标;(3)如果点P 在(1)中求出的二次函数的图像上,且 tan∠PCA=12,求∠PCB 的正弦值.图 1动感体验请打开几何画板文件名“17 嘉定 24”,可以体验到,当AD⊥AC,且AC=2AD 时,点D 的位置是确定的,射线CD 与抛物线的交点就是点P.思路点拨1.由B、C 两点的坐标可知抛物线的对称轴是直线x=3,再由点A 的坐标可知点A 就是抛物线的顶点,因此设顶点式比较简便.2.分三种情况讨论等腰三角形ACQ:AQ=AC,CQ=CA,QA=QC.3.第(3)题的解题策略是:根据 tan∠PCA=12,过点A 作AC 的垂线,在垂线上截取AD=12AC,那么点P 就是射线CD 与抛物线的交点,∠DCB 就是∠PCB.不用求点P的坐标,求点D 的坐标就好了.图文解析(1)由B(6, 5)、C(0, 5),可知抛物线的对称轴是直线x=3.由A(3, 1),可知点A 是抛物线的顶点.设二次函数的解析式为y=a(x-3)2+1,代入点B(6, 5),得 9a+1=5.4 4 4 8解得a .所以y (x 3)2 1x 2 x 5.9 9 9 33 3(2)点Q 的坐标为(3, 6),(3,-4),(3, 9)或(3, )8.(3)如图 2,绕着点A 将线段AC 的中点旋转 90°得到点D,那么射线CD 与抛物线的交点就是要求的点P.当点D 在CA 左侧时,射线CD 与抛物线没有交点.如图 3,当点D 在CA 右侧时,作DE⊥x 轴于E,那么∠DCE 就是∠PCB.过点A 作x 轴的平行线交y 轴于M,过点D 作DN⊥AM 于N.CM MA AC由△CMA∽△AND,得 2 .AN ND DA所以A N 1C M ,1 32N D M A .22 223在 Rt△CDE 中,CE=MA+AN=3+2=5,ED=CM-ND=3 5 4,2 2所以 tan∠DCE=E DC E=12.所以 sin∠DCE=55,即 sin∠PCB=55.图 2 图 3考点伸展第(2)题分三种情况讨论等腰三角形ACQ:①如图 4,当AQ=AC=5 时,以A 为圆心、以AC 为半径的圆与对称轴有两个交点,所以点Q 的坐标为(3, 6) 或(3,-4).②如图 5,当CQ=CA 时,点C 在AQ 的垂直平分线上,此时点Q 的坐标为(3, 9).③如图 6,当QA=QC 时,点Q 在AC 的垂直平分线上,此时1 4A C A Q.2 5所以AQ=58AC =2583 3.此时点Q 的坐标为(3, )8.图 4 图 5 图 6 24例2017年上海市嘉定区中考模拟第25题已知AB=8,⊙O 经过点A、B,以AB 为一边画平行四边形ABCD,另一边CD 经过点O(如图 1).以点B 为圆心,BC 长为半径画弧,交线段OC 于点E(点E 不与点O、点C 重合).(1)求证:OD=OE;(2)如果⊙O 的半径长为 5(如图 2),设OD=x,BC=y,求y 与x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为 5,联结AC,当BE⊥AC 时,求OD 的长.图 1 图 2 备用图动感体验请打开几何画板文件名“17 嘉定 25”,拖动点D 运动,可以体验到,四边形ABED 保持等腰梯形的形状,△BCE 保持等腰三角形的形状,垂足H 的位置保持不变,MH 的位置保持不变.双击按钮“AC⊥BE”,可以体验到,点C 恰好落在圆上,MH 等于EC 与AB 和的一半.思路点拨1.根据等腰梯形是轴对称图形,很容易知道点O 是DE 的中点.2.第(2)题中,等腰三角形BCE 的高BH 为定值,先用x 表示EC,再用勾股定理就可以表示BC 了.3.第(3)题如何利用BE⊥AC,常规的方法是过点C 作BE 的平行线得到直角三角形.图文解析(1)如图 3,因为四边形ABCD 是平行四边形,所以AD=BC.又因为BE=BC,所以AD=BE.所以四边形ABED 是等腰梯形.因为圆心O 在弦AB 的垂直平分线上,所以点O 是上底DE 的中点,即OD=OE.图 3 图 425例2017年上海市静安区中考模拟第24题如图 1,已知二次函数 1 2y x bx c 的图像与x 轴的正半轴交于点A(2, 0)和点B,2与y 轴交于点C,它的顶点为M,对称轴与x 轴相交于点N.(1)用b 的代数式表示点M 的坐标;(2)当 tan∠MAN=2 时,求此二次函数的解析式及∠ACB 的正切值.图 1动感体验请打开几何画板文件名“17 静安 24”,拖动点N 运动,观察∠MAN 的正切值的度量值,可以体验到,当 tan∠MAN=2 时,△OBC 是等腰直角三角形.思路点拨1.第(1)题分三步:根据抛物线的解析式写出对称轴x=b;代入点A 的坐标,用b表示c;求x=b 时y 的值,得到顶点的纵坐标.2.第(2)题先根据 tan∠MAN=2 求b 的值,确定点B、C 的坐标,再作BC 边上的高AH,解直角三角形ABH 和直角三角形ACH.图文解析(1)由 1 2y x bx c ,得抛物线的对称轴为直线x=b.2将点A(2, 0)代入 1 2y x bx c ,得-2+2b+c=0.所以c=2-2b.2当x=b 时, 1 2 2 2 1 2 2 2 1 ( 2)2y x bx b b b b .2 2 2所以抛物线的顶点M 的坐标可以表示为( , 1 ( 2)2 )b b .2MN(2)当 tan∠MAN=2 时, 2 ,即MN=2AN.AN解方程1 ( 2)2 2( 2)b b ,得b=6,或b=2(与A 重合,舍去).2此时抛物线的解析式为 1 2 6 10y x x ,A(2, 0),B(6, 0),C(0,-10).2所以AB=8,OB=OC=10.所以BC=10 2 ,∠B=45°.27作AH⊥BC 于H,那么AH=BH=4 2 .在 Rt△ACH 中,CH=BC-BH=6 2 ,所以 tan∠ACB=A HC H=23 .图 2考点伸展第(2)题上面的解法是利用“边角边”,作高先求高.也可以利用“边边边”,作高不设高.由A(2, 0),B(6, 0),C(0,-10),得AB=8,BC=10 2 ,AC=104 .设CH=m,那么BH=10 2 m.由AH2=AC2-CH2,AH2=AB2-BH2,得AC2-CH2=AB2-BH2.解方程( 104)2 m2 82 (10 2 m)2 ,得m CH 6 2 .所以AH2=AC2-CH2=( 104)2 (6 2)2 =32.所以AH=4 2 .28例2017年上海市静安区中考模拟第25题如图 1,已知⊙O 的半径OA 的长为 2,点B 是⊙O 上的动点,以AB 为半径的⊙A 与线段OB 相交于点C,AC 的延长线与⊙O 相交于点D.设线段AB 的长为x,线段OC 的长为y.(1)求y 关于x 的函数解析式,并写出定义域;(2)当四边形ABDO 是梯形时,求线段OC 的长.图 1图文解析(1)如图 1,因为OA=OB,所以∠OAB=∠B.因为AC=AB,所以∠ACB=∠B.所以∠OAB=∠ACB.所以△OAB∽△ACB.所以B O B A,即2xB A B Cx 2 y.整理,得 2 1 2y x .定义域是 0≤x≤2.x=2 的几何意义如图 2 所示.2图 1 图 2(2)梯形ABDO 存在两种情况:①如图 3,当AB//OD 时,A B C B,即x2y.整理,得(x+2)y=4.D O C O2y代入y 2 1 x2 ,得( 2)(2 1 2 ) 4x x .整理,得x2+2x-4=0.2 2解得x= 5 1,或x= 5 1(舍去).所以CO=y=2 1 2 =2 1 ( 5 1)2x= 5 1.事实上,此时点C 是线段OB 的黄2 2金分割点.。
2010学年第二学期普陀区质量调研考试数学卷答案要点与评分标准一.选择题:(本大题共6题,满分24分)1.C ; 2.A ; 3.D ; 4.C ; 5.B ; 6.A二.填空题:(本大题共12题,满分48分)7.8; 8.()()22a a b a b +-; 9.3x =; 10.64.2510⨯;11.2+ 12.二、四; 13.0.6a ; 14.35; 15.DC BC =或DAC BAC ∠=∠或∠D =∠B ; 16.2133a b +; 17.14+ 18.ππ2三.解答题:(本大题共7题,满分78分)19.解:245(2),21.3x x x x ⎧++⎪⎨-<⎪⎩≤①②由①得x ≥-2.……………………………………………………………………(3分)由②得x <3.……………………………………………………………………(3分)不等式组的解集在数轴上表示如下:………………………………(2分)所以原不等式组的解集为-2≤x <3.………………………………………(1分) 所以原不等式组的整数解为-2,-1,0,1,2.………………………(1分)20.解:设123-=x xy ,则原方程变形为0322=--y y .……………………………(2分) 解这个方程,得 .3,121=-=y y ………………………………………………(2分)∴1123-=-x x 或3123=-x x. 解得 51=x 或1=x .………………………………………………………………(4分)经检验:51=x 或1=x 都是原方程的解.………………………………………(1分)∴原方程的解是51=x 或1=x .………………………………………………(1分)21.解:(1) 作图正确…………………………………………………………………(2分)∵矩形ABCD ,∴90B ∠=,BC AD =. ∵在Rt △ABC 中,AB =4,AD =2∴由勾股定理得:AC =……………………………………………(1分) 设EF 与AC 相交与点O ,由翻折可得AO CO ==……………………………………………(1分) 90AOE ∠=.∵在Rt △ABC 中, tan 1BCAB ∠=, 在Rt △AOE 中,tan 1EOAO∠=.∴EO BCAO AB=, ……………………………(1分)∴2EO =. ……………………………(1分)同理:FO =.∴EF =. ……………………………………………………………(1分)(2)过点E 作EH CD ⊥垂足为点H ,……………………………………………(1分)2EH BC ==……………………………………………………………………(1分)∴sin 5EH EFC EF ∠===.…………………………………………(1分)22.(1)60; …………………………………………………………………………(3分) (2)90; …………………………………………………………………………(3分) (3)0.7. …………………………………………………………………………(4分) 23.(1) 证明:∵AB AC =,AH CB ⊥,∴BH HC =.……………………………………………………(2分) ∵FH EH =,∴四边形EBFC 是平行四边形.………………………………(2分) 又∵AH CB ⊥,∴四边形EBFC 是菱形.…………………………………………(2分)(2)证明:∵四边形EBFC 是菱形.∴1232ECF ∠=∠=∠.…………………………………………(2分) H 1OFE DCBA∵AB AC =,AH CB ⊥,∴142BAC ∠=∠.………(1分) ∵BAC ∠=ECF ∠∴43∠=∠.……………(1分) ∵AH CB ⊥∴41290∠+∠+∠=.…(1分) ∴31290∠+∠+∠=.即:AC CF ⊥.…………………(1分)24.解:(1) 联结AC ,过点C 作CH AB ⊥,垂直为H ,由垂径定理得:AH =12AB =2,…………………………………(1分) 则OH =1.…………………………………………………………(1分) 由勾股定理得:CH =4.…………………………………………(1分) 又点C 在x 轴的上方,∴点C 的坐标为()1,4.………………(1分) (2)设二次函数的解析式为()20y ax bx c a =++≠由题意,得0,093,4.a b c a b c a b c =-+⎧⎪=++⎨⎪=++⎩解这个方程组,得1,2,3.a b c =-⎧⎪=⎨⎪=⎩………………………………………(3分)∴ 这二次函数的解析式为y =-x 2+2x +3.………………………………(1分)(3)点M 的坐标为()2,3…………………………………………………(2分) 或(45),-或(421)-,-……………………………(2分)25.解:(1)在Rt △ABC 中,∵∠A =30°,∴60ABC ∠=.………………………………………………………(1分) 由旋转可知:'B C BC =,'60B ABC ∠=∠=,'B CB α∠=∠ ∴△'B BC 为等边三角形.……………(2分)∴'B CB α∠=∠=60.……………(1分) (2)① 当090α︒<<︒时,点D 在AB 边上(如图).∵ DE ∥''A B ,4321H FECBA EDB'A'CBA∴CD CECA CB=''..…………………………………………………(1分) 由旋转性质可知,CA ='CA ,CB ='CB , ∠ACD=∠BCE .∴ CD CECA CB =,.…………………………………………………(1分) ∴CD CACE CB=. ∴ △CAD ∽△CBE . .………………………………………(1分) ∴BE BCAD AC=. ∵∠A =30° ∴y x=BC AC =.……………………………………………(1分)∴3y x =(0﹤x ﹤2)…………………………………………(2分)②当090α︒<<︒时,点D 在AB 边上AD =x ,2BD AB AD x =-=-,∠DBE=90°.此时,11(2)22BDES SBD BE x ==⨯=-=. 当S =13ABC S ∆=.整理,得 2210x x -+=.解得 121x x ==,即AD =1. …………………………………(2分)当90120α︒<<︒时,点D 在AB 的延长线上(如图).仍设AD =x ,则2BD x =-,∠DBE=90°..11(2)22BDES SBD BE x ==⨯=-=. 当S =13ABC S ∆时,=. EDB'A'CBA整理,得 2210x x --=.解得 11x =,21x =.即AD =…………………………………………………(2分)综上所述:AD =1或AD =。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,以两条直线l1,l2的交点坐标为解的方程组是( )A.121x yx y-=⎧⎨-=⎩B.121x yx y-=-⎧⎨-=-⎩C.121x yx y-=-⎧⎨-=⎩D.121x yx y-=⎧⎨-=-⎩【答案】C【解析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:1 21 x yx y-=-⎧⎨-=⎩.故选C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.2.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.3.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是()A.2402008x x=-B.2402008x x=+C .2402008x x =+D .2402008x x=- 【答案】B【解析】根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可.【详解】设乙每天完成x 个零件,则甲每天完成(x+8)个.即得,2402008x x += ,故选B. 【点睛】找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.4.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( )A .1101002x x =+B .1101002x x =+C .1101002x x =-D .1101002x x =- 【答案】A【解析】设乙骑自行车的平均速度为x 千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可. 解:设乙骑自行车的平均速度为x 千米/时,由题意得:1102x +=100x, 故选A .5.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=0【答案】C【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac - ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42b x a=-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.6.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是A .B .C .D .【答案】C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C 选项符合题意.故选C .7.关于x 的不等式21x a --的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1- 【答案】D【解析】首先根据不等式的性质,解出x≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可; 【详解】解:不等式21x a -≤-,解得x<12a -, 由数轴可知1x <-, 所以112a -=-, 解得1a =-;故选:D .【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为()A.32B.2 C.52D.3【答案】C【解析】延长BC 到E 使BE=AD,利用中点的性质得到CM=12DE=12AB,再利用勾股定理进行计算即可解答.【详解】解:延长BC 到E 使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中点,∵M是BD的中点,∴CM=12DE=12AB,∵AC⊥BC,∴AB=22AC BC=224+3=5,∴CM=52,故选:C.【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.9.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°【答案】C【解析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.10.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【答案】C【解析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m 2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C .【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.二、填空题(本题包括8个小题)11.如图,在△PAB 中,PA =PB ,M 、N 、K 分别是PA ,PB ,AB 上的点,且AM =BK ,BN =AK .若∠MKN =40°,则∠P 的度数为___【答案】100°【解析】由条件可证明△AMK ≌△BKN ,再结合外角的性质可求得∠A =∠MKN ,再利用三角形内角和可求得∠P .【详解】解:∵PA =PB ,∴∠A =∠B ,在△AMK 和△BKN 中,AM BK A B AK BN =⎧⎪∠=∠⎨⎪=⎩,∴△AMK ≌△BKN (SAS ),∴∠AMK =∠BKN ,∵∠A+∠AMK =∠MKN+∠BKN ,∴∠A =∠MKN =40°,∴∠P =180°﹣∠A ﹣∠B =180°﹣40°﹣40°=100°,故答案为100°【点睛】本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK ≌△BKN 是解题的关键.12.如图,在边长为1正方形ABCD 中,点P 是边AD 上的动点,将△PAB 沿直线BP 翻折,点A 的对应点为点Q ,连接BQ 、DQ .则当BQ+DQ 的值最小时,tan ∠ABP =_____.【答案】2﹣1【解析】连接DB,若Q点落在BD上,此时和最短,且为2,设AP=x,则PD=1﹣x,PQ=x.解直角三角形得到AP=2﹣1,根据三角函数的定义即可得到结论.【详解】如图:连接DB,若Q点落在BD2,设AP=x,则PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD2PQ,即1﹣x=2,∴x2﹣1,∴AP21,∴tan∠ABP=AP=2﹣1,AB2﹣1.【点睛】本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.13.若a2+3=2b,则a3﹣2ab+3a=_____.【答案】1【解析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.【详解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1.【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.14.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.【答案】20000【解析】试题分析:1000÷10200=20000(条). 考点:用样本估计总体.15.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且DE ∥BC ,已知AD =2,DB =4,DE =1,则BC =_____.【答案】1【解析】先由DE ∥BC ,可证得△ADE ∽△ABC ,进而可根据相似三角形得到的比例线段求得BC 的长.【详解】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴DE :BC =AD :AB ,∵AD =2,DB =4,∴AB =AD+BD =6,∴1:BC =2:6,∴BC =1,故答案为:1.【点睛】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.16.关于x 的一元二次方程2210ax x -+=有实数根,则a 的取值范围是 __________.【答案】a≤1且a≠0【解析】∵关于x 的一元二次方程2210ax x -+=有实数根,∴()20240a a ≠⎧⎪⎨=--≥⎪⎩ ,解得:a 1≤,∴a 的取值范围为:a 1≤且0a ≠ .点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此0a ≠ ;(2)这道一元二次方程有实数根,因此()2240a =--≥ ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.17.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x 米,若要求出未知数x ,则应列出方程 (列出方程,不要求解方程).【答案】π(x+5)1=4πx 1.【解析】根据等量关系“大圆的面积=4×小圆的面积”可以列出方程.【详解】解:设小圆的半径为x 米,则大圆的半径为(x+5)米,根据题意得:π(x+5)1=4πx 1,故答案为π(x+5)1=4πx 1.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出. 18.若关于x 的分式方程2233x m x x -=--有增根,则m 的值为_____.【答案】【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m 的值.【详解】方程两边都乘x-3,得x-2(x-3)=m 2,∵原方程增根为x=3,∴把x=3代入整式方程,得【点睛】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、解答题(本题包括8个小题)19.为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A .由父母一方照看;B .由爷爷奶奶照看;C .由叔姨等近亲照看;D .直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有 名留守学生,B 类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D 类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?【答案】(1)10,144;(2)详见解析;(3)96【解析】(1)依据C 类型的人数以及百分比,即可得到该班留守的学生数量,依据B 类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D 类型留守学生的数量,即可将条形统计图补充完整; (3)依据D 类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】解:(1)2÷20%=10(人),410×100%×360°=144°, 故答案为10,144; (2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人), 答:估计该校将有96名留守学生在此关爱活动中受益.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.观察规律并填空.21133(1)2224-=⨯=221113242(1)(1)2322333--=⨯⨯⨯=2221111324355(1)(1)(1)2342233448---=⨯⨯⨯⨯⨯=⋯⋯ 2222211111(1)(1)(1)(1)(1)2345n -----=______(用含n 的代数式表示,n 是正整数,且 n ≥ 2) 【答案】12n n + 【解析】由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣12)和(1+1n )相乘得出结果. 【详解】2222211111111112345n -----()()()()() =1111111111111111223344n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⨯⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132431...22334n n+⨯⨯⨯⨯⨯⨯ =12n n+. 故答案为:12n n+. 【点睛】本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.21.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克)50 60 70 销售量y/千克 100 80 60(1)求y 与x 之间的函数表达式;设商品每天的总利润为W(元),求W 与x 之间的函数表达式(利润=收入-成本);试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?【答案】 (1)y =-2x +200(4080)x ≤≤ (2)W =-2x 2+280x -8 000(3)售价为70元时,获得最大利润,这时最大利润为1 800元.【解析】(1)用待定系数法求一次函数的表达式;(2)利用利润的定义,求与之间的函数表达式;(3)利用二次函数的性质求极值.【详解】解:(1)设y kx b =+,由题意,得501006080k b k b +=⎧⎨+=⎩,解得2200k b =-⎧⎨=⎩,∴所求函数表达式为2200y x =-+.(2)2(40)(2200)22808000W x x x x =--+=-+-.(3)22228080002(70)1800W x x x =-+-=--+,其中4080x ≤≤,∵20-<,∴当时,随的增大而增大,当7080x <≤时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.考点: 二次函数的实际应用.22.一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.【答案】40%【解析】先设第次降价的百分率是x ,则第一次降价后的价格为500(1-x )元,第二次降价后的价格为500(1-2x ),根据两次降价后的价格是240元建立方程,求出其解即可.【详解】第一次降价的百分率为x ,则第二次降价的百分率为2x ,根据题意得:500(1﹣x )(1﹣2x )=240,解得x 1=0.2=20%,x 2=1.3=130%.则第一次降价的百分率为20%,第二次降价的百分率为40%.【点睛】本题考查了一元二次方程解实际问题,读懂题意,找出题目中的等量关系,列出方程,求出符合题的解即可.23.先化简代数式:222111a a a a a +⎛⎫-÷⎪---⎝⎭,再代入一个你喜欢的数求值. 【答案】13【解析】先根据分式的运算法则进行化简,再代入使分式有意义的值计算. 【详解】解:原式2211(1)(1)a a a a a a ⎡⎤+-=-⋅⎢⎥-+-⎣⎦ 2(1)21(1)(1)a a a a a a+---=⋅+- 11a =+. 使原分式有意义的a 值可取2, 当2a =时,原式11213==+. 【点睛】考核知识点:分式的化简求值.掌握分式的运算法则是关键.24.已知关于x 的方程()22210x k x k --+=有两个实数根12,x x .求k 的取值范围;若12121x x x x +=-,求k 的值;【答案】(1)12k≤;(2)k=-3【解析】(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依题意x1+x2=2(k-1),x1·x2=k2以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1;②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);【详解】解:(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0解得12 k≤(2)依题意x1+x2=2(k-1),x1·x2=k2以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1解得k1=k2=1∵12k≤∴k1=k2=1不合题意,舍去②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)解得k1=1,k2=-3∵12k≤∴k=-3综合①、②可知k=-3【点睛】一元二次方程根与系数关系,根判别式.25.今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.【答案】(1)A种树苗的单价为200元,B种树苗的单价为300元;(2)10棵【解析】试题分析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.试题解析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元,可得:352100{4103800y xy x+=+=,解得:300200 xy=⎧⎨=⎩,答:A种树苗的单价为200元,B种树苗的单价为300元.(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.考点:1.一元一次不等式的应用;2.二元一次方程组的应用26.某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?【答案】(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:20001400220x x=⨯+,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列计算正确的是( )A .(a+2)(a ﹣2)=a 2﹣2B .(a+1)(a ﹣2)=a 2+a ﹣2C .(a+b )2=a 2+b 2D .(a ﹣b )2=a 2﹣2ab+b 2【答案】D【解析】A 、原式=a 2﹣4,不符合题意;B 、原式=a 2﹣a ﹣2,不符合题意;C 、原式=a 2+b 2+2ab ,不符合题意;D 、原式=a 2﹣2ab+b 2,符合题意,故选D2.把不等式组的解集表示在数轴上,下列选项正确的是( ) A .B .C .D .【答案】B 【解析】由(1)得x >-1,由(2)得x≤1,所以-1<x≤1.故选B .3.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33【答案】D 【解析】根据ED 是BC 的垂直平分线、BD 是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED 是BC 的垂直平分线,∴DB=DC ,∴∠C=∠DBC ,∵BD 是△ABC 的角平分线,∴∠ABD=∠DBC ,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴,故选D .【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.4.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元【答案】C【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.下列二次根式,最简二次根式是( )AB C D 【答案】C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含开的尽的因数,故A 不符合题意;B 、被开方数含分母,故B 不符合题意;C 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C 符合题意;D 、被开方数含能开得尽方的因数或因式,故D 不符合题意.故选C .本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m【答案】A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×32=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=1532×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.7.如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A.6cm B.35cm C.8cm D.53【解析】试题分析:∵从半径为9cm 的圆形纸片上剪去13圆周的一个扇形, ∴留下的扇形的弧长=()2293π⨯=12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r=122ππ=6cm , ∴圆锥的高为2296-=35cm故选B.考点: 圆锥的计算.8.甲、乙两船从相距300km 的A 、B 两地同时出发相向而行,甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6km/h ,若甲、乙两船在静水中的速度均为xkm/h ,则求两船在静水中的速度可列方程为( )A .1806x +=1206x - B .1806x -=1206x + C .1806x +=120x D .180x =1206x - 【答案】A 【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h ,则求两船在静水中的速度可列方程为:1806x +=1206x -. 故选A .点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.9.如图,反比例函数y =-的图象与直线y =-x 的交点为A 、B ,过点A 作y 轴的平行线与过点B 作的x 轴的平行线相交于点C ,则△ABC 的面积为( )A .8B .6C .4D .2【答案】A【解析】试题解析:由于点A 、B 在反比例函数图象上关于原点对称,则△ABC 的面积=2|k|=2×4=1.故选A .考点:反比例函数系数k 的几何意义.10.函数y=ax2+1与ayx=(a≠0)在同一平面直角坐标系中的图象可能是()A.B. C. D.【答案】B【解析】试题分析:分a>0和a<0两种情况讨论:当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);ayx=位于第一、三象限,没有选项图象符合;当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);ayx=位于第二、四象限,B选项图象符合.故选B.考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.二、填空题(本题包括8个小题)11.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为【答案】24m+【解析】因为大正方形边长为4m+,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为4m+,所以矩形的另一边为梯形上、下底的和:4m++m=24m+.12.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有_____个三角形(用含字母n的代数式表示).【答案】4n﹣1【解析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为943 3.=⨯-按照这个规律即可求出第n各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1413=⨯-;。
2024年上海市普陀区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)下列二次根式中,与是同类二次根式的是()A.B.C.D.2.(4分)下列运算正确的是()A.3a+a=4a2B.3a﹣a=2C.3a•a=3a2D.3a÷a=2a 3.(4分)下列方程中,有两个不相等的实数根的是()A.x2=0B.x2﹣1=0C.x2﹣2x+2=0D.x2﹣2x+1=0 4.(4分)已知正比例函数y=kx(k是常数,k≠0)的图象经过点A(2,6),那么下列坐标所表示的点在这个正比例函数图象上的是()A.(﹣1,﹣3)B.(1,﹣3)C.(6,2)D.(6,﹣2)5.(4分)已知△ABC中,AH为边BC上的高,在添加下列条件中的一个后,仍不能判断△ABC是等腰三角形的是()A.BH=HC B.∠BAH=∠CAHC.∠B=∠HAC D.S△ABH=S△AHC6.(4分)如图,在△ABC中,∠ACB=90°,G是△ABC的重心,点D在边BC上,DG⊥GC,如果BD=5,CD=3,那么的值是()A.B.C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:(3a3)2=.8.(4分)方程的解为.9.(4分)不等式组的解集是.10.(4分)已知反比例函数的图象位于第二、四象限,则k的取值范围是.11.(4分)已知一个角的余角是这个角的两倍,那么这个角的补角是度.12.(4分)现有四张分别是等边三角形、菱形、直角梯形、等腰梯形的纸片,从这四张纸片中任意抽取一张恰好是轴对称图形的概率是.13.(4分)已知直线y=2x+4与直线y=1相交于点A,那么点A的横坐标是.14.(4分)在直角坐标平面内,将点A先向右平移4个单位,再向上平移6个单位得到点B,如果点A和点B恰好关于原点对称,那么点B的坐标是.15.(4分)学校为了解本校九年级学生阅读课外书籍的情况,对九年级全体学生进行“最喜欢阅读的课外书籍类型”的问卷调查(每人只选一个类型),如图是收集数据后绘制的扇形图.如果喜欢阅读漫画类书籍所在扇形的圆心角是72°,喜欢阅读小说类书籍的学生有72人,那么该校九年级喜欢阅读科技类书籍的学生有人.16.(4分)如图,梯形ABCD中,AD∥BC,过点A作AE∥DC分别交BD、BC于点F、E,,设,,那么向量用向量、表示为.17.(4分)已知正方形ABCD的边长为4,点E、F在直线BC上(点E在点F的左侧),∠EAF=45°,如果BE=1,那么CF的长是.18.(4分)如图,在△ABC中,AB=AC=5,cos B=,分别以点B、C为圆心,1为半径长作⊙B、⊙C,D为边BC上一点,将△ABD和⊙B沿着AD翻折得到△AB′D和⊙B′,点B的对应点为点B′,AB′与边BC相交,如果⊙B′与⊙C外切,那么BD=.三、解答题:(本大题共7题,满分78分)19.(10分)计算:.20.(10分)解方程:.21.(10分)如图,在△ABC中,∠B=2∠C,点D在边BC上,AB=AD=13,BC=23.(1)求BD的长;(2)求tan C的值.22.(10分)甲外卖平台的外卖员小张看到乙外卖平台外卖员小王的月工资收入比自己高,于是想跳槽去乙外卖平台工作.如果不考虑其他因素,仅根据以下信息,请你帮助小张来决策是否需要跳槽到乙外卖平台,并说明理由.信息一:甲、乙两个外卖平台的税前月工资收入计算方式相同,如下:税前月工资收入=(每日底薪+每单提成×日均送单数)×月送单天数﹣当月违规扣款(其中这两个外卖平台每个月的月送单天数均相同)信息二:乙外卖平台外卖员小王的月工资单如表:每日底薪(元)每单提成(元)日均送单数当月违规扣款税前月工资收入(元)每单扣款(元)违规送单数5066132108832信息三:甲外卖平台外卖员每日底薪70元,每单提成5.5元,违规每单扣款10元;信息四:如图1,随机抽取了小张在甲外卖平台若干天的日均送单数绘制成条形图;如图2,根据小张在一年中每月的违规送单数绘制成条形图.23.(12分)已知:如图,四边形ABCD中,AB∥CD,点E在边AD上,CE与BA的延长线交于点F,.(1)求证:四边形ABCD为平行四边形;(2)联结FD,分别延长FD、BC交于点G,如果FC2=FD•FG,求证:AD•CG=BF•CD.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=a(x﹣m)2+n(a≠0)与x 轴交于点A、B,抛物线的顶点P在第一象限,且∠APB=90°.(1)当点P的坐标为(4,3)时,求这个抛物线的表达式;(2)抛物线y=a(x﹣m)2+n(a≠0)表达式中有三个待定系数,求待定系数a与n之间的数量关系;(3)以点P为圆心,PA为半径作⊙P,⊙P与直线y=x+相交于点M、N,当点P在直线y=x上时,用含a的代数式表示MN的长.25.(14分)如图,在梯形ABCD中,AD∥BC(AD<BC),∠A=90°,BC=CD=6.将梯形ABCD绕点C按顺时针方向旋转,使点B与点D重合,此时点A、D的对应点分别是点E、F.(1)当点F正好落在AD的延长线上时,求∠BCD的度数;(2)联结AE,设AD=x,AE=y,①求y关于x的函数解析式;②定义:同中心同边数的两个正多边形称为双同正多边形,设∠BCF是一个正多边形的中心角,联结BD,请说明以线段BD、AE为边的正多边形是双同正多边形的理由.当这两个正多边形的面积比是4:5时,求双同正多边形的边数.2024年上海市普陀区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.【分析】根据同类二次根式的定义逐个判断即可.【解答】解:A.=,化简后被开方数与不相同,不是同类二次根式,故本选项不符合题意;B.=3,化简后被开方数与不相同,不是同类二次根式,故本选项不符合题意;C.a与的被开方数不相同,不是同类二次根式,故本选项不符合题意;D.=2,化简后被开方数与相同,是同类二次根式,故本选项符合题意.故选:D.【点评】本题考查了同类二次根式的性质,能熟记同类二次根式的定义(几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式叫同类二次根式)是解此题的关键.2.【分析】计算出各个选项中式子的正确结果,即可判断哪个选项符合题意.【解答】解:3a+a=4a,故选项A错误,不符合题意;3a﹣a=2a,故选项B错误,不符合题意;3a•a=3a2,故选项C正确,符合题意;3a÷a=3,故选项D错误,不符合题意;故选:C.【点评】本题考查解整式的混合运算,熟练掌握运算法则是解答本题的关键.3.【分析】利用直接开平方法据诶方程可对A、B选项进行判断;通过计算根的判别式的值,利用根的判别式的意义判断方程根的情况,则可对C、D选项进行判断.【解答】解:A.x2=0,解得x1=x2=0,所以A选项不符合题意;B.x2=1,解得x1=1,x2=﹣1,所以B选项符合题意;C.Δ=(﹣2)2﹣4×2=﹣4<0,方程没有实数解,所以C选项不符合题意;D.Δ=(﹣2)2﹣4×1=0,方程有两个相等的实数解,所以D选项不符合题意.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.4.【分析】由点A的坐标,利用一次函数图象上点的坐标特征,可求出k的值,进而可得出正比例函数解析式为y=3x,再分别代入各选项中点的横坐标,求出y值,将其与纵坐标比较后即可得出结论.【解答】解:∵正比例函数y=kx(k是常数,k≠0)的图象经过点A(2,6),∴6=2k,解得:k=3,∴正比例函数解析式为y=3x.A.当x=﹣1时,y=3×(﹣1)=﹣3,﹣3=﹣3,∴点(﹣1,﹣3)在这个正比例函数图象上,选项A符合题意;B.当x=1时,y=3×1=3,3≠﹣3,∴点(1,﹣3)不在这个正比例函数图象上,选项B不符合题意;C.当x=6时,y=3×6=18,18≠2,∴点(6,2)不在这个正比例函数图象上,选项C不符合题意;D.当x=6时,y=3×6=18,18≠﹣2,∴点(6,﹣2)不在这个正比例函数图象上,选项D不符合题意.故选:A.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.5.【分析】A.可证AH是BC的垂直平分线,可证△ABC是等腰三角形;B.由“ASA”可证△ABH≌△ACH,可得AB=AC,可证△ABC是等腰三角形;C.结合直角三角形的性质求出∠B与∠C互余,不一定相等,则△ABC不一定是等腰三角形;D.根据三角形面积公式求出BH=CH,进而可证△ABC是等腰三角形.【解答】解:如图,∵AH⊥BC,BH=HC,∴AH是BC的垂直平分线,∴AB=AC,故A不符合题意;∵∠BAH=∠CAH,AH=AH,∠AHB=∠AHC=90°,∴△ABH≌△ACH(ASA)∴AB=AC,∴△ABC是等腰三角形,故B不符合题意;∵∠B=∠HAC,且∠HAC+∠C=90°,∴∠B+∠C=90°,∴∠B与∠C互余,不一定相等,∴△ABC不一定是等腰三角形,故C符合题意;=S△AHC,AH⊥BC,∵S△ABH∴BH•AH=CH•AH,∴BH=CH,∴AB=AC,∴△ABC是等腰三角形,故D不符合题意;故选:C.【点评】本题主要考查的是全等三角形的判定和性质,等腰三角形的判定和性质,熟记等腰三角形的判定定理是本题的关键.6.【分析】连接AG,延长AG交BC于M,延长CG交AB于N,连接MN,由三角形重心的性质推出M、N分别是BC、AB的中点,NC=CG,由三角形中位线定理推出MN∥AC,得到∠NMC+∠ACB=180°,求出∠NMC=90°,得到∠CGD=∠NMC=90°,而∠DCG=∠MCN,判定△CDG∽△CNM,得到CG:CM=CD:CN,求出BC=5+3=8,由中点定义得到CM=BC=4,即可求出CG=2,于是得到==.【解答】解:连接AG,延长AG交BC于M,延长CG交AB于N,连接MN,∵G是△ABC的重心,∴M、N分别是BC、AB的中点,CG=2NG,∴MN∥AC,∴∠NMC+∠ACB=180°,∵∠ACB=90°,∴∠NMC=90°,∵DG⊥CG,∴∠CGD=∠NMC=90°,∵∠DCG=∠MCN,∴△CDG∽△CNM,∴CG:CM=CD:CN,∵BD=5,CD=3,∴BC=5+3=8,∵M是BC中点,∴CM=BC=4,∴CG:4=3:CG,∴CG=2,∴==.故选:D.【点评】本题考查相似三角形的判定和性质,三角形中位线定理,三角形的重心,关键是由三角形中位线定理推出△CDG∽△CNM,得到CG:CM=CD:CN.二、填空题:(本大题共12题,每题4分,满分48分)7.【分析】利用积的乘方的性质:积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘,首先计算积的乘方,再利用幂的乘方乘方性质:底数不变,指数相乘,计算(a3)2可得答案.【解答】解:(3a3)2=32•(a3)2=9•a3×2=9a6.故答案为:9a6.【点评】此题主要考查了积的乘方和幂的乘方混合运用,计算时要紧扣积的乘方的性质与幂的乘方乘方性质.8.【分析】首先把方程两边分别平方,然后解一元二次方程即可求出x的值.【解答】解:两边平方得:2x+3=x2∴x2﹣2x﹣3=0,解方程得:x1=3,x2=﹣1,检验:当x1=3时,方程的左边=右边,所以x1=3为原方程的解,当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.故答案为3.【点评】本题主要考查解无理方程,关键在于首先把方程的两边平方,注意最后要把x 的值代入原方程进行检验.9.【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:,解不等式①,得:x>﹣2,解不等式②,得:x<0.5,∴该不等式组的解集是﹣2<x<0.5,故答案为:﹣2<x<0.5.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.10.【分析】根据反比例函数的图象位于第二、四象限,可以得到k﹣1<0,然后求解即可.【解答】解:∵反比例函数的图象位于第二、四象限,∴k﹣1<0,解得k<1,故答案为:k<1.【点评】本题考查反比例函数的性质、反比例函数的图象,解答本题的关键是明确题意,利用反比例函数的性质解答.11.【分析】设这个角为x,由题意得,90°﹣x=2x,解得这个角的度数,可得这个角的补角.【解答】解:设这个角为x,由题意得,90°﹣x=2x,解得:x=30°,180°﹣30°=150°,故答案为:150.【点评】本题考查了余角和补角,关键是掌握余角和补角的定义.12.【分析】直接由概率公式求解即可.【解答】解:∵有四张分别是等边三角形、菱形、直角梯形、等腰梯形的纸片,其中等边三角形、菱形、等腰梯形是轴对称图形,∴从这四张纸片中任意抽取一张恰好是轴对称图形的概率是,故答案为:.【点评】本题考查了概率公式以及轴对称图形.用到的知识点为:概率=所求情况数与总情况数之比.13.【分析】代入y=1,求出x的值即可.【解答】解:将y=1代入y=2x+4得:1=2x+4,解得:x=﹣,∴点A的横坐标是﹣.故答案为:﹣.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.14.【分析】设A(a,b),根据点的平移规律可得点B(a+4,b﹣6),然后根据关于原点对称的点的坐标特征可得a+a+4=0,b+b﹣6=0,进行计算即可解答.【解答】解:设A(a,b),将点A(a,b)先向右平移4个单位,再向下平移6个单位得到点B(a+4,b+6),∵点A和点B关于原点对称,∴a+a+4=0,b+6+b=0,∴a=﹣2,b=﹣3,∴A(﹣2,﹣3),B(2,3).故答案为:(2,3).【点评】本题考查了关于原点对称的点的坐标,坐标与图形变化﹣平移,熟练掌握点的平移规律,以及关于原点对称的点的坐标特征是解题的关键.15.【分析】先由小说类人数及其所占百分比求出总人数,再求出漫画类人数所占百分比,继而用总人数乘以科技类人数所占比例即可.【解答】解:由题意知,被调查的总人数为72÷40%=180(人),漫画类人数所占百分比为×100%=20%,所以科技类人数所占百分比为1﹣(40%+20%+15%+10%)=15%,则该校九年级喜欢阅读科技类书籍的学生有180×15%=27(人),故答案为:27.【点评】本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.16.【分析】根据平行四边形的判定与性质得出CE=AD,再根据平行线分线段长比例推出BE=2AD,BF=,最后根据平面向量的三角形运算法则求解即可.【解答】解:∵,,∴,∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形,∴AD=CE,∵,∴,,∴BE=2AD,BF=,∴,=,∴=2,故答案为:.【点评】本题考查了平面向量的三角形运算法则,平行四边形的判定与性质,熟记平面向量的三角形运算法则是解题的关键.17.【分析】如图,当点E在点B的左侧,当点E在点B的右侧,连接AC,过F作FH⊥AC交AC的延长线于H,根据勾股定理,正方形的性质,以及相似三角形的判定和性质定理即可得到结论.【解答】解:如图,当点E在点B的左侧,连接AC,过F作FH⊥AC于H,∵正方形ABCD是正方形,AB=BC=4,∴∠ABE=∠ABF=90°,AB=BC=4,∠BAC=∠ACB=45°,∴△CHF是等腰直角三角形,AC==4,∴CH=FH,设CH=FH=x,∴AH=4﹣x,CF=x,∵∠EAF=45°,∴∠EAB=45°﹣∠BAF=∠CAF,∵∠ABE=∠AHC=90°,∴△ABE∽△AHF,∴,∴,∴x=,∴CF=×=;如图,当点E在点B的左侧,连接AC,过F作FH⊥AC交AC的延长线于H,同理可得CF=,故答案为:CF的长是或.【点评】本题考查了正方形的性质,等腰直角三角形的判定和性质,相似三角形的判定和性质,正确地作出辅助线是解题的关键.18.【分析】当AB′在∠BAC内部时,过点A作AE⊥BC于点E,连接B′C,过点A作AF⊥B′C于点F,结合等腰三角形的性质解直角三角形求出BE=4,∠BAE=∠CAE,AE=3,由折叠的性质得,∠BAD=∠B′AD,AB′=AB=5,根据两圆外切的性质求出B′F=1,根据勾股定理求出AF=2,则tan∠B′AF=,根据角的和差求出∠B′AF=∠DAE,进而求出DE,再根据线段的和差求解即可;当AB′在∠BAC外部时,同理AB′在∠BAC内部时求解即可.【解答】解:如图,当AB′在∠BAC内部时,过点A作AE⊥BC于点E,连接B′C,过点A作AF⊥B′C于点F,∴cos B=,∵AB=AC=5,cos B=,∴BE=4,∠BAE=∠CAE,∴AE==3,由折叠的性质得,∠BAD=∠B′AD,AB′=AB=5,∵AF⊥B′C,AB′=AC=5,∴∠B′AF=∠CAF,B′F=B′C,∵⊙B′与⊙C外切,∴B′C=1+1=2,∴B′F=1,∴AF===2,∴tan∠B′AF==,∵AB′=AC,AF⊥B′C,∴∠B′AF=∠B′AC=(∠BAC﹣∠BAB′)=(2∠BAE﹣2∠BAD)=∠BAE ﹣∠BAD=∠DAE,∴tan∠B′AF=tan∠DAE==,∴DE=3×=,∴BD=BE﹣DE=4﹣;如图,当AB′在∠BAC外部时,过点A作AE⊥BC于点E,连接B′C,过点A作AF ⊥B′C于点F,∴cos B=,∵AB=AC=5,cos B=,∴BE=4,∠BAE=∠CAE,∴AE==3,由折叠的性质得,∠BAD=∠B′AD,AB′=AB=5,∵AF⊥B′C,AB′=AC=5,∴∠B′AF=∠CAF,B′F=B′C,∵⊙B′与⊙C外切,∴B′C=1+1=2,∴B′F=1,∴AF===2,∴tan∠B′AF==,∵AB′=AC,AF⊥B′C,∴∠B′AF=∠B′AC=(∠BAB′﹣∠BAC)=(2∠BAD﹣2∠BAE)=∠BAD ﹣∠BAE=∠DAE,∴tan∠B′AF=tan∠DAE==,∴DE=3×=,∴BD=BE+DE=4+;故答案为:4﹣或4+.【点评】此题考查了折叠的性质、等腰三角形的性质、圆与圆的关系等知识,熟练掌握折叠的性质并分情况讨论是解题的关键.三、解答题:(本大题共7题,满分78分)19.【分析】利用有理数的乘方法则,分数指数幂的意义,负整数指数幂的意义和二次根式的性质化简运算即可.【解答】解:原式=﹣4++16﹣=﹣4+2+16﹣(2+)=﹣4+2+16﹣2﹣=10+.【点评】本题主要考查了实数的运算,有理数的乘方法则,分数指数幂的意义,负整数指数幂的意义和二次根式的性质,分母有理化,熟练掌握上述法则与性质是解题的关键.20.【分析】方程两边都乘(x+3)(x﹣3)得出6x+x(x﹣3)=2(x+3)(x﹣3),求出方程的解,再进行检验即可.【解答】解:,+=2,方程两边都乘(x+3)(x﹣3),得6x+x(x﹣3)=2(x+3)(x﹣3),整理得:x2﹣3x﹣18=0,(x﹣6)(x+3)=0,x1=6,x2=﹣3,检验:当x=6时,(x+3)(x﹣3)≠0,所以x=6是分式方程的解;当x=﹣3时,(x+3)(x﹣3)=0,所以x=﹣3是增根,所以分式方程的解是x=6.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.21.【分析】(1)利用外角定理,结合等角对等边即可解决问题.(2)过点A作BC的垂线构造出直角三角形即可解决问题.【解答】解:(1)∵AB=AD,∴∠B=∠ADB,又∵∠B=2∠C,∴∠ADB=2∠C.又∵∠ADB=∠C+∠CAD,∴∠C=∠CAD,∴AD=CD.∵AB=AD=13,BC=23,∴BD=23﹣13=10.(2)过点A作BC的垂线,垂足为M,∵AB=AD,∴BM=DM=,∴CM=13+5=18.在Rt△AMD中,AM=,∴tan C==.【点评】本题考查解直角三角形,过点A作BC的垂线构造出直角三角形是解题的关键.22.【分析】现根据图1,图2求出小张在甲外卖平台日均送单数为60,月违规送单数的平均数为12,再根据信息二:设送单天数为x天,求得送单天数为22天;据此计算出小张在甲外卖平台的工资和小张在乙外卖平台的工资,进行比较即可.【解答】解:小张不需要跳槽,理由如下:小张在甲外卖平台日均送单数为:=60(单);小张月违规送单数的平均数为:=12(单);根据信息二:设送单天数为x天,(50+6×61)x﹣32×10=8832,解得:x=22,∴小张在甲外卖平台的工资为:(70+5.5×60)×22﹣10×12=8680(元);小张在乙外卖平台的工资为:(50+6×60)×22﹣32×12=8636(元);∵8680>8636,∴小张不需要跳槽.【点评】本题考查的是条形统计图,根据统计图求出小张的日均送单数和月违单数的平均数是解题的关键.23.【分析】(1)由FA∥CD,证明△AEF∽△DEC,得=,而=,所以=,则AB=CD,即可证明四边形ABCD为平行四边形;(2)由平行四边形的性质得BC=AD,由FC2=FD•FG,得=,可证明△CFG∽△DFC,得∠G=∠FCD=∠BFC,而∠GCD=∠B,所以△GCD∽△FBC,则==,即可证明AD•CG=BF•CD.【解答】(1)证明:∵AB∥CD,点F在BA的延长线上,∴FA∥CD,∴△AEF∽△DEC,∴=,∵=,∴=,∴AB=CD,∴四边形ABCD为平行四边形.(2)证明:如图,联结FD,分别延长FD、BC交于点G,∵四边形ABCD是平行四边形,∴BC=AD,∵FC2=FD•FG,∴=,∵∠CFG=∠DFC,∴△CFG∽△DFC,∴∠G=∠FCD,∵∠BFC=∠FCD,∴∠G=∠BCF,∵∠GCD=∠B,∴△GCD∽△FBC,∴=,∴=,∴AD•CG=BF•CD.【点评】此题重点考查平行四边形的判定与性质、相似三角形的判定与性质等知识,证明△AEF∽△DEC及△GCD∽△FBC是解题的关键.24.【分析】(1)过P作PH⊥x轴于H,由P为抛物线的顶点,∠APB=90°,可得AH=PH=BH,而抛物线的顶点P(4,3),故OH=4,PH=3=AH=BH,且y=a(x﹣4)2+3,可得A(1,0),代入y=a(x﹣4)2+3得a=﹣,从而可求出抛物线的表达式为y=﹣x2+x﹣;(2)过P作PH⊥x轴于H,由抛物线y=a(x﹣m)2+n的顶点P坐标为(m,n),可得AH=PH=BH=n,OH=m,即得A的坐标为(m﹣n,0),代入y=a(x﹣m)2+n得:0=an2+n,又P(m,n)在第一象限,n≠0,可得an+1=0;(3)延长BP交MN于K,连接PM,过P作PH⊥x轴于H,设直线MN交x轴于T,由y=x+可知,∠KTB=45°=∠PAB,有KT∥AP,∠TKB=∠APB=90°,可得△KTB是等腰直角三角形,而P(m,n)在直线y=x上,可得m=2n,P(2n,n),同(2)可知,AH=PH=BH=n,OA=OH﹣AH=n,OB=OH+BH=3n,故A(n,0),B(3n,0),BP=AP=n=PM,求出T(﹣,0),可得BT=3n﹣(﹣)=n,BK==n,从而PK=BK﹣BP=n,由勾股定理得MK==n,由垂径定理可知,MN=2MK=n,结合(2)知MN=﹣.【解答】解:(1)过P作PH⊥x轴于H,如图:∵P为抛物线的顶点,∴PA=PB,∵∠APB=90°,PH⊥x轴,∴AH=PH=BH,∵抛物线的顶点P(4,3),∴OH=4,PH=3=AH=BH,且y=a(x﹣4)2+3,∴OA=OH﹣AH=4﹣3=1,∴A(1,0),把A(1,0)代入y=a(x﹣4)2+3得:0=9a+3,解得:a=﹣,∴y=﹣(x﹣4)2+3=﹣x2+x﹣,∴抛物线的表达式为y=﹣x2+x﹣;(2)过P作PH⊥x轴于H,如图:∵P为抛物线的顶点,∴PA=PB,∵∠APB=90°,PH⊥x轴,∴AH=PH=BH,∵抛物线y=a(x﹣m)2+n的顶点P坐标为(m,n),∴AH=PH=BH=n,OH=m,∴OA=m﹣n,∴A的坐标为(m﹣n,0),把A(m﹣n,0)代入y=a(x﹣m)2+n得:0=an2+n,∵P(m,n)在第一象限,∴n≠0,∴an+1=0;(3)延长BP交MN于K,连接PM,过P作PH⊥x轴于H,设直线MN交x轴于T,如图:由y=x+可知,∠KTB=45°=∠PAB,∴KT∥AP,∴∠TKB=∠APB=90°,∴△KTB是等腰直角三角形,∵P(m,n)在直线y=x上,∴n=m,∴m=2n,∴P(2n,n),同(2)可知,AH=PH=BH=n,OA=OH﹣AH=n,OB=OH+BH=3n,∴A(n,0),B(3n,0),∴BP=AP==n=PM,在y=x+中,令y=0得x=﹣,∴T(﹣,0),∴BT=3n﹣(﹣)=n,∴BK==n,∴PK=BK﹣BP=n﹣n=n,∴MK===n,由垂径定理可知,MN=2MK=n,由(2)知an+1=0,∴n=﹣,∴MN=×(﹣)=﹣;∴MN的长为﹣.【点评】本题考查二次函数综合应用,涉及函数图象上电坐标的特征,等腰直角三角形的判定与性质,垂径定理等知识,解题的关键是用含字母的式子表示相关点坐标和相关线段的长度.25.【分析】(1)证明△CDF为等边三角形.由等边三角形的性质可得出答案;(2)①分别联结AC、EC、BD,过点D作DP⊥BC,垂足为点P.则四边形ABPD为矩形.由勾股定理求出AB和AC,证明△BCD∽△ACE.得出,则可得出答案;②求出△BCD与△ACE的面积比是4:5.相似比是,即,得出,解得,则可得出答案.【解答】解:(1)∵CD=CF,∴∠CDF=∠CFD.由已知∠BCD是旋转角,得∠BCD=∠DCF.∵AD∥BC,点F在AD的延长线上,∴DF∥BC.∴∠BCD=∠CDF.∴∠DFC=∠CDF=∠DCF.∴△CDF为等边三角形.∴∠BCD=60°.(2)①分别联结AC、EC、BD,过点D作DP⊥BC,垂足为点P.则四边形ABPD为矩形.∴BP=AD=x,PC=6﹣x.在Rt△DPC中,由勾股定理得,∴,在Rt△ADB中,由勾股定理得,在Rt△ABC中,由勾股定理得,∵梯形ABCD绕点C按顺时针方向旋转得梯形EDCF,∴∠ACE=∠BCD,AC=EC,∴,∴△BCD∽△ACE.∴,∴,∴;②以线段BD、AE为边的正多边形是双同正多边形.∵∠BCF是一个正多边形的中心角,且∠BCF=2∠BCD,∴∠BCD也是一个正多边形的中心角.∵CB=CD,∴点C在线段BD的中垂线上.同理可得点C在线段AE的中垂线上.由两条不同的中垂线相交于点C,可知点C同时为以线段BD、AE为边的正多边形的中心.∵∠ACE=∠BCD,∴边数也相同.所以以线段BD、AE为边的正多边形有相同的中心C,且边数也相同,即它们是双同正多边形.∵两个正多边形的面积比是4:5,∴△BCD与△ACE的面积比是4:5.相似比是,即,∴,解得,∵AD<BC,∴.∵∠BCD=30°.∴双同正多边形的边数为12.【点评】本题是四边形综合题,考查了旋转的性质,等边三角形的判定与性质,直角三角形的性质,相似三角形的判定与性质,掌握特殊几何图形的性质是解题的关键。
2017年上海市普陀区高考数学二模试卷一、填空题(共12小题,每小题4分,满分54分)1.计算:(1+)3=.2.函数f(x)=log2(1﹣)的定义域为.3.若<α<π,sinα=,则tan=.4.若复数z=(1+i)•i2(i表示虚数单位),则=.5.曲线C:(θ为参数)的两个顶点之间的距离为.6.若从一副52张的扑克牌中随机抽取2张,则在放回抽取的情形下,两张牌都是K的概率为(结果用最简分数表示).7.若关于x 的方程sinx+cosx﹣m=0在区间[0,]上有解,则实数m的取值范围是.8.若一个圆锥的母线与底面所成的角为,体积为125π,则此圆锥的高为.9.若函数f(x)=log22x﹣log2x+1(x≥2)的反函数为f﹣1(x).则f﹣1(3)=.10.若三棱锥S﹣ABC的所有的顶点都在球O的球面上.SA⊥平面ABC.SA=AB=2,AC=4,∠BAC=,则球O的表面积为.11.设a<0,若不等式sin2x+(a﹣1)cosx+a2﹣1≥0对于任意的x∈R恒成立,则a的取值范围是.12.在△ABC中,D、E分别是AB,AC的中点,M是直线DE上的动点,若△ABC的面积为1,则•+2的最小值为.二、选择题(共4小题,每小题5分,满分20分)13.动点P在抛物线y=2x2+1上移动,若P与点Q(0,﹣1)连线的中点为M,则动点M的轨迹方程为()A.y=2x2B.y=4x2C.y=6x2D.y=8x214.若α、β∈R,则“α≠β”是“tanα≠tanβ”成立的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件15.设l、m是不同的直线,α、β是不同的平面,下列命题中的真命题为()A.若l∥α,m⊥β,l⊥m,则α⊥βB.若l∥α,m⊥β,l⊥m,则α∥βC.若l∥α,m⊥β,l∥m,则α⊥βD.若l∥α,m⊥β,l∥m,则α∥β16.关于函数y=sin2x的判断,正确的是()A.最小正周期为2π,值域为[﹣1,1],在区间[﹣,]上是单调减函数B.最小正周期为π,值域为[﹣1,1],在区间[0,]上是单调减函数C.最小正周期为π,值域为[0,1],在区间[0,]上是单调增函数D.最小正周期为2π,值域为[0,1],在区间[﹣,]上是单调增函数三、解答题(共5小题,满分76分)17.(14分)在正方体ABCD﹣A1B1C1D1中,E、F分别是BC、A1D1的中点.(1)求证:四边形B1EDF是菱形;(2)求异面直线A1C与DE所成的角(结果用反三角函数表示).18.(14分)已知函数f(x)=asinx+bcosx(a,b为常数且a≠0,x∈R).当x=时,f(x)取得最大值.(1)计算f()的值;(2)设g(x)=f(﹣x),判断函数g(x)的奇偶性,并说明理由.19.(14分)某人上午7时乘船出发,以匀速v海里/小时(4≤v≤20)从A港前往相距50海里的B地,然后乘汽车以匀速ω千米/小时(30≤ω≤100)自B 港前往相距300千米的C市,计划当天下午4到9时到达C市.设乘船和汽车的所要的时间分别为x、y小时,如果所需要的经费P=100+3(5﹣x)+(8﹣y)(单位:元)(1)试用含有v、ω的代数式表示P;(2)要使得所需经费P最少,求x和y的值,并求出此时的费用.20.(16分)已知椭圆T: +=1,直线l经过点P(m,0)与T相交于A、B两点.(1)若C(0,﹣)且|PC|=2,求证:P必为Γ的焦点;(2)设m>0,若点D在Γ上,且|PD|的最大值为3,求m的值;(3)设O为坐标原点,若m=,直线l的一个法向量为=(1,k),求△AOB 面积的最大值.21.(18分)已知数列{a n}(n∈N*),若{a n+a n}为等比数列,则称{a n}具有+1性质P.(1)若数列{a n}具有性质P,且a1=a2=1,a3=3,求a4、a5的值;(2)若b n=2n+(﹣1)n,求证:数列{b n}具有性质P;(3)设c1+c2+…+c n=n2+n,数列{d n}具有性质P,其中d1=1,d3﹣d2=c1,d2+d3=c2,若d n>102,求正整数n的取值范围.2017年上海市普陀区高考数学二模试卷参考答案与试题解析一、填空题(共12小题,每小题4分,满分54分)1.计算:(1+)3=1.【考点】6F:极限及其运算.【分析】根据题意,对(1+)3变形可得(1+)3=(+++1),由极限的意义计算可得答案.【解答】解:根据题意,(1+)3==(+++1)=1,即(1+)3=1;故答案为:1.【点评】本题考查极限的计算,需要牢记常见的极限的化简方法.2.函数f(x)=log2(1﹣)的定义域为(﹣∞,0)∪(1,+∞).【考点】33:函数的定义域及其求法.【分析】根据对数函数的性质得到关于x的不等式,解出即可.【解答】解:由题意得:1﹣>0,解得:x>1或x<0,故答案为:(﹣∞,0)∪(1,+∞).【点评】本题考查了函数的定义域问题,考查对数函数的性质,是一道基础题.3.若<α<π,sinα=,则tan=3.【考点】GW:半角的三角函数.【分析】利用同角三角函数的基本关系求得cosx的值,再利用半角公式求得tan的值.【解答】解:若<α<π,sinα=,则cosα=﹣=﹣,∴tan==3,故答案为:3.【点评】本题主要考查同角三角函数的基本关系,半角公式的应用,属于基础题.4.若复数z=(1+i)•i2(i表示虚数单位),则=﹣1+i.【考点】A5:复数代数形式的乘除运算.【分析】先化简,再根据共轭复数的定义即可求出【解答】解:z=(1+i)•i2=﹣1﹣i,∴=﹣1+i,故答案为:﹣1+i.【点评】本题考查复数代数形式的乘除运算以及共轭复数,是基础的计算题.5.曲线C:(θ为参数)的两个顶点之间的距离为2.【考点】QH:参数方程化成普通方程.【分析】根据题意,将曲线的参数方程变形为普通方程,分析可得曲线C为双曲线,且两个顶点的坐标为(±1,0),由两点间距离公式计算可得答案.【解答】解:曲线C:,其普通方程为x2﹣y2=1,则曲线C为双曲线,且两个顶点的坐标为(±1,0),则则两个顶点之间的距离为2;故答案为:2.【点评】本题考查参数方程与普通方程的互化,涉及双曲线的几何性质,关键是将曲线的参数方程化为普通方程.6.若从一副52张的扑克牌中随机抽取2张,则在放回抽取的情形下,两张牌都是K的概率为(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n=52×52,再求出两张牌都是K包含的基本事件个数m=13×13,由此能求出两张牌都是K的概率.【解答】解:从一副52张的扑克牌中随机抽取2张,在放回抽取的情形下,基本事件总数n=52×52,两张牌都是K包含的基本事件个数m=13×13,∴两张牌都是K的概率为p===.故答案为:.【点评】本题考查概率的求法,考查古典概型及应用,考查推理论证能力、运算求解能力,考查函数与方程思想、化归转化思想,是基础题.7.若关于x 的方程sinx+cosx﹣m=0在区间[0,]上有解,则实数m的取值范围是[1,] .【考点】GI:三角函数的化简求值.【分析】由题意,关于x 的方程sinx+cosx﹣m=0在区间[0,]上有解,转化为函数y=sin(x+)与函数y=m的图象有交点问题.【解答】解:由题意,sinx+cosx﹣m=0,转化为:sinx+cosx=m,设函数y=sin(x+)x∈[0,]上,则x+∈[,]∴sin(x+)∈[]∴函数y=sin(x+)的值域为[1,]关于x 的方程sinx+cosx﹣m=0在区间[0,]上有解,则函数y=m的值域为[1,],即m∈[1,]故答案为:[1,].【点评】本题考查了方程有解问题转化为两个函数的交点的问题.属于基础题.8.若一个圆锥的母线与底面所成的角为,体积为125π,则此圆锥的高为5.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】设圆锥的高为h,则底面圆的半径为h,利用体积为125π,建立方程,即可求出此圆锥的高.【解答】解:设圆锥的高为h,则底面圆的半径为h,∵体积为125π,∴=125π,∴h=5.故答案为:5.【点评】本题考查圆锥体积的计算,考查方程思想,比较基础.9.若函数f(x)=log22x﹣log2x+1(x≥2)的反函数为f﹣1(x).则f﹣1(3)=4.【考点】4R:反函数.【分析】由题意,log22x﹣log2x+1=3,根据x≥2,即可得出结论.【解答】解:由题意,log22x﹣log2x+1=3,∵x≥2,∴x=4,故答案为4.【点评】本题考查对数方程,考查反函数的概念,正确转化是关键.10.若三棱锥S﹣ABC的所有的顶点都在球O的球面上.SA⊥平面ABC.SA=AB=2,AC=4,∠BAC=,则球O的表面积为20π.【考点】LG:球的体积和表面积.【分析】由余弦定理求出BC=2,利用正弦定理得∠ABC=90°.从而△ABC截球O所得的圆O′的半径r=AC=2,进而能求出球O的半径R,由此能求出球O的表面积.【解答】解:如图,三棱锥S﹣ABC的所有顶点都在球O的球面上,∵SA⊥平面ABC.SA=AB=2,AC=4,∠BAC=,∴BC==2,∴AC2=BC2+AB2,∴∠ABC=90°.∴△ABC截球O所得的圆O′的半径r=AC=2,∴球O的半径R==,∴球O的表面积S=4πR2=20π.故答案为:20π.【点评】本题考查三棱锥、球、勾股定理等基础知识,考查抽象概括能力、数据处理能力、运算求解能力,考查应用意识、创新意识,考查化归与转化思想、分类与整合思想、数形结合思想,是中档题.11.设a<0,若不等式sin2x+(a﹣1)cosx+a2﹣1≥0对于任意的x∈R恒成立,则a的取值范围是a≤﹣2.【考点】3R:函数恒成立问题.【分析】不等式进行等价转化为关于cosx的一元二次不等式,利用二次函数的性质和图象列不等式组求得答案.【解答】解;不等式等价于1﹣cos2x+acosx+a2﹣1﹣cosx≥0,恒成立,整理得﹣cos2x+(a﹣1)cosx+a2≥0,设cosx=t,则﹣1≤t≤1,g(t)=﹣t2+(a﹣1)t+a2,要使不等式恒成立需:求得a≥1或a≤﹣2,而a<0故答案为:a≤﹣2.【点评】本题主要考查了一元二次不等式的解法,二次函数的性质.注重了对数形结合思想的运用和问题的分析.12.在△ABC 中,D 、E 分别是AB ,AC 的中点,M 是直线DE 上的动点,若△ABC的面积为1,则•+2的最小值为 .【考点】9R :平面向量数量积的运算.【分析】由三角形的面积公式,S △ABC =2S △MBC ,则S △MBC =,根据三角形的面积公式及向量的数量积,利用余弦定理,即可求得则•+2,利用导数求得函数的单调性,即可求得则•+2的最小值;方法二:利用辅助角公式及正弦函数的性质,即可求得•+2的最小值.【解答】解:∵D 、E 是AB 、AC 的中点, ∴A 到BC 的距离=点A 到BC 的距离的一半,∴S △ABC =2S △MBC ,而△ABC 的面积1,则△MBC 的面积S △MBC =,S △MBC =丨MB 丨×丨MC 丨sin ∠BMC=,∴丨MB 丨×丨MC 丨=.∴•=丨MB 丨×丨MC 丨cos ∠BMC=.由余弦定理,丨BC 丨2=丨BM 丨2+丨CM 丨2﹣2丨BM 丨×丨CM 丨cos ∠BMC ,显然,BM 、CM 都是正数,∴丨BM 丨2+丨CM 丨2≥2丨BM 丨×丨CM 丨,∴丨BC 丨2=丨BM 丨2+丨CM 丨2﹣2丨BM 丨×丨CM 丨cos ∠BMC=2×﹣2×..∴•+2≥+2×﹣2×=,方法一:令y=,则y′=,令y′=0,则cos ∠BMC=,此时函数在(0,)上单调减,在(,1)上单调增,∴cos ∠BMC=时,取得最小值为,•+2的最小值是,方法二:令y=,则ysin ∠BMC +cos ∠BMC=2,则sin (∠BMC +α)=2,tanα=,则sin (∠BMC +α)=≤1,解得:y ≥,•+2的最小值是,故答案为:.【点评】本题考查了向量的线性运算、数量积运算、辅助角公式,余弦定理,考查了推理能力与计算能力,属于中档题.二、选择题(共4小题,每小题5分,满分20分)13.动点P 在抛物线y=2x 2+1上移动,若P 与点Q (0,﹣1)连线的中点为M ,则动点M 的轨迹方程为( ) A .y=2x 2B .y=4x 2C .y=6x 2D .y=8x 2【考点】J3:轨迹方程.【分析】先设PQ 中点为(x ,y ),进而根据中点的定义可求出M 点的坐标,然后代入到曲线方程中得到轨迹方程.【解答】解:设PQ 中点为(x ,y ),则M (2x ,2y +1)在抛物线y=2x 2+1上, 即2(2x )2=(2y +1)﹣1, ∴y=4x 2. 故选B .【点评】本题主要考查轨迹方程的求法,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.14.若α、β∈R,则“α≠β”是“tanα≠tanβ”成立的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据正切函数的性质以及充分必要条件的定义判断即可.【解答】解:若“α≠β”,则“tanα≠tanβ”不成立,不是充分条件,反之也不成立,比如α=,β=,故选:D.【点评】本题考查了充分必要条件,考查正切函数的性质,是一道基础题.15.设l、m是不同的直线,α、β是不同的平面,下列命题中的真命题为()A.若l∥α,m⊥β,l⊥m,则α⊥βB.若l∥α,m⊥β,l⊥m,则α∥βC.若l∥α,m⊥β,l∥m,则α⊥βD.若l∥α,m⊥β,l∥m,则α∥β【考点】LP:空间中直线与平面之间的位置关系.【分析】在A中,α与β相交或平行;在B中,α与β相交或平行;在C中,由面面垂直的判定定理得α⊥β;在D中,由面面垂直的判定定理得α⊥β.【解答】解:由l、m是不同的直线,α、β是不同的平面,知:在A中,若l∥α,m⊥β,l⊥m,则α与β相交或平行,故A错误;在B中,若l∥α,m⊥β,l⊥m,则α与β相交或平行,故B错误;在C中,若l∥α,m⊥β,l∥m,则由面面垂直的判定定理得α⊥β,故C正确;在D中,若l∥α,m⊥β,l∥m,则由面面垂直的判定定理得α⊥β,故D错误.故选:C.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系的应用,考查推理论证能力、运算求解能力、空间思维能力,考查化归转化思想、数形结合思想,是中档题.16.关于函数y=sin2x的判断,正确的是()A.最小正周期为2π,值域为[﹣1,1],在区间[﹣,]上是单调减函数B.最小正周期为π,值域为[﹣1,1],在区间[0,]上是单调减函数C.最小正周期为π,值域为[0,1],在区间[0,]上是单调增函数D.最小正周期为2π,值域为[0,1],在区间[﹣,]上是单调增函数【考点】H7:余弦函数的图象;GT:二倍角的余弦.【分析】先化简函数,再利用余弦函数的图象与性质,即可得出结论.【解答】解:y=sin2x=(1﹣os2x)=﹣cos2x+∴函数的最小正周期为π,值域为[0,1],在区间[0,]上是单调增函数,故选C.【点评】本题考查三角函数的化简,考查余弦函数的图象与性质,属于中档题.三、解答题(共5小题,满分76分)17.(14分)(2017•普陀区二模)在正方体ABCD﹣A1B1C1D1中,E、F分别是BC、A1D1的中点.(1)求证:四边形B1EDF是菱形;(2)求异面直线A1C与DE所成的角(结果用反三角函数表示).【考点】LM:异面直线及其所成的角.【分析】(1)由题意画出图形,取AD中点G,连接FG,BG,可证四边形B1BGF 为平行四边形,得BG∥B1F,再由ABCD﹣A1B1C1D1为正方体,且E,G分别为BC,AD的中点,可得BEDG为平行四边形,得BG∥DE,BG=DE,从而得到B1F∥DE,且B1F=DE,进一步得到四边形B1EDF为平行四边形,再由△B1BE≌△B1A1F,可得B1E=B1F,得到四边形B1EDF是菱形;(2)以A为原点建立如图所示空间直角坐标系,然后利用空间向量求异面直线A1C与DE所成的角.【解答】(1)证明:取AD中点G,连接FG,BG,可得B1B∥FG,B1B=FG,∴四边形B1BGF为平行四边形,则BG∥B1F,由ABCD﹣A1B1C1D1为正方体,且E,G分别为BC,AD的中点,可得BEDG为平行四边形,∴BG∥DE,BG=DE,则B1F∥DE,且B1F=DE,∴四边形B1EDF为平行四边形,由△B1BE≌△B1A1F,可得B1E=B1F,∴四边形B1EDF是菱形;(2)解:以A为原点建立如图所示空间直角坐标系,设正方体的棱长为1,则A1(0,0,1),C(1,1,0),D(0,1,0),E(1,,0),∴,,∴cos<>==.∴异面直线A1C与DE所成的角为arccos.【点评】本题考查空间中直线与直线的位置关系,考查空间想象能力和思维能力,训练了利用空间向量求异面直线所成角,是中档题.18.(14分)(2017•普陀区二模)已知函数f(x)=asinx+bcosx(a,b为常数且a≠0,x∈R).当x=时,f(x)取得最大值.(1)计算f()的值;(2)设g(x)=f(﹣x),判断函数g(x)的奇偶性,并说明理由.【考点】GI:三角函数的化简求值;3K:函数奇偶性的判断.【分析】首先,根据已知得到f(x)=sin(x+θ),然后根据最值建立等式,得到a=b,再化简函数f(x)=asin(x+),(1)将代入解析式求值;(2)求出g(x)解析式,利用奇偶函数定义判断奇偶性.【解答】解:由已知得到f(x)=sin(x+θ),又x=时,f(x)取得最大值.所以a=b,f(x)=asin(x+),所以(1)f()=asin(3π)=0;(2)g(x)为偶函数.理由:设g(x)=f(﹣x)=asin(﹣x)=acosx,所以函数g(﹣x)=g(x),为偶函数.【点评】本题考查了三角函数的性质以及奇偶性的判定;属于基础题.19.(14分)(2017•普陀区二模)某人上午7时乘船出发,以匀速v海里/小时(4≤v≤20)从A港前往相距50海里的B地,然后乘汽车以匀速ω千米/小时(30≤ω≤100)自B港前往相距300千米的C市,计划当天下午4到9时到达C市.设乘船和汽车的所要的时间分别为x、y小时,如果所需要的经费P=100+3(5﹣x)+(8﹣y)(单位:元)(1)试用含有v、ω的代数式表示P;(2)要使得所需经费P最少,求x和y的值,并求出此时的费用.【考点】36:函数解析式的求解及常用方法;5D:函数模型的选择与应用.【分析】(1)分析题意,找出相关量之间的不等关系,(2)求出x,y满足的约束条件,由约束条件画出可行域,要求走得最经济,即求可行域中的最优解,将目标函数看成是一条直线,分析目标函数p与直线截距的关系,进而求出最优.【解答】解:(1)由题意得:x=,4≤v≤20,y=,30≤ω≤100,∴P=100+3(5﹣)+(8﹣)=123﹣﹣,其中,4≤v≤20,30≤ω≤100,(2)由(1)可得2.5≤x≤12.5,3≤y≤10,①由于汽车、乘船所需的时间和应在9至14小时之间,∴9≤x+y≤14 ②因此满足①②的点(x,y)的存在范围是图中阴影部分目标函数p=100+3(5﹣x)+(8﹣y)=123﹣3x﹣y,当x=11,y=3时,p 最小,此时,p=123﹣33﹣3=87【点评】本题考查不等式关系的建立,考查线性规划知识,考查学生分析解决问题的能力,属于中档题.20.(16分)(2017•普陀区二模)已知椭圆T: +=1,直线l经过点P(m,0)与T相交于A、B两点.(1)若C(0,﹣)且|PC|=2,求证:P必为Γ的焦点;(2)设m>0,若点D在Γ上,且|PD|的最大值为3,求m的值;(3)设O为坐标原点,若m=,直线l的一个法向量为=(1,k),求△AOB 面积的最大值.【考点】K4:椭圆的简单性质.【分析】(1)利用两点之间距离公式,即可求得m的值,由椭圆的方程,即可求得焦点坐标,即可求证P必为Γ的焦点;(2)利用两点之间的距离公式,根据二次函数的单调性,当x0=﹣2时,取最大值,代入即可求得m的值;(3)求得直线AB的方程,代入方程,由韦达定理,弦长公式及点到直线的距离公式,利用基本不等式的性质,即可求得△AOB面积的最大值.【解答】解:(1)证明:由椭圆焦点F(±1,0),由|PC|==2,解得:m=±1,∴P点坐标为(±1,0),∴P必为Γ的焦点;(2)设D(x0,y0),y02=3(1﹣),|PD|2=(x0﹣m)2+y02=﹣2mx0+m2+3,﹣2≤x0≤2,有函数的对称轴x0=4m>0,则当x0=﹣2时,取最大值,则|PD|2=1+4m+m2+3=9,m2+4m﹣5=0,解得:m=1或m=﹣5(舍去),∴m的值1;(3)直线l的一个法向量为=(1,k),则直线l的斜率﹣,则直线l方程:y﹣0=﹣(x﹣),整理得:ky+x﹣=0,设A(x1,y1),B(x2,y2),,整理得:(3k2+4)y2﹣6ky﹣3=0,则y1+y2=,y1y2=﹣,丨AB丨=•=,则O到直线AB的距离d=,则△AOB面积S=×丨AB丨×d=××==≤=,当且仅当=,即k2=,取等号,∴△AOB面积的最大值.【点评】本题考查椭圆的简单几何性质,直线与椭圆的位置关系,考查韦达定理,弦长公式,基本不等式的性质,考查计算能力,属于中档题.21.(18分)(2017•普陀区二模)已知数列{a n}(n∈N*),若{a n+a n}为等比+1数列,则称{a n}具有性质P.(1)若数列{a n}具有性质P,且a1=a2=1,a3=3,求a4、a5的值;(2)若b n=2n+(﹣1)n,求证:数列{b n}具有性质P;(3)设c1+c2+…+c n=n2+n,数列{d n}具有性质P,其中d1=1,d3﹣d2=c1,d2+d3=c2,若d n>102,求正整数n的取值范围.【考点】8B:数列的应用.}为等比数列,由a1=a2=1,a3=3,可得{a n+a n+1}的公比为2,【分析】(1){a n+a n+1=2n,进而得出a4、a5的值;可得a n+a n+1(2)证明{b n+b n}是以公比为2的等比数列,即可得出结论;+1=2n,利用d n>102,求正整数n的取值范围.(3)求出d n+d n+1【解答】解:(1){a n+a n}为等比数列,+1∵a1=a2=1,a3=3,∴a1+a2=1+1=2,a2+a3=1+3=4,∴{a n+a n}的公比为2,+1=2n,∴a n+a n+1∴a3+a4=23=8,即a4=5,∴a4+a5=24=16,即a5=11;(2)∵b n=2n+(﹣1)n,=2n+(﹣1)n+2n+1+(﹣1)n+1=3•2n,∴b n+b n+1∴{b n+b n}是以公比为2的等比数列,+1∴数列{b n}具有性质P.(3)∵c1+c2+…+c n=n2+n,=(n﹣1)2+n﹣1,∴c1+c2+…+c n﹣1∴c n=2n,∵d1=1,d3﹣d2=c1=2,d2+d3=c2=4,∴d2=1,d3=3,∵数列{d n}具有性质P,=2n,∴d4=5,d5=11,d6=21,d7=43,d8=85,d9=171,由(1)可得,d n+d n+1∵d n>102,∴正整数n的取值范围是[9,+∞).【点评】本题考查新定义,考查等比数列的运用,考查学生分析解决问题的能力,属于中档题.。
普陀区2016学年度第二学期初三质量调研数 学 试 卷(时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列计算正确的是 ··················································································· (▲)(A )632a a a =⋅; (B )a a a =÷33; (C )ab b a 333=+; (D )623)(a a =. 2.如果下列二次根式中有一个与a 是同类二次根式,那么这个根式是 ·················· (▲) (A )2a ; (B )23a ; (C )3a ; (D )4a .3.在学校举办的“中华诗词大赛”中,有11名选手进入决赛,他们的决赛成绩各不相同,其中一名参赛选手想知道自己是否能进入前6名,他需要了解这11名学生成绩的 ···· (▲)(A )中位数; (B )平均数; (C )众数; (D )方差.4.如图1,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果50A =∠,那么12+∠∠的大小为 ··································································································· (▲)(A )︒130; (B )︒180; (C )︒230; (D )︒260.5.如图2,在△ABC 中,中线AD 、CE 交于点O ,设a AB =,b BC =,那么向量AO 用向量a 、b 表示为 ······················································································· (▲)(A )b a 21+; (B )b a 3132+; (C )b a 3232+; (D )b a 4121+.图1图26.在△ABC 中,6==AC AB ,32cos =∠B ,以点B 为圆心,AB 为半径作圆B ,以点C 为圆心,半径长为13作圆C ,圆B 与圆C 的位置关系是 ···································· (▲)(A )外切; (B )相交; (C )内切; (D )内含.二、填空题:(本大题共12题,每题4分,满分48分)7.分解因式:a a 43-= ▲ .8.方程43x x =-的根是 ▲ . 9.不等式组23030x x -⎧⎨⎩,<≥的解集是 ▲ . 10.函数315y x =-的定义域是 ▲ .11.如果关于x 的方程230x x c -+=没有实数根,那么c 的取值范围是 ▲ .12.已知反比例函数xk y =(k 是常数,0k ≠)的图像在第二、四象限,点),(11y x A 和点),(22y x B 在函数的图像上,当021<<x x 时,可得1y ▲ 2y .(填“>”、“=”、“<”).13.一次抽奖活动设置了翻奖牌(图3展示的分别是翻奖牌的正反两面),抽奖时,你只能看到正面,你可以在9个数字中任意选中一个数字,可见抽中一副球拍的概率是19,那么请你根据题意写出一个事件,使这个事件发生的概率是13.这个事件是 ▲ .14.正八边形的中心角等于 ▲ 度.15.如图4,在△ABC 中,D 、E 分别是边AB 、AC 上的点,如果21==EC AE DB AD ,那么△ADE 与△ABC 周长的比是 ▲ .16.某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图5所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是 ▲ .图3 反面 正面 图417.一个滑轮起重装置如图6所示,滑轮的半径是10cm ,当滑轮的一条半径OA 绕轴心O 按逆时针方向旋转的角度为120时,重物上升 ▲ cm (结果保留π).18.如图7,将△ABC 绕点B 按逆时针方向旋转得到△EBD ,点E 、点D 分别与点A 、点C 对应,且点D 在边AC 上,边DE 交边AB 于点F ,△BDC ∽△ABC .已知10=BC ,5=AC ,那么△DBF 的面积等于 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分) 计算:()320171113sin 60223-⎛⎫+-+-︒ ⎪-⎝⎭.20.(本题满分10分) 解方程组:⎩⎨⎧=++=+-.944,02322y xy x y x21.(本题满分10分)在平面直角坐标系xOy 中,已知正比例函数的图像与反比例函数xy 8=的图像交于点)4,(m A .(1)求正比例函数的解析式;(2)将正比例函数的图像向下平移6个单位得到直线l ,设直线l 与x 轴的交点为B ,求ABO ∠的正弦值.图6 图5图722.(本题满分10分)上海首条中运量公交线路71路已正式开通.该线路西起沪青平公路申昆路,东至延安东路中山东一路,全长17.5千米.71路车行驶于专设的公交车道,又配以专用的公交信号灯.经测试,早晚高峰时段71路车在专用车道内行驶的平均速度比在非专用车道每小时快6千米,因此单程可节省时间22.5分钟.求早晚高峰时段71路车在专用车道内行驶的平均车速.23.(本题满分12分)已知:如图8,在平行四边形ABCD 中,AC 为对角线,E 是边AD 上一点,BE ⊥AC 交AC 于点F ,BE 、CD 的延长线交于点G ,且ABE CAD ∠=∠.(1)求证:四边形ABCD 是矩形;(2)如果AE EG =,求证:2AC BC BG =.图824.(本题满分12分)如图9,在平面直角坐标系xOy 中,二次函数22y x x m =-+(m >0)的对称轴与比例系数为5的反比例函数图像交于点A ,与x 轴交于点B ,抛物线的图像与y 轴交于点C ,且3OC OB =.(1)求点A 的坐标;(2)求直线AC 的表达式;(3)点E 是直线AC 上一动点,点F 在x 轴上方的平面内,且使以A 、B 、E 、F 为顶点的四边形是菱形,直接写出点F 的坐标.25.(本题满分14分)如图10,半圆O 的直径AB =10,有一条定长为6的动弦CD 在弧AB 上滑动(点C 、点D 分别不与点A 、点B 重合),点E 、F 在AB 上,EC ⊥CD ,FD ⊥CD .(1)求证:EO OF =;(2)联结OC ,如果△ECO 中有一个内角等于45,求线段EF 的长;(3)当动弦CD 在弧AB 上滑动时,设变量CE x =,四边形CDFE 面积为S ,周长为l ,问:S 与l 是否分别随着x 的变化而变化?试用所学的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论. 图9图10普陀区2016学年度第二学期九年级数学期终考试试卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.(D); 2.(C); 3.(A) ; 4.(C) ; 5.(B); 6.(B).二、填空题:(本大题共12题,每题4分,满分48分)三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解:原式=233)32()1(8⨯-++-+ ··················································· (8分) =239-. ··········································································· (2分) 20.解:方程②可变形为9)2(2=+y x . ······················································· (2分)得:32=+y x 或32-=+y x , ····················································· (2分)原方程组可化为⎩⎨⎧=+-=-;32,23y x y x ⎩⎨⎧-=+-=-.32,23y x y x ····································· (2分) 解得 ⎩⎨⎧==;1,111y x ⎪⎪⎩⎪⎪⎨⎧-=-=.51,51322y x ······························································ (4分) ∴原方程组的解是⎩⎨⎧==;1,111y x ⎪⎪⎩⎪⎪⎨⎧-=-=.51,51322y x21.解:(1)∵反比例函数8y x =的图像经过)4,(m A ∴84m=,解得2=m . ∴点A 的坐标为)4,2(. ·························································· (2分)设正比例函数的解析式为)0(≠=k kx y ,∵正比例函数的图像经过点A ,∴可得 k 24=,解得 2=k .∴正比例函数的解析式是x y 2=. ············································ (2分)(2)∵正比例函数向下平移6个单位得到直线l ,∴直线l 的表达式为62-=x y . ··············································· (2分) ∵直线l 与x 轴的交点为B ,∴点B 的坐标是()3,0. ···················· (1分)∴AB = ······································································ (1分)∴sin17ABO ∠==. ················································ (2分)即:ABO ∠.22.解:设早晚高峰时段71路在专用车道内行驶的平均车速x 千米/时. ············· (1分) 根据题意,可列方程17.517.522.5660x x -=- . ········································ (4分) 整理得 262800x x --=. ··························································· (1分) 解得 120x =,214x =-. ···························································· (2分) 经检验 120x =,214x =-都是原方程的解.因为速度不能负数,所以取20x =. ················································ (1分) 答:71路在专用车道内行驶的平均车速20千米/时. ··························· (1分)23. 证明:(1)∵BE ⊥AC ,∴90AFB ∠=. ············································ (1分)∴90ABE BAF ∠+∠=. ·················································· (2分) ∵ABE CAD ∠=∠,∴90CAD BAF ∠+∠=. ···················· (1分) 即 90BAD ∠= .∵四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. ········· (1分)(2)联结AG .∵AE EG =,∴EAG EGA ∠=∠. ········································ (1分)∵四边形ABCD 是平行四边形,,∴AB ∥CD ,AD ∥BC .∵AB ∥CD ,∴ABG BGC ∠=∠.∴CAD BGC ∠=∠. ······· (1分) ∴AGC GAC ∠=∠.∴CA CG =. ······································· (1分) ∵AD ∥BC ,∴CAD ACB ∠=∠.∴ACB BGC ∠=∠. ······· (1分) ∵四边形ABCD 是矩形,∴90BCG ∠=. ····························· (1分) ∴BCG ABC ∠=∠,∴△BCG ∽△ABC . ···························· (1分) ∴AC BC BG CG =.∴2AC BC BG =. ········································ (1分)24.(1)解:由题意得,二次函数图像的对称轴是直线1x =, ························· (1分) 反比例函数解析式是5y x =. ··················································· (1分) 把1x =代入5y x=,得5y =. ∴点A 的坐标为()1,5. ·························································· (1分)(2)由题意得,点B 的坐标为()1,0. ·················································· (1分) ∵3OC OB =,∴3OC =. ························································ (1分) ∵m >0,∴3m =.设直线AC 的表达式是3y kx =+,∵点A 在直线AC 上,∴2k =.∴直线AC 的表达式是23y x =+. ······ (1分)(3)点F 坐标是95,42⎛⎫ ⎪⎝⎭,(1+,()3,2-. ································ (6分) 25.解:(1)过点O 作OH ⊥CD ,垂足为点H . ··································· (1分)∵OH ⊥CD ,OH 是弦心距,∴CH DH =. ··························· (1分) ∵EC ⊥CD ,FD ⊥CD ,OH ⊥CD ,∴EC ∥OH ∥FD . ······ (1分) ∵CH DH =,∴EO OF =. ·················································· (1分)(2)∵ECO COH ∠=∠,∴45ECO ∠≠. ···································· (1分) ①当45EOC ∠=时,过点E 作EM ⊥OC ,垂足为点M .在Rt △OCH 中,OC =5,132CH CD ==, 由勾股定理,得OH =4. ···················································· (1分)∴::3:4:5CH OH CO =.∵ECM COH ∠=∠,90CME OHC ∠=∠=,∴△ECM ∽△COH .在Rt △ECM 中,可设4CM m =, 3EM m =.在Rt △EOM 中,3OM CM m ==,EO = .∵ CM OM OC +=, ∴435m m +=.解得 57m =.所以7EO =, 2EF EO =. ·········· (2分) ②当45CEO ∠=时, 过点O 作ON ⊥EC ,垂足为点N .在Rt △CON 中,3ON HC ==,4CN HO ==.在Rt △EON 中,EO =.所以EF =. ····························································· (2分)综上所述,线段EF (3) 四边形CDFE 的面积S 不随变量x 的变化而变化,是一个不变量;四边形CDFE 的周长l 随变量x 的变化而变化. ······················ (1分) S =24(0<x <8); ······························································ (1分) (是一个常值函数)l =14(0<x <8). ······································· (1分)说明:定义域2个1分,漏写、写错1个或全错,均扣1分.。