8单相半控桥式整流电路
- 格式:ppt
- 大小:5.78 MB
- 文档页数:31
单相半波整流电路和单相桥式整流电路是两种常见的单相交流到直流的整流电路。
1. 单相半波整流电路:
单相半波整流电路是一种简单的整流电路,适用于小功率应用。
它由一个二极管和负载组成,二极管用于将输入的交流电信号转换为单向的脉冲电流。
在每个半个周期中,只有一个半波被整流,另一个半波被阻断。
因此,输出的直流电流是存在间断的脉冲性质。
这种电路的缺点是输出的直流电压有较大的脉动,因为在每个半周期中只有一半时间是有效的。
2. 单相桥式整流电路:
单相桥式整流电路是一种更常用的整流电路,适用于较高功率的应用。
它由四个二极管和负载组成,可以将输入的交流电信号转换为稳定的直流电流。
在每个半个周期中,交流电源的两个极性都能够提供电流给负载。
通过适当的二极管导通和截止控制,可以实现交流信号的无间断整流。
因此,输出的直流电流相对更稳定,脉动较小。
这种电路的优点是输出的直流电压质量较好,适用于对电压稳定性要求较高的应用。
需要注意的是,整流电路中的二极管需要选择适当的额定电压和电流来匹配所需的电流和电压要求。
此外,为了进一步减小输出直流电压的脉动,还可以添加滤波电容器来平滑输出波形。
在实际应用中,还可能涉及到过流保护、温度保护等其他电路设计考虑因素。
以上是对单相半波整流电路和单相桥式整流电路的简要介绍,具体的电路参数设计和分析需要根据具体应用和要求进行进一步的研究和计算。
摘要随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定。
整流的基础是整流电路。
由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。
整流电路的应用十分广泛。
广泛的应用于直流电动机、电镀、电解电源、同步发电机励磁、通信系统电源灯。
本设计研究了单相半控桥式整流电路,对整流电路的原理及特点进行了分析,对整流元件进行了参数计算并选择出了合适的器件。
本设计选择KJ004集成触发器做为晶闸管的触发电路,详细的介绍了KJ004的工作原理。
本设计还设计了合理的保护电路。
最后利用simulink搭建仿真模型。
关键词:半控整流,驱动电路,保护电路,simulink仿真单相半控桥式整流电路设计1 主电路的设计1.1设计目的(1)、把从电力电子技术课程中所学到的理论和实践知识,在课程设计实践中全综合的加以运用,使这些知识得到巩固、提高,并使理论知识与实践技能密切结合起来。
(2)、初步树立起正确的设计思想,掌握一般电力电子电路设计的基本方法和技能,培养观察、分析和解决问题及独立设计的能力,训练设计构思和创新能力。
(3)、培养具有查阅参考文献和技术资料的能力,能熟悉或较熟悉地应用相关手册、图表、国家标准,为今后成为一名合格的电气工程技术人员进行必须的基本技能和基本素质训练。
1.2整流电路的选择整流电路是电力电子电路中出现最早的一种,整流电路是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
单相全波可控整流电路、单相桥式半控整流电路一.单相全波可控整流电路单相全波可控整流电路(Single Phase Full Wave Controlled Rectifier),又称单相双半波可控整流电路。
图1 单相全波可控整流电路及波形单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。
变压器不存在直流磁化的问题。
单相全波与单相全控桥的区别是:单相全波中变压器结构较复杂,材料的消耗多。
单相全波只用2个晶闸管,比单相全控桥少2个,相应的,门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。
单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。
因此,单相全波电路有利于在低输出电压的场合应用1.电路结构图2.单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形单相全控桥中,每个导电回路中有2个晶闸管,1个晶闸管可以用二极管代替,从而简化整个电路。
如此即成为单相桥式半控整流电路(先不考虑VDR)。
单相全控桥式整流电路带电阻性负载的电路图如2所示,四个晶间管组成整流桥,其中vTl、vT4组成一对桥臂,vT 2、vT3组成另一对桥臂,vTl和vT3两只晶闸管接成共阴极,VT2和VT 4两只品间管接成共阳极,变压器二次电压比接在a、b两点,u2=1.414U2sin(wt)2.电阻负载半控电路与全控电路在电阻负载时的工作情况相同。
其工作过程如下:a)在u2正半周,u2经VT1和VD4向负载供电。
b) u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。
c)在u2负半周触发角a时刻触发VT3,VT3导通,u2经VT3和VD2向负载供电。
d)u2过零变正时,VD4导通,VD2关断。
VT3和VD4续流,u d又为零。
3.续流二极管的作用1)避免可能发生的失控现象。
2)若无续流二极管,则当a突然增大至180 或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使u d成为正弦半波,其平均值保持恒定,称为失控。
电力电子习题一选择题1、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差度。
A、180°,B、60°,c、360°,D、120°2、α为度时,三相半波可控整流电路,电阻性负载输出的电压波形,处于连续和断续的临界状态。
A,0度,B,60度,C,30度,D,120度,3、晶闸管触发电路中,若改变的大小,则输出脉冲产生相位移动,达到移相控制的目的。
A、同步电压,B、控制电压,C、脉冲变压器变比。
4、可实现有源逆变的电路为。
A、三相半波可控整流电路,B、三相半控桥整流桥电路,C、单相全控桥接续流二极管电路,D、单相半控桥整流电路。
5、在一般可逆电路中,最小逆变角βmin选在下面那一种范围合理。
A、30o-35o,B、10o-15o,C、0o-10o,D、0o。
6晶闸管内部有()PN结。
A 一个,B 二个,C 三个,D 四个7单结晶体管内部有()个PN结。
A 一个,B 二个,C 三个,D 四个8晶闸管可控整流电路中的控制角α减小,则输出的电压平均值会()。
A 不变,B 增大,C 减小。
9单相半波可控整流电路输出直流电压的平均值等于整流前交流电压的()倍。
A 1,B ,C ,D .10单相桥式可控整流电路输出直流电压的平均值等于整流前交流电压的()倍。
A 1,B ,C ,D .11为了让晶闸管可控整流电感性负载电路正常工作,应在电路中接入()。
A 三极管,B 续流二极管,C 保险丝。
12晶闸管可整流电路中直流端的蓄电池或直流电动机应该属于()负载。
A 电阻性,B 电感性,C 反电动势。
13直流电动机由晶闸管供电与由直流发电机供电相比较,其机械特性()。
A 一样,B 要硬一些,C 要软一些。
14带平衡电抗器的双反星型可控整流电路适用于()负载。
A 大电流,B 高电压,C 电动机。
15晶闸管在电路中的门极正向偏压()愈好。
A 愈大,B 愈小,C 不变16晶闸管两端并联一个RC电路的作用是()。
课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 单相半控桥式晶闸管整流电路的设计(带续流二极管)(阻感负载)初始条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~180º要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、根据课程设计题目,收集相关资料、设计主电路、控制电路;2、用MATLAB/Simulink对设计的电路进行仿真;3、撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形,绘出触发信号(驱动信号)波形,并给出仿真波形,说明仿真过程中遇到的问题和解决问题的方法,附参考资料;5、通过答辩。
时间安排:2012.12.24-12.29指导教师签名:年月日系主任(或责任教师)签名:年月日摘要单向桥式半控整流电路实际上是由单相桥式全控电路简化而来的。
在单相桥式全控整流电路中,每一个导电回路中有两个晶闸管,即用两个晶闸管同时导通以控制导电的回路。
但实际上为了对每个导电回路进行控制,只需要一个晶闸管就行了,另一个晶闸管可以用二级管代替,从而得到单向半控桥式整流电路。
除了用二极管代替晶闸管以外,该电路在实际应用中需加设续流二极管R VD ,以避免可能发生的失控现象。
实际运行中,若无续流二极管,则当 突然增大至180或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使d u 成为正弦半波,即半周期d u 为正弦,另外半周期d u 为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,称为失控。
有续流二极管R VD 时,续流过程由R VD 完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的现象。
总的来说,单相桥式半控整流电路具有电路简单、调整方便、使用元件少等优点,而且不会导致失控显现,续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。
单相半控桥式整流电路单相半控桥式整流电路怎样工作?这是一个广泛应用于电源和机电设备的电路系统,可以将交流电压转化为平滑直流电压,以保证稳定可靠的功率输出。
接下来,我们将分步骤阐述单相半控桥式整流电路的原理和工作过程。
步骤1:整流桥首先,让我们看看整流桥是如何工作的。
我们通常使用四个二极管组成一个整流桥,其中两个二极管被反向极性放置,另外两个被正向极性放置。
一个正半周期的输入信号将流入前两个二极管(正向极性),而负半周期则流入后两个二极管(反向极性)。
在两个负半周期之间,输出是一个直流脉动。
为了得到清晰的输出,我们需要使用一个滤波电容器。
步骤2:半波控制在半波整流电路中,整个输入周期只利用了正半周期,而浪费了负半周期。
因此,半波整流电路的电流利用率很低。
为了提高这一点,我们可以使用半波控制技术,这可以使我们正常地使用负半周期。
整个系统由一个触发器、一个晶闸管和一个电感器组成。
当触发器触发时,晶闸管表现为导通状态,然后将负半周期交流信号流入电感器,将其称为直流。
当晶闸管关闭时,电流不能流过电感器,因此在电容器上放置的电荷继续供电。
步骤3:全波控制半波控制只能利用输入信号的一半,因此电流利用率仍然很低。
为了解决这个问题,我们可以使用全波控制。
全波控制器是由一个触发器、一个晶闸管和两个二极管组成的。
每个输入周期都利用了两个半周期,以提高电流转换效率。
这里再次使用与半波控制相同的技术,但两个二极管能够允许两个不同的电路路径,以使电流能够流向电感器并在电容器上升高。
总结单相半控桥式整流电路是一种常用的电源系统,能够将输入的交流信号转化为稳定的直流电力。
通过整流桥和半波或全波控制技术,我们可以实现高效的电力变换,确保设备的可靠性和稳定性。
了解这种恒定电源电路的工作原理,将有助于了解电源系统的结构和原理,并有助于实际应用中对电源系统的维护和升级。
信息工程学院电力电子学课程设计报告书题目: 单相桥式半控整流电路专业:班级:学号:学生姓名:指导教师:2012 年 5 月 9 日信息工程学院课程设计任务书学生姓名学号成绩设计题目单相桥式半控整流电路设计内容设计方案的选择整流电路的选择整流变压器额定参数的计算晶闸管电流、电压额定的选择保护电路的设计触发电路的设计画出完整的主电路原理图和控制电路原理图列出主电路所用元器件的明细表实验结果设计要求1、电源电压:交流220V/50Hz2、输出电压范围:20V-50V3、最大输出电流:10A4、具有过流保护功能,动作电流:12A5、具有稳压功能6、电源效率不低于70%参考资料1、张石安,张炜主编.电力电子技木基础.北京:电子工业出版社,2008年7月2、曲学基主编。
电力电子整流技术及应用。
北京:电子工业出版社,2008年4月3、莫正康.半导体变流技术.北京:机械工业出版社,19994、周克宁,《电力电子技术》北京:机械工业出版社,2004。
5、王兆安、黄俊,《电力电子技术》第四版。
北京:机械工业出版社,2000。
6、王维平,现代电力电子技术及应用。
南京:东南大学出版社,1999。
7、王云亮主编.电力电子技术.第一版.北京:电子工业出版社,2004年8月8、刘雨棣主编.电力电子技木及应用.西安:西安电子科技大学出版社,2006年8月9、浣喜明、姚为正.电力电子技术. 北京:高等教育出版社,200410、王维平.现代电力电子技术及其应用.南京.:东南大学出版社,2000目录摘要 (3)设计要求 (5)方案选择 (5)元器件的选择 (7)晶闸管 (7)晶闸管的结构 (7)晶闸管的工作原理图 (7)晶闸管触发条件 (8)电路组成 (9)保护电路的设计 (10)过电压保护 (10)过电流保护 (11)结果分析 (12)电路原理图及其工作波形 (12)分析 (14)参数计算 (15)元件选择 (16)实验结果 (17)元器件清单 (18)实验结果 (20)心得与体会 (20)摘要随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。
单相半控桥式整流电路
单相半控桥式整流电路是一种常见的电路结构,广泛应用于各种电子设备中。
本文将从电路原理、工作特点、应用范围等方面进行详细介绍。
一、电路原理
单相半控桥式整流电路由四个二极管和两个可控硅构成,其中两个二极管为正向导通,两个二极管为反向截止。
两个可控硅可以通过控制电压来实现导通和截止,从而实现对电路的控制。
二、工作特点
1. 正半周
当输入电压为正半周时,可控硅1被触发,电流通过可控硅1和二极管D1,输出电压为正半周的正脉冲。
同时,可控硅2被阻止导通,二极管D2被反向截止,输出电压为0。
2. 负半周
当输入电压为负半周时,可控硅2被触发,电流通过可控硅2和二极管D2,输出电压为负半周的负脉冲。
同时,可控硅1被阻止导通,二极管D1被反向截止,输出电压为0。
3. 输出波形
通过控制可控硅的导通和截止,可以控制输出波形。
当可控硅1和可控硅2交替导通时,输出波形为全波整流的直流电压,可以用于各种电子设备的供电。
三、应用范围
单相半控桥式整流电路广泛应用于各种电子设备中,如电视机、电脑、音响、电动工具等。
它具有体积小、效率高、稳定性好等优点,可以满足各种电子设备的供电需求。
四、结论
单相半控桥式整流电路是一种常见的电路结构,具有广泛的应用范围。
通过控制可控硅的导通和截止,可以实现对电路的控制,满足各种电子设备的供电需求。
三.实验原理单相桥式半控整流电路在电阻性负载时的工作情况与全控电路完全相同,这里只介绍电感性负载时的工作情况。
单相桥式半控整流电路原理图如下图所示。
假设负载中电感很大,且电路已工作于稳态。
当电源电压 u 2 在正半周期,控制角为 a 时触发晶闸管 VT1 使其导通,电源经 VT1 和 VD4 向负载供电。
当 u 2 过零变负时,由于电感的作用使 VT1 继续导通。
因a 点电位低于 b 点电位,使得电流从 VD4 转移至 VD2 ,电流不再流经变压器二次绕组,而是由 VT1 和 VD2 续流。
此阶段忽略器件的通态压降,则u d = 0 ,不像全控电路那样出现 u d 为负的情况。
在 u 2 负半周控制角为 a 时触发 VT3 使其导通,则向 VT1 加反压使之关断, u 2 经 VT3 和 VD2 向负载供电。
u 2 过零变正时, VD4 导通。
VT3 和VD4 续流, u d 又为零。
此后重复以上过程。
若无续流二极管,则当 a 突然增大至180 ° 或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使 u d 成为正弦半波,即半周期 u d 为正弦,另外半周期 u d 为零,其平均值保持恒定,称为失控。
有续流二极管 VD 时,续流过程由 VD 完成,在续流阶段晶闸管关断,避免了某一个晶闸管持续导通从而导致失控的现象。
单相桥式半控整流电路原理图四.实验内容⒈ 接线在实验装置断电的情况下,按单相桥式半控整流电路实验线路图及接线图进行接线。
图中可调电阻器 R d ,选用 MEL ﹣ 03 中的其中一组可调电阻器并联, R d 的初始电阻值应调到最大值。
⒉ 触发电路调试在主电路断电情况下调试触发电路。
当给定电压 U g = 0V ,调节偏移电压使触发脉冲初始相位 a =180 °,然后逐渐调节给定电压 U g ,观察触发脉冲移相范围是否满足 a =30 °~180 °。
单相半控桥式整流电路的设计
单相半控桥式整流电路是一种常见的电源电路,可以将交流电转换为直流电,适用于
各种电力电子设备和工业自动化控制系统。
设计该电路需要考虑以下几个方面:
1. 选择适当的元器件
适当的元器件是设计电路的核心,其中包括变压器、整流器、滤波器、SCR等。
设计
应根据电路的需求合理选择元器件,保证电路能够正常工作。
选择元器件时还需要考虑到
元器件的效率、可靠性、寿命等因素。
2. 计算电路参数
电路参数是设计电路的关键,包括电压、电流、功率、电阻等。
计算电路参数应该根
据具体需求,如输出电压、负载电流等来确定,以保证电路的稳定性和性能。
3. 设计电路图
在确定好元器件和电路参数后,应该画出详细的电路图,包括各个元器件的连接方式
和电路参数,以便后续电路的搭建和测试。
4. 制作和测试电路板
将电路图转化为实际电路需要搭建电路板,制作电路板时需要注意线路的连接和焊接
质量,以保证电路的可靠性和稳定性。
在制作完成后,应该进行电路板的测试,以发现和
修复潜在的问题。
总之,单相半控桥式整流电路设计需要综合考虑元器件选择、电路参数、电路图设计、电路板制作和测试等多个方面,以保证电路的稳定性和性能。
目录1课程设计的目的与要求 (2)1.1引言 (2)1.2课程设计的目的 (2)1.3课程设计要求 (3)2课程设计方案选择 (3)2.1整流电路 (3)2.2元器件的选择 (3)2.2.1晶闸管 (4)2.2.2 可关断晶闸管 (5)3元器件和电路参数计算 (6)3.1晶闸管的基本特性 (6)3.1.1.静态特性 (6)3.1.2.动态特性 (7)3.2晶闸管基本参数 (8)3.2.1晶闸管的主要参数 (8)4单线桥式半控主电路的设计 (10)4.1电路的结构与工作原理 (10)4.1.1电路结构 (10)4.1.2 工作原理 (10)4.2基本数量关系 (11)4.3建模 (12)4.4 仿真结果 (14)4.5小结 (15)参考文献 (16)1课程设计的目的与要求1.1 引言本方面有很大潜电力电子技术又称为功率电子技术,他是用于电能变换和功率控制的电子技术。
电力电子技术是弱电控制强电的方法和手段,是当代高新技术发展的重要内容,也是支持电力系统技术革命发展的重要基础,并节能降耗、增产节约提高生产效能的重要技术手段。
微电子技术、计算机技术以及大功率电力电子技术的快速发展,极大地推动了电工技术、电气工程和电力系统的技术发展和进步。
电力电子器件是电力电子技术发展的基础。
正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。
而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。
电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。
功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。
电力电子技术在电力系统中的应用中也有了长足的发展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵活的特点,能够显著地改善电力系统的特性,在提高系统稳定、降低运行风险、节约运行成力。
电气工程学院电力电子课程设计设计题目:单相半控桥式晶闸管整流电路(电阻负载)学号:姓名:同组人:指导教师:设计时间:设计地点:电力电子课程设计成绩评定表指导教师签字:年月日电力电子课程设计任务书学生姓名:指导教师:一、课程设计题目:单相半控桥式晶闸管整流电路(电阻负载)二、课程设计要求1. 根据具体设计课题的技术指标和给定条件,独立进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整;2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真;3. 完成预习报告,报告中要有设计方案,设计电路图,还要有仿真结果;4. 进实验室进行电路调试,边调试边修正方案;5. 撰写课程设计报告——最终的电路图、调试过程中遇到的问题和解决问题的方法。
三、进度安排2.执行要求课程设计共5个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的详细电路(包括计算和器件选型)。
严禁抄袭,严禁两篇设计报告雷同。
摘要本次课程设计的题目为:单相半控桥式晶闸管整流电路,其中负载为纯电阻负载。
电路设计的主要参数及要求:1、电源电压:交流100V/50Hz;2、输出功率:500W;3、移相范围:0º-180º。
对于单相半控桥式晶闸管整流电路(电阻负载),其电路设计的主要功能为:单相桥式半控整流电路的工作特点是晶闸管触发导通,而整流二极管在阳极电压高于阴极电压时自然导通。
单相桥式半控整流电路在纯电阻负载电流连续时,当相控角α<180°时,可实现将交流电功率变为直流电功率的相控整流,同时,调节触发电路,可改变触发角进行调压;在α>180°时,由于二极管的单相导电性,电路无法实现逆变,输出电压为零。
关键词:单相半控桥式晶闸管整流电路、纯电阻负载、相控角调节AbstractABSTRACT:Curriculum design topics: single-phase half-controlled bridge thyristor rectifier circuit, where the load is purely resistive load. The main parameters and requirements of the circuit design: 1, the power supply voltage: AC 100V/50Hz, output power: 500W; 2; 3, the phase shift range: 0 º ~180 º.For the single phase half controlled bridge thyristor rectifier circuit (resistive load), the main function of the circuit design:Characteristics of single phase bridge half controlled rectifier circuit is triggered thyristor turn-on, and rectifier diode is higher than that of cathode voltage in the anode voltage natural conduction.Single phase bridge half controlled rectifier circuit load current is continuous in the pure resistance, while the mouldings α <180 °, can realize the phase control rectifier, AC power into DC power at the same time, adjusting trigger circuit, which can change the trigger angle regulator; when α >180 °, because the phase conductivity diode, the circuit can not be achieved inverter, output voltage to zero. KEYWORDS:S ingle phase half controlled bridge thyristor rectifier circuit, pure resistive load, adjust phase mouldings目录第一章系统方案设计 (1)一、主电路方案设计 (1)1.1主电路方案论证 (1)1.2主电路结构及其工作原理 (2)1.3参数计算 (3)1.4主电路器件选用 (3)二、控制电路方案设计 (4)2.1 触发控制电路方案 (4)2.1.1 方案一 (4)2.1.2 方案二 (5)第二章仿真 (8)一、主电路仿真 (8)1.1 仿真设置 (8)1.2 仿真结果 (10)二、控制电路仿真 (11)2.1 方案一仿真 (11)2.2 方案二仿真 (13)2.2.1 各部分电路分析与仿真 (14)2.2.2输出控制信号仿真 (17)第三章电路调试 (19)一、实物制作 (19)二、实际控制信号测量 (20)2.1 电路各组成部分输出波形 (20)2.2 控制信号输出波形 (21)第四章结论 (24)第五章心得体会与建议 (25)参考文献 (26)附录1:元器件清单 (27)第一章系统方案设计一、主电路方案设计1.1 主电路方案论证方案一:单相半控桥式整流电路(含续流二极管)单相桥式半控整流电路虽然具有电路简单、调整方便、使用元件少等优点,而且不会导致失控显现,续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗,如图1-1。