单相桥式半控整流电路
- 格式:ppt
- 大小:416.00 KB
- 文档页数:12
单相半波整流电路和单相桥式整流电路是两种常见的单相交流到直流的整流电路。
1. 单相半波整流电路:
单相半波整流电路是一种简单的整流电路,适用于小功率应用。
它由一个二极管和负载组成,二极管用于将输入的交流电信号转换为单向的脉冲电流。
在每个半个周期中,只有一个半波被整流,另一个半波被阻断。
因此,输出的直流电流是存在间断的脉冲性质。
这种电路的缺点是输出的直流电压有较大的脉动,因为在每个半周期中只有一半时间是有效的。
2. 单相桥式整流电路:
单相桥式整流电路是一种更常用的整流电路,适用于较高功率的应用。
它由四个二极管和负载组成,可以将输入的交流电信号转换为稳定的直流电流。
在每个半个周期中,交流电源的两个极性都能够提供电流给负载。
通过适当的二极管导通和截止控制,可以实现交流信号的无间断整流。
因此,输出的直流电流相对更稳定,脉动较小。
这种电路的优点是输出的直流电压质量较好,适用于对电压稳定性要求较高的应用。
需要注意的是,整流电路中的二极管需要选择适当的额定电压和电流来匹配所需的电流和电压要求。
此外,为了进一步减小输出直流电压的脉动,还可以添加滤波电容器来平滑输出波形。
在实际应用中,还可能涉及到过流保护、温度保护等其他电路设计考虑因素。
以上是对单相半波整流电路和单相桥式整流电路的简要介绍,具体的电路参数设计和分析需要根据具体应用和要求进行进一步的研究和计算。
目录摘要 (2)1.设计任务和要求 (3)设计任务 (3)设计要求 (3)2.单相桥式半控整流电路的设计 (2)设计方案 (2)主电路的原理与设计 (4)驱动电路的原理与设计 (5)错误!未定义书签。
元器件的选取及相关参数计算 (8)错误!未定义书签。
错误!未定义书签。
错误!未定义书签。
电力电子器件的保护 (11)错误!未定义书签。
错误!未定义书签。
总电路原理图及工作原理 (12)建模与仿真 (12)心得体会 (13)参考文献 (13)摘要就是把交流电能转换成直流电能的电路。
大多数整流电路由变压器、驱动电路、整流主电路、保护电路等组成。
它在直流电机调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
20世纪70年代以后,主电路多用硅整流电路和晶闸管组成。
而变压器的作用是实现交流输入电压与直流输出电压的匹配以及交流电网与整流电路之间的电隔离(可以减小电网与电路间的电干扰和故障影响)。
整流电路的种类很多,主要有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
本课程设计为单相桥式半控整流电路。
关键字:整流驱动过电压保护变压单相桥式半控整流电路1.设计任务和要求设计任务单相桥式半控整流电路的技术要求:设计一单相桥式半控整流电路,对RL负载供电,其中R=10Ω,L=20mH;要求直流输出电压在0~180伏连续可调。
设计要求1)方案设计2)完成主电路的原理分析,各主要元器件的选择3)触发电路的设计4)绘制系统电路图5)利用matlab仿真软件建模并仿真,获取电压电流波形,对结果进行分析6)撰写设计说明书2.单相桥式半控整流电路的设计设计方案在单相桥式全控整流电路中,每一个导电回路中都有两个晶闸管,即利用两个晶闸管同时导通以控制导电的回路。
实际上对每个导电回路进行控制,只需要一个晶闸管就够了,另一个可以用二极管代替。
从而简化整个电路,调节起来也比较方便,并且也节省了成本,这就是单相桥式半控整流电路。
单相桥式半控整流电路带电感ud计算公式单相桥式半控整流电路在电力电子技术中是一个比较重要的概念,特别是其中带电感 ud 的计算公式。
咱先来说说这个单相桥式半控整流电路到底是咋回事。
想象一下,在一个电路里,有一堆电子元件像小精灵一样忙碌地工作着。
其中的二极管和晶闸管就像是电路中的“指挥官”,控制着电流的流向和大小。
那为啥要研究这个带电感 ud 的计算公式呢?这就好比我们出门要算好路程和时间,不然可能会迷路或者迟到。
在电路里,如果不知道这个计算公式,就没法准确地知道输出电压 ud 是多少,电路可能就没法正常工作啦。
还记得有一次,我在实验室里和学生们一起做实验,就是关于这个单相桥式半控整流电路的。
当时大家都特别兴奋,想着能亲手操作,看看这个神奇的电路到底是怎么工作的。
我们按照电路图连接好了各个元件,打开电源的那一刻,大家都紧紧盯着示波器,期待着能看到理想的波形。
可是,第一次的结果并不理想,输出电压 ud 完全不对。
这可把大家急坏了,一个个皱着眉头开始检查线路,重新计算参数。
这时候,我就提醒大家,先别慌,好好想想我们的计算公式有没有用对。
于是,我们重新梳理了一遍带电感 ud 的计算公式,发现有个参数算错了。
经过一番调整,再次打开电源,哇,这次示波器上显示出了漂亮的波形,输出电压 ud 也符合我们的预期。
那一刻,大家脸上都露出了开心的笑容,那种成就感真是无法用言语来形容。
好了,言归正传,下面咱们就来好好讲讲这个计算公式。
单相桥式半控整流电路带电感 ud 的计算公式为:Ud = 0.9U2(1 + cosα) / 2 (其中α为控制角)这个公式看起来可能有点复杂,但是别担心,咱们一点点来理解。
先说 0.9U2 这部分,U2 是交流电源的有效值。
为啥是 0.9 呢?这是经过一系列数学推导得出的一个系数,就像是一个固定的“密码”。
然后是(1 + cosα) / 2 这部分,α 就是我们说的控制角啦。
控制角越大,输出电压 ud 就越小;控制角越小,输出电压 ud 就越大。
一、实验基本内容1.实验名称:单相半控桥整流电路实验2.已知条件:a)工作电路原理图图1 工作原理图b)理想工作波形c)产生失控现象的原因及理论结果对于单相桥式半控整流电路,在正常运行的情况下,如果突然把触发脉冲切断或者将触发延迟角α增大到180°,电路将产生“失控”现象。
失控原因:正在导通的晶闸管的关断必须依赖后续晶闸管的开通,如果后续晶闸管不能导通,则已经导通的晶闸管就无法关断。
失控结果:失控后,一个晶闸管持续导通,两个二极管轮流导通,整流输出电压波形为正弦半波,即半周期为正弦波,另外半周期为零,输出电压平均值恒定。
d)各物理量基本数量关系(感性负载)Ⅰ.输出直流电压平均值U dU d=1π2παsinwtd(wt)=0.9U21+cosα2Ⅱ.负载电流平均值I d=U dR =0.45U2R1+cosα2Ⅲ.流过晶闸管的电流有效值I VTI VT=I VD=π−α2πI dⅣ.流过晶闸管的电流平均值I dVTI dVT=I dVD=π−α2πI dⅤ.变压器二次电流有效值I2I2=1πI d2d(ωt)π+αα=I d=2I VTⅥ.续流二极管电流有效值I VD RI VTR =απI dⅦ.续流二极管电流平均值I dVT RI dVTR =απI d3.实验目标:a)实现控制触发脉冲与晶闸管同步;b)观测单相半控桥在纯阻性负载时的移相控制特点,测量最大移相范围及输入-输出特性;c)观测单相半控桥在阻-感性负载时的输出状态,制造失控现象并讨论解决方案。
二、实验条件1.主要设备仪器a)电力电子及电气传动教学实验台i.型号MCL-Ⅲ型ii.生产厂商浙江大学求是公司b)Tektronix示波器i.型号TDS2012ii.主要参数带宽:100MHz最高采样频率:1GS/sc)数字万用表i.型号GDM-81452.小组人员分工u 2abVT1VT2VD2VD4Ru da)实验主要操作人辅助操作人电流表监控影像记录数据记录b)报告实验基本内容描述实验图片整理实验图片处理实验条件阐述实验过程叙述数据处理电路仿真讨论思考题讨论结果整理实验综合评估报告整合排版三、实验原理1.阻性负载如图所示为带阻性负载时单相桥式半控整流电路。
实验一单相桥式半控整流电路实验一.实验目的1.研究单相桥式半控整流电路在电阻负载,电阻—电感性负载时的工作。
2.熟悉NMCL—05E组件锯齿波触发电路的工作。
3.进一步掌握双踪示波器在电力电子线路实验中的使用特点与方法。
二.实验线路及原理实验原理图如图1。
晶闸管VT1、VT3和二极管VD4、VD6组成单相桥式半控整流电路。
电源电压为线电压U UV,VT1、VT3分别获取触发单元1和触发单元3输出的控制脉冲。
2触发单元的同步信号均取自U UV,所以脉冲相位相同。
通过调节给定单元的直流给定电压可以调节控制角。
VD2图1 实验原理图实际接线图如图2。
1-2 单相桥式半控整流电路图2 实际接线图三.实验内容1.单相桥式半控整流电路供电给电阻性负载。
2.单相桥式半控整流电路供电给电阻—电感性负载(带续流二极管)。
4.单相桥式半控整流电路供电给电阻—电感性负载(断开续流二极管)。
四.实验设备及仪器1.教学实验台主控制屏2.NMCL—33组件3.NMCL—05E组件4.NMEL —03/4组件 5.NMCL —31A 组件 6.双踪示波器(自备) 7.万用表(自备)五.注意事项1.实验前必须先了解晶闸管的电流额定值(本装置为5A ),并根据额定值与整流电路形式计算出负载电阻的最小允许值。
2.为保护整流元件不受损坏,晶闸管整流电路的正确操作步骤 (1)在主电路不接通电源时,调试触发电路,使之正常工作。
(2)在控制电压U ct =0时,接通主电源。
然后逐渐增大U ct ,使整流电路投入工作。
(3)断开整流电路时,应先把U ct 降到零,使整流电路无输出,然后切断总电源。
3.注意示波器的使用。
4.NMCL —33的内部脉冲需断开。
六.实验方法1.将NMCL —05E 面板左上角的同步电压输入接MEL —002T 的U 、V 输出端。
三相调压器逆时针调到底,合上主电路电源开关,调节主控制屏输出电压U uv =220v 。
单相桥式半控整流电路实验报告单相桥式半控整流电路实验报告引言:在电力系统中,整流电路是一种常见的电力转换器,用于将交流电转换为直流电。
单相桥式半控整流电路是一种常用的整流电路,具有简单、高效、可靠等特点。
本实验旨在通过搭建和测试单相桥式半控整流电路,深入了解其原理和性能。
实验装置和原理:实验中使用的装置包括变压器、整流电路、电阻、电感、电容、开关管等。
变压器用于将交流电源的电压变换为适合整流电路的电压。
整流电路由四个二极管和一个可控硅组成,其中二极管用于实现整流功能,可控硅用于实现半控功能。
电阻、电感和电容用于实现电路的滤波功能,使输出电压更加稳定。
实验步骤和结果:1. 搭建电路:按照实验指导书的要求,将变压器、整流电路、电阻、电容等元件连接起来,并接上交流电源。
确保电路连接正确无误。
2. 测试输出电压:将示波器连接到输出端,调节可控硅触发角度,观察输出电压的变化。
记录不同触发角度下的输出电压值。
3. 测试输出电流:将电流表连接到输出端,调节可控硅触发角度,观察输出电流的变化。
记录不同触发角度下的输出电流值。
4. 测试电路的滤波效果:将示波器连接到滤波电容的两端,观察输出电压的波形变化。
记录不同滤波电容下的输出电压波形。
根据实验结果,我们可以得到以下结论:1. 随着可控硅触发角度的增大,输出电压呈线性增长。
这是因为可控硅的导通时间增加,导致整流电路的导通时间增加,从而输出电压增大。
2. 随着可控硅触发角度的增大,输出电流呈非线性增长。
这是因为可控硅的导通时间增加,导致整流电路的导通时间增加,从而输出电流增大。
但当可控硅触发角度接近90度时,输出电流基本保持不变,因为此时整流电路的导通时间接近整个交流周期,无法进一步增大。
3. 增加滤波电容可以有效减小输出电压的波动,提高输出电压的稳定性。
这是因为滤波电容能够储存电荷,在整流电路导通时间短暂中释放电荷,从而平滑输出电压。
实验总结:通过本次实验,我们深入了解了单相桥式半控整流电路的原理和性能。