第十二章 非正弦周期电流电路和信号的频谱
- 格式:ppt
- 大小:313.50 KB
- 文档页数:30
单元四非正弦周期电流电路一、非正弦周期信号二、非正弦周期量的有效值、平均值及三、非正弦周期电流电路的平均功率四、非正弦周期电流电路的计算一、非正弦周期信号1.非正弦周期信号:随时间周期性地按非正弦规律变化的信号。
2.非正弦周期函数的分解傅里叶级数:若周期为T ,角频率ω=2π/T 的周期函数,满足狄里赫利条件,则的可展开为∑∞=++=++++++++=1022110)sin cos ( sin cos 2sin 2cos sin cos )(k k k k k t k b t k a a t k b t k a t b t a t b t a a t f ωωωωωωωω ∵)t k (sin A sin cos k k ψ+=+ωωωt k b t k a k k ∴+++++=)2sin()sin()(22m 11m 0θωθωt A t A A t f 直流分量基波二次谐波∑∞=++=10)sin(k k k t k A A ψω(K=1、2、3、4…)几种非正弦周期函数的傅里叶级数名称波形傅里叶级数有效值平均值梯形波f (t) =απmA4(sinαsinωt +91sin3αsin3ωt+251sin5αsin5ωt +…+2k1sinkαsinkωt +…)(式中α =Td2π,k为奇数)A mπα-341A m(1-πα)三角波f (t) =2mA8π(sinωt-91sin3ωt+251sin5ωt +…+221kk)1(--sinkωt +…)(k为奇数)3A m2A m名称波形傅里叶级数有效值平均值矩形波f (t) =πmA4(sinωt+31sin3ωt+51sin5ωt +k1sinkωt +…)(k为奇数)A m A m半波整流波f (t) =πmA2(21+4πcosωt+311⨯cos2ωt -531⨯cos4ωt+751⨯cos6ωt -…)2A mπmA全波整流波f (t) =πmA4(21+311⨯cos2ωt-531⨯cos4ωt +751⨯cos6ωt-…)2A mπmA2名称波形傅里叶级数有效值平均值锯齿波f (t) = A m [21-π1(sinωt+21sin2ωt+31sin3ωt +…) ]3A m2A m矩形脉冲波f (t) =A m [ α+π2(sinαπcosωt+21sin2απcos2ωt+31sin3απcos3ωt +…) ]αA mαA m3.几种波形具有对称性的周期函数的傅里叶级数1. 奇函数的傅里叶级数奇函数:f (t )=-f (-t );奇函数的波形对称于坐标系的原点。