单相桥式半控整流电路.
- 格式:ppt
- 大小:644.00 KB
- 文档页数:13
单位: ***职业技术教育中心姓名: ***学科: 机电题目: 浅析单相桥式半控整流电路实验电话: ***********浅析单相桥式半控整流电路实验摘要:《电力电子技术》是一门实践性很强的课程,该文总结了本人在单相可控整流实验教学中的心得体会,对《电力电子技术》教学有一定的指导作用。
关键词:半控整流、晶闸管、触发电路、单结晶体管实验一、引言整流电路将交流电变为直流电, 是电力电子电路中出现最早的一种电路, 与人类生产生活实际联系密切, 应用十分广泛。
单相半波可控整流电路虽然具有电路简单、调整方便、使用元件少的优点, 但却有整流电压脉动大、输出整流电流小的缺点。
较常用的是半控桥式整流电路, 简称半控桥。
二、实验说明整流电路中, 采用晶闸管来控制导通的时间和路径。
作为一个传统电力电子技术实验, 采用相控方式。
单相半控桥式整流电路中有两个晶闸管控制导通时间, 另两个不可控的硅整流管作为限定电流的路径。
其直流输出电压平均值的表达式为Ud =0.9U2(1+cosα/2)为保证触发的晶闸管可靠导通, 触发脉冲信号应有一定的宽度。
一般晶闸管的导通时间为6μs,因此触发脉冲宽度应在此值之上, 最好在20~50μs之间。
本次实验使用单结晶体管触发电路。
三、实验器材1.示波器一台2.变压器(220V/12V)一台3.万用表一只4.触发电路板一块及电路元件5.整流主电路板一块及电路元件四、实验线路五、实验步骤1.万用表对晶闸管进行检测(1)电极判别万用表置R×1K挡, 将可控硅其中一端假定为控制极, 与黑表笔相接, 然后用红表笔分别接另外两个脚。
若有一次出现正向导通, 则假定的控制极是对的, 而导通那次红表笔所接的脚是阴极K, 另一极则是阳极A。
如果两次均不导通, 则说明假定的不是控制极, 可重新设定一端为控制极。
(2)好坏判别在正常情况下, 可控硅的GK是一个PN结, 具有PN结特性, 而GA和AK之间存在反向串联的PN结, 故其间电阻值均为无穷大。
实验二单相桥式半控整流电路实验一.实验目的1.研究单相桥式半控整流电路在电阻负载,电阻—电感性负载及反电势负载时的工作。
2.熟悉MCL—05组件锯齿波触发电路的工作。
3.进一步掌握双踪示波器在电力电子线路实验中的使用特点与方法。
二.实验线路及原理见图4-6。
三.实验内容1.单相桥式半控整流电路供电给电阻性负载。
2.单相桥式半控整流电路供电给电阻—电感性负载(带续流二极管)。
3.单相桥式半控整流电路供电给反电势负载(带续流二极管)。
4.单相桥式半控整流电路供电给电阻—电感性负载(断开续流二极管)。
四.实验设备及仪器1.MCL系列教学实验台主控制屏。
2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。
3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MCL—05组件或MCL—05A组件5.MEL—03三相可调电阻器或自配滑线变阻器。
6.MEL—02三相芯式变压器。
7.二踪示波器8.万用电表五.注意事项1.实验前必须先了解晶闸管的电流额定值(本装置为5A),并根据额定值与整流电路形式计算出负载电阻的最小允许值。
2.为保护整流元件不受损坏,晶闸管整流电路的正确操作步骤(1)在主电路不接通电源时,调试触发电路,使之正常工作。
(2)在控制电压U ct =0时,接通主电源。
然后逐渐增大U ct ,使整流电路投入工作。
(3)断开整流电路时,应先把U ct 降到零,使整流电路无输出,然后切断总电源。
3.注意示波器的使用。
4.MCL —33(或MCL —53组件)的内部脉冲需断开。
5.接反电势负载时,需要注意直流电动机必须先加励磁六.实验方法1.将MCL —05(或MCL —05A ,以下均同)面板左上角的同步电压输入接MCL —18的U 、V 输出端(如您选购的产品为MCL —Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U 、V 输出端相连), “触发电路选择”拨向“锯齿波”。
一、实验基本内容1.实验名称:单相半控桥整流电路实验2.已知条件:a)工作电路原理图图1 工作原理图b)理想工作波形c)产生失控现象的原因及理论结果对于单相桥式半控整流电路,在正常运行的情况下,如果突然把触发脉冲切断或者将触发延迟角α增大到180°,电路将产生“失控”现象。
失控原因:正在导通的晶闸管的关断必须依赖后续晶闸管的开通,如果后续晶闸管不能导通,则已经导通的晶闸管就无法关断。
失控结果:失控后,一个晶闸管持续导通,两个二极管轮流导通,整流输出电压波形为正弦半波,即半周期为正弦波,另外半周期为零,输出电压平均值恒定。
d)各物理量基本数量关系(感性负载)Ⅰ.输出直流电压平均值U dU d=1π2παsinwtd(wt)=0.9U21+cosα2Ⅱ.负载电流平均值I d=U dR =0.45U2R1+cosα2Ⅲ.流过晶闸管的电流有效值I VTI VT=I VD=π−α2πI dⅣ.流过晶闸管的电流平均值I dVTI dVT=I dVD=π−α2πI dⅤ.变压器二次电流有效值I2I2=1πI d2d(ωt)π+αα=I d=2I VTⅥ.续流二极管电流有效值I VD RI VTR =απI dⅦ.续流二极管电流平均值I dVT RI dVTR =απI d3.实验目标:a)实现控制触发脉冲与晶闸管同步;b)观测单相半控桥在纯阻性负载时的移相控制特点,测量最大移相范围及输入-输出特性;c)观测单相半控桥在阻-感性负载时的输出状态,制造失控现象并讨论解决方案。
二、实验条件1.主要设备仪器a)电力电子及电气传动教学实验台i.型号MCL-Ⅲ型ii.生产厂商浙江大学求是公司b)Tektronix示波器i.型号TDS2012ii.主要参数带宽:100MHz最高采样频率:1GS/sc)数字万用表i.型号GDM-81452.小组人员分工u 2abVT1VT2VD2VD4Ru da)实验主要操作人辅助操作人电流表监控影像记录数据记录b)报告实验基本内容描述实验图片整理实验图片处理实验条件阐述实验过程叙述数据处理电路仿真讨论思考题讨论结果整理实验综合评估报告整合排版三、实验原理1.阻性负载如图所示为带阻性负载时单相桥式半控整流电路。
单相桥式半控整流电路一.单相桥式半控整流电路手册1.单相桥式半控整流电路原理图如图1-1所示图1-1二.工作原理单相桥式半控整流电路在电阻性负载时的工作情况与全控电路完全相同。
当在阻感性负载工作时,当电源电压u2在正半周期,控制角为a 时触发晶闸管VT1使其导通,电源经VT1和VD4向负载供电。
当u2过零变负时,由于电感的作用使VT1继续导通。
因a点电位低于b点电位,使得电流从VD4转移至VD2,电流不再流经变压器二次绕组,而是由VT1和VD2续流。
此阶段忽略器件的通态压降,则ud=0,不像全控电路那样出现ud为负的情况。
在u2负半周控制角为a时触发VT3使其导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。
u2过零变正时,VD4导通。
VT3和VD4续流,ud又为零。
此后重复以上过程。
若无续流二极管,则当a突然增大至180°或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使lid成为正弦半波,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,称为失控。
有续流二极管VD时,续流过程由VD完成,在续流阶段晶闸管关断,避免了某一个晶闸管持续导通从而导致失控的现象。
三.波形分析利用matlab仿真,能够直观地观察整流电路波形的变化(注:从上至下,第一个为电源电压波形,第二个为品闸管VT1两端电压波形,第三个为VT2两端电压波形,第四个为负载电流,第五个为负载两端电压波形,第六个为触发脉冲。
)1.单相桥式半控整流电路电阻性负载。
仿真原理图如图波形图如图3T-2(Q=30)RUEdeMrwO(apUy^muUtionCodeBohHelp比”—卜的❶•图3@■,M。
I图3-1-1图3-1-22.单相桥式半控整流电路阻感性负载仿真原理图如图3-2-1,波形图如图3-2-2(Q=30)RUEde M E OhpUrCugr«mitmuhtionAni>/aiiCedeBobH«lp3.单相桥式半控整流电路反电势负载仿真原理图如图3-3-1,波形图如图3-3-20dt4%图3-2-1 图3-2-2fita(dieMewOiaplayCUgMm^muiatcnAna^atCodebchHelp图3-3-1 :臼z-八1A图3-3-2四.电路参数晶闸管承受的最大正向电压和反向电压分别为七/2U 和&U 。
单相全波可控整流电路、单相桥式半控整流电路一.单相全波可控整流电路单相全波可控整流电路(Single Phase Full Wave Controlled Rectifier),又称单相双半波可控整流电路。
图1 单相全波可控整流电路及波形单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。
变压器不存在直流磁化的问题。
单相全波与单相全控桥的区别是:单相全波中变压器结构较复杂,材料的消耗多。
单相全波只用2个晶闸管,比单相全控桥少2个,相应的,门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。
单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。
因此,单相全波电路有利于在低输出电压的场合应用1.电路结构图2.单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形单相全控桥中,每个导电回路中有2个晶闸管,1个晶闸管可以用二极管代替,从而简化整个电路。
如此即成为单相桥式半控整流电路(先不考虑VDR)。
单相全控桥式整流电路带电阻性负载的电路图如2所示,四个晶间管组成整流桥,其中vTl、vT4组成一对桥臂,vT 2、vT3组成另一对桥臂,vTl和vT3两只晶闸管接成共阴极,VT2和VT 4两只品间管接成共阳极,变压器二次电压比接在a、b两点,u2=1.414U2sin(wt)2.电阻负载半控电路与全控电路在电阻负载时的工作情况相同。
其工作过程如下:a)在u2正半周,u2经VT1和VD4向负载供电。
b) u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。
c)在u2负半周触发角a时刻触发VT3,VT3导通,u2经VT3和VD2向负载供电。
d)u2过零变正时,VD4导通,VD2关断。
VT3和VD4续流,u d又为零。
3.续流二极管的作用1)避免可能发生的失控现象。
2)若无续流二极管,则当a突然增大至180 或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使u d成为正弦半波,其平均值保持恒定,称为失控。
单相桥式半控整流电路实验报告单相桥式半控整流电路实验报告引言:在电力系统中,整流电路是一种常见的电力转换器,用于将交流电转换为直流电。
单相桥式半控整流电路是一种常用的整流电路,具有简单、高效、可靠等特点。
本实验旨在通过搭建和测试单相桥式半控整流电路,深入了解其原理和性能。
实验装置和原理:实验中使用的装置包括变压器、整流电路、电阻、电感、电容、开关管等。
变压器用于将交流电源的电压变换为适合整流电路的电压。
整流电路由四个二极管和一个可控硅组成,其中二极管用于实现整流功能,可控硅用于实现半控功能。
电阻、电感和电容用于实现电路的滤波功能,使输出电压更加稳定。
实验步骤和结果:1. 搭建电路:按照实验指导书的要求,将变压器、整流电路、电阻、电容等元件连接起来,并接上交流电源。
确保电路连接正确无误。
2. 测试输出电压:将示波器连接到输出端,调节可控硅触发角度,观察输出电压的变化。
记录不同触发角度下的输出电压值。
3. 测试输出电流:将电流表连接到输出端,调节可控硅触发角度,观察输出电流的变化。
记录不同触发角度下的输出电流值。
4. 测试电路的滤波效果:将示波器连接到滤波电容的两端,观察输出电压的波形变化。
记录不同滤波电容下的输出电压波形。
根据实验结果,我们可以得到以下结论:1. 随着可控硅触发角度的增大,输出电压呈线性增长。
这是因为可控硅的导通时间增加,导致整流电路的导通时间增加,从而输出电压增大。
2. 随着可控硅触发角度的增大,输出电流呈非线性增长。
这是因为可控硅的导通时间增加,导致整流电路的导通时间增加,从而输出电流增大。
但当可控硅触发角度接近90度时,输出电流基本保持不变,因为此时整流电路的导通时间接近整个交流周期,无法进一步增大。
3. 增加滤波电容可以有效减小输出电压的波动,提高输出电压的稳定性。
这是因为滤波电容能够储存电荷,在整流电路导通时间短暂中释放电荷,从而平滑输出电压。
实验总结:通过本次实验,我们深入了解了单相桥式半控整流电路的原理和性能。
单相桥式半控整流电路是一种常见的电子电路,用于将交流电转换为直流电。
在许多电力电子应用中,这种电路被广泛应用。
在这篇文章中,我们将重点讨论单相桥式半控整流电路在阻感负载移相范围内的应用和特性。
1. 半控整流电路的基本原理单相桥式半控整流电路由四个功率晶闸管和四个二极管组成,其基本原理是通过控制晶闸管的导通角度来控制整流电路的输出电压和电流。
在半控整流电路中,晶闸管在每个交流周期内只进行一次导通,通过改变晶闸管的导通角,可以实现电压和电流的控制。
2. 阻感负载移相范围在实际应用中,半控整流电路通常用于驱动感性负载,如电感、变压器等。
在这种情况下,负载的电流和电压波形将出现移相现象,这是由于感性负载的特性所导致的。
在移相范围内,整流电路的性能和稳定性会发生改变,需要进行合适的设计和控制。
3. 移相现象的原因当桥式半控整流电路驱动感性负载时,感性负载将导致电流和电压波形的移相现象。
这是由于感性负载的特性,即在感性元件中通过的电流滞后于电压。
在整流电路中,感性负载的移相现象将导致输出电流的波形发生变化,对电路的稳定性和性能产生影响。
4. 整流电路的适应性在阻感负载移相范围内,整流电路需要具有良好的适应性,能够稳定地驱动感性负载并保持整流电流的稳定性。
这需要对整流电路进行合理的设计和参数选择,以确保在移相范围内仍能保持较好的性能和稳定性。
5. 控制策略在阻感负载移相范围内,需要采取合适的控制策略来实现整流电路对感性负载的稳定驱动。
常见的控制策略包括改变晶闸管的触发脉冲相位、调整晶闸管的触发角度等。
通过合理的控制策略,可以实现整流电路在移相范围内的稳定运行。
6. 参数设计在设计阻感负载移相范围内的半控整流电路时,需要进行合理的参数设计。
这包括选择合适的晶闸管类型和参数、确定适当的触发脉冲相位、优化感性负载参数等。
合理的参数设计可以提高整流电路的性能和稳定性。
7. 应用案例针对阻感负载移相范围内的半控整流电路,在实际应用中存在着大量的案例和经验。