时空的相对性(爱因斯坦)3
- 格式:doc
- 大小:64.00 KB
- 文档页数:11
8、时空的相对性与绝对性原理问题导引:牛顿的绝对时间和空间与爱因斯坦的相对时间和空间之间存在什么关系?以太观念并没有死掉,它不过是一个还未发现有什么用处的观念,只要基本问题仍未得到解决,必须记住这里还有一种可能性。
─狄拉克在时间观念上,作为现代物理学两大支柱的相对论和量子力学一直存在着抵触。
量子力学在绝对意义上使用时间的概念,而相对论认为这是不允许的。
正如狄拉克所说:“这里我们就碰到了巨大困难的开头。
……这个抵触是最近四十年来物理学的主要问题。
”【3】按照Einstein的想法,不能说相对论提供了详尽的世界图景,它只是提供了这幅图景所应当服从的某些要求,而且没有指明空间与时间的本质及区别。
因此相对论本身并不是一个理论,而是对物理学理论的一个要求,空间与时间应当是绝对性与相对性的统一。
相对空间、相对时间、相对space-time是绝对空间、绝对时间、绝对space-time的表现形式【1】。
绝对space-time由相对space-time组成,无穷个相对space-time组成绝对space-time,在研究两个物体的相互作用时,可以把第三个物体激发的相对space-time作为绝对space-time(此时绝对空间并不均匀,绝对时间流速也不均匀)。
这一点类似于地理学中的高度都是相对的,但是若以海平面为基准,则可以成为绝对高度。
地方时是相对的,但是倘若规定一个标准,则可以认为是绝对的,例如中国的北京时间。
根据这一观点可知广义相对论的正确,例如不是物质存在于空间、时间中,而是物质具有空间和时间的广延性,当一个物体消失时,它所激发的相对space-time消失,但是绝对space-time依然存在。
因此绝对时空有宇宙中所有的场——相对时空组成,真空是绝对space-time,Newton的绝对space-time观有其正确性的一面,因此Einstein认为场论未能成功地提供整个物理学的基础。
Einstein的相对space-time观与Newton 的绝对space-time观分别看到了问题的一个方面,有一定的局限性,因此应正确理解space-time 的绝对性与相对性的辩证关系。
爱因斯坦的相对论与穿越时空2008-10-03 21:21相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。
相对论的基本假设是光速不变原理,相对性原理和等效原理。
相对论和量子力学是现代物理学的两大基本支柱。
奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。
相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。
相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念【狭义相对论】马赫和休谟的哲学对爱因斯坦影响很大。
马赫认为时间和空间的量度与物质运动有关。
时空的观念是通过经验形成的。
绝对时空无论依据什么经验也不能把握。
休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。
而时间总是又能够变化的对象的可觉察的变化而发现的。
1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。
而牛顿的绝对时空观念是错误的。
不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。
他用光速不变和相对性原理提出了洛仑兹变换。
创立了狭义相对论。
狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。
在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。
现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。
我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。
四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。
牛顿绝对时空观和爱因斯坦相对论时空观的统一殷业上海师范大学信息与机电工程学院,上海200234yinye@摘要:时空观是物理理论的基石,也是自然科学的基石,因为存在的一切都发生在一定的时间和空间之中。
从亚里士多德、伽利略、牛顿到爱因斯坦,每一个伟大的物理学家都对时间和空间是什么做过回答,但这些答案还不是最终答案。
本文分析了历史上存在的各种时空观,从笛卡尔的“物质空间”思想出发重新审视了时间和空间的关系,通过分析说明:不同的“物质空间”中时间是不同的,从而获得了对牛顿绝对时空观和爱因斯坦相对时空观的统一认识。
关键词:虚空;物质空间;绝对时间;相对时间;相对论;牛顿力学中图分类号:O412 文献标识码:A0. 引言时空观是物理理论的基石,也是自然科学的基石,因为存在的一切都发生在一定的时间和空间之中。
从亚里士多德、伽利略、牛顿[1]到爱因斯坦[2],每一个伟大的物理学家都对时间和空间是什么做过回答,但他们的答案还不是最终答案。
以上四位伟人对时空的答案,有一个共同点,就是时间和空间只有一种,但以笛卡尔的“物质空间”思想[3,4,14]为基础的时空观中,时间和空间可分成两种,一种是“虚空”中的时间和空间,对应“牛顿的绝对时间和空间”,另一种是“物质空间”中的时间和空间,对应“爱因斯坦的相对时间和空间”,前一种时间是空间无关的,后一种时间是空间相关的,所以在“物质空间时空观”中牛顿的绝对时空观和爱因斯坦的相对时空观可以得到了统一,下面我们对这两种不同的时间和空间的有关问题进行讨论。
1. 虚空和物质空间牛顿在“原理”[1]中阐述的绝对空间是:“绝对空间就其自身特性与一切外在事物无关,处处均匀,永不移动”。
牛顿的绝对空间有如下几层含义,(1)绝对空间是真实感知空间的抽象;我们可以设想一个玻璃围成的正方体,假设这个玻璃正方体相对绝对空间静止,将玻璃正方体中的所有物质抽去(包括引力场),并让玻璃壁变得无限薄,并最终消失,这样得到的玻璃正方体围成的空间,就是绝对空间。
第一节 狭义相对论的基本原理第二节 时空相对性的科学探究思想和逻辑推理方法.一、伽利略相对性原理:力学规律在任何惯性系中都是相同的. 二、狭义相对论的两个基本假设: 1.狭义相对性原理在不同的惯性参考系中,一切物理规律都是相同的; 2.光速不变原理真空中的光速在不同的惯性参考系中是相同的,光速与光源、观察者间的相对运动没有关系.三、时间和空间的相对性 1.“同时”的相对性 “同时”是相对的.在一个参考系中看来“同时”的,在另一个参考系中却可能“不同时”的.2.长度的相对性一条沿自身长度方向运动的杆,其长度总比静止时的长度小.即l ′=l 01-(v c)2式中l 是沿杆运动方向的长度,l 0是杆静止时的长度.3.时间间隔的相对性 从地面上观察,高速运动的飞船上时间进程变慢,飞船上的人则感觉地面上的时间进程变慢.Δt ′=Δt1-(v c)2式中Δt ′是运动的参考系中测得的两事件的时间间隔,Δt 是静止的参考系中测得的两事件的时间间隔.四、相对论的时空观 1.经典物理学的时空观经典物理学认为时间和空间是脱离物质而存在的,是绝对的,时间和空间之间也是没有联系的.2.相对论的时空观相对论认为有物质才有时间和空间,时间和空间与物质的运动状态有关,因而时间与空间并不是相互独立的.预习交流学生讨论:什么是惯性系?什么是非惯性系?答案:牛顿运动定律能够成立的参考系叫惯性系,匀速运动的汽车、轮船等作为参考系就是惯性系.牛顿运动定律不成立的参考系称为非惯性系,例如我们坐在加速的车厢里,以车厢为参考系观察路边的树木、房屋向后方加速运动,根据牛顿运动定律,房屋、树木应该受到不为零的合外力作用,但事实上没有,也就是牛顿运动定律不成立,这里加速的车厢就是非惯性系.相对于一个惯性系做匀速直线运动的另一个参考系也是惯性系.一、对狭义相对论的两个基本假设的理解1.如何理解经典相对性原理?答案:(1)惯性系:如果牛顿运动定律在某个参考系中成立,这个参考系叫做惯性系,相对一个惯性系做匀速直线运动的另一个参考系也是惯性系.(2)这里的力学规律是指“经典力学规律”.(3)本原理可以有不同表示,比如:在一个惯性系内进行的任何力学实验都不能判断这个惯性系是否对于另一个惯性系做匀速直线运动;或者说,任何惯性参考系都是平权的.2.对光速不变原理如何理解?答案:我们经常讲速度是相对的,参考系选取不同,速度也不同,这是经典力学中速度的概念,但是1887年迈克耳孙—莫雷实验中证明的结论是:不论取怎样的参考系,光速都是一样的,也就是说光速的大小与选取的参考系无关,光的速度是从麦克斯韦方程组中推导出来的,它没有任何前提条件,所以这个速度不是指相对某个参考系的速度.3.学生讨论:试述当经典力学时空观遇到光速不变的实验事实这一困难时,爱因斯坦是如何解决的,它的意义如何.答案:爱因斯坦提出了两条基本假设即爱因斯坦相对性原理:在不同的惯性参考系中,一切物理规律都是相同的.“光速不变原理”:不管在哪个惯性系中,测得的真空中的光速都相同.两条基本假设的提出解决了光速不变的困难.同时为狭义相对论的建立奠定了基础,使得人们的时空观发生了重大的变革,使得看似毫无联系的时间与空间紧密地联系在了一起.分析下列几种说法:(1)所有惯性系统对物理基本规律都是等价的.(2)在真空中,光的速度与光的频率、光源的运动状态无关.(3)在任何惯性系中,光在真空中沿任何方向的传播速度都相同.关于上述说法().A.只有(1)(2)是正确的B.只有(1)(3)是正确的C.只有(2)(3)是正确的D.三种说法都是正确的答案:D解析:狭义相对论认为:物体所具有的一些物理量可以因所选参考系的不同而不同,但它们在不同的参考系中所遵从的物理规律却是相同的,即(1)(2)都是正确的.“光速不变原理”认为:在不同的惯性参考系中,光在真空中沿任何方向的传播速度都是相同的.(3)正确.对两个基本原理的正确理解:1.自然规律不仅包括力学规律,还包括电磁学规律等其他所有的物理学规律.2.强调真空中的光速不变,指大小既不依赖于光源或观察者的运动,也不依赖于光的传播方向.3.几十年来科学家采用各种先进的物理技术测量光速,结果都不违背光速不变原理.二、对“同时”相对性的理解1.怎样理解同时的相对性?答案:同时是指两个事件发生的时刻是相同的,“相同”是观察者得出的结论,不同的观察者观察到的结果是不“相同”的.2.怎样理解时间间隔的相对性?答案:运动的时钟变慢:时钟相对于观察者静止时,走得快;相对于观察者运动时,观察者会看到它变慢了,运动速度越快,效果越明显,即运动着的时钟变慢.3.怎样理解经典时空观与相对论时空观的区别?答案:经典力学时空观:绝对的真实的数学时间,就其本质而言,是永远均匀地流逝,与任何外界无关;绝对空间就其本质而言是与任何外界事物无关的,它从不运动,并且永远不变.经典力学时空观的几个具体结论:(1)同时的绝对性:在一个参考系中的观察者在某一时刻观测到两个事件.对另一参考系中的观察者来说是同时发生的,即同时性与观察者做匀速直线运动的状态无关.(2)时间间隔的绝对性:任何事件所经历的时间,在不同的参考系中测量都是相同的,而与参考系的运动无关.(3)空间距离的绝对性:如果各个参考系中用来测量长度的标准相同,那么空间两点的距离也就有绝对不变的量值,而与参考系的选择无关.相对论时空观:空间的大小、时间流逝的快慢都与物体运动的速度有关.4.如图所示:车厢长为L,正以速度v匀速向右运动,车厢底面光滑,两只完全相同的小球,从车厢中点以相同的速率v0相对于车厢分别向前后匀速运动.(1)在车厢内的观察者看来,两球是否同时到达两壁?(2)在地面上的观察者看来,两球是否同时到达两壁?答案:(1)在车厢内的观察者看来,两球同时到达两壁.(2)在地面上的观察者看来,两球不同时到达两壁.解析:(1)在车上的观察者看来,A球经时间t A=L 2v0=L2v0到达后壁,B球经时间t B=L2v0=L2v0到达前壁,因此两球同时到达前后壁.(2)在地面上的观察者看来,A球经时间t A′=L 2v0+v =L2(v0+v)到达后壁,B球经时间t B′=L2v0-v=L2(v0-v)到达前壁,因此两球不同时到达前后壁.如图所示,在地面上M点固定一光源,在离光源等距离的A、B两点上固定有两个光接收器,今使光源发出一闪光,问:(1)在地面参考系中观测,谁先接收到光信号?(2)在沿AB方向高速运动的火车参考系中观测,谁先接收到光信号?答案:(1)同时收到(2)B先接收到解析:(1)因光源离A、B两点等距,光向A、B两点传播的速度相等,则光到达A、B 两点,所需要的时间相等,即在地面参考系中观测,两接收器同时收到光信号.(2)对于火车参考系来说,光源和A、B两接收器都沿BA方向运动,当光源发出的光向A、B传播时,A和B都沿BA方向运动了一段距离到达A′,B′,如图所示,所以光到达A′的距离长,到达B′的距离短,即在火车参考系中观测,B比A先收到光信号.1.经典物理学认为,同时发生的两件事在任何参考系中观察,结果都是同时的.2.相对论观点认为,“同时”是相对的,在一个参考系中看来是“同时”的,在另一个参考系中却可能是“不同时”的.三、长度的相对性如图所示,地面上的人看到杆的M 、N 两端发出的光同时到达他的眼睛,他读出N 、M 的坐标之差为l ,即地面上的观察者测得杆的长度为l 0,若在向右匀速运动的车上的观察者测得的杆长为l ,则l 和l 0是否相等?为什么?答案:不相等,l 0>l ,因为车上的观察者看到N 端先发光,而M 端后发光,车上的观察者测得的长度l 比地上的观察者测得的长度l 0小,这是因为同时的相对性导致了长度的相对性.严格的数学推导告诉我们l 0和l 之间的关系为l =l 01-(vc)2,可见总有l <l 0.在一飞船上测得飞船的长度为100 m ,高度为10 m .当飞船以0.60c 的速度从你身边经过时,按你的测量,飞船有多高、多长?答案:10 m 80 m解析:因为长度收缩只发生在运动的方向上,与运动垂直的方向上没有这种效应,故测得的飞船的高度仍为原来高度10 m .设飞船原长为l 0,观测到飞船的长度为l ,则根据尺缩效应有l =l 01-(v c )2=100×1-(0.6c c)2m =80 m所以观测到飞船的高度和长度分别为10 m 、80 m .1.在垂直于运动方向上,杆的长度没有变化.2.这种长度的变化是相对的,如果两条平行的杆在沿自己的长度方向上做相对运动,与它们一起运动的两位观察者都会认为对方的杆缩短了.3.由l =l 01-(v c)2知v 越小长度的变化越小.四、时间间隔的相对性一列高速火车上发生两个事件:假定车厢上安装着一个墨水罐,它每隔一定时间滴出一滴墨水.墨水在t 1、t 2两个时刻在地上形成P 、Q 两个墨点,设车上的观察者测得两事件间隔为Δt ,地面上的观察者测得两事件间隔为Δt ′,车厢匀速前进的速度为v ,试比较Δt ′和Δt 的大小.答案:Δt >Δt ′解析:车上观察者认为两个事件的时间间隔:Δt =t 2-t 1地面观察者认为两个事件的时间间隔:Δt ′=t 2′-t 1′ 根据公式l =l 01-(v c)2,通过一定的数学推导可以得出:Δt ′=Δt1-(v c)2,即Δt >Δt ′一对孪生兄弟,出生后甲乘高速飞船去旅行,测量出自己飞行30年回到地面上,乙在地面上生活,问甲回来时30岁,乙这时是多少岁?(已知飞船速度v =32c )答案:60岁解析:飞船中的甲经时间Δt ′=30年,地面上的乙经过的时间为Δt =Δt ′1-(v c)2=301-(32c c)2年=60年,可见乙这时60岁了. 1.由“同时”的相对性引起了长度的相对性.从而引起了时间的相对性.2.由Δt ′=Δt1-(v c)2知,v 越大,Δt ′越短.1.某地发生洪涝灾害,灾情紧急,特派一飞机前往,飞机在某高度做匀速直线运动,投放一包救急品,灾民看到物品做曲线运动,飞行员看到物品做自由落体运动,物品刚好落到灾民救济处,根据经典时空观,则下列说法正确的是( ).A .飞机为非惯性参考系B .飞机为惯性参考系C .灾民为非惯性参考系D .灾民为惯性参考系 答案:BD解析:物品投放后,仅受重力作用,飞行员是初速度为零的自由落体运动,符合牛顿运动定律,故飞机为惯性参考系,B 对;而地面上的人员看物品做初速度不为零的抛体运动,也符合牛顿运动定律,D 也对.2.如图所示,强强乘速度为0.9c (c 为真空中的光速)的宇宙飞船追赶正前方的壮壮,壮壮的飞行速度为0.5c ,强强向壮壮发出一束光进行联络,则壮壮观测到该光束的传播速度为( ).A .0.4cB .0.5cC .0.9cD .1.0c答案:D解析:根据爱因斯坦的狭义相对论,在一切惯性系中,光在真空中的传播速度都等于c .故选项D 正确.3.麦克耳孙—莫雷实验说明了以下哪些结论( ). A .以太不存在B .光速的合成满足经典力学法则C .光速不变D .光速是相对的,与参考系的选取有关答案:AC解析:麦克耳孙—莫雷实验证明了光速不变的原理,同时也说明以太是不存在的. 4.假设地面上有一火车以接近光速的速度运行,车内站立着一个中等身材的人,站在路旁的人观察车里的人,观察的结果是( ).A .这个人是一个矮胖子B .这个人是一个瘦高个子C .这个人矮但不胖D .这个人瘦但不高 答案:D解析:取路旁的人为惯性系,车上的人相对于路旁的人高速运动,根据尺缩效应,人在运动方向上将变窄,但在垂直于运动方向上没有发生变化,故选D .5.以8 km/s 的速度运行的人造卫星上一只完好的手表走过了1 min ,地面上的人认为它走过这1 min“实际”上花了多少时间?答案:(1+3.6×10-10)min解析:卫星上观测到的时间为Δt ′=1 min ,卫星运动的速度v =8×103m/s ,所以地面上观测到的时间为Δt =Δt ′1-v 2c 2=11-(8×1033×108)2min=(1+3.6×10-10)min .。
牛顿爱因斯坦时空观
牛顿和爱因斯坦都是伟大的物理学家,他们对时空观做出了很多贡献。
下面将分别介绍他们的时空观:
牛顿时空观:
1. 绝对时空观:牛顿认为时间和空间是独立的,彼此无关,而时间在
全宇宙是绝对一致的。
2. 物体运动的描述:牛顿通过三大定律描述了物体运动的规律,同时
发现运动状态的改变需要施加力。
3. 重力现象的解释:牛顿提出了著名的万有引力定律,认为所有物体
之间都存在引力,而这种引力是由于物体质量之间的相互作用。
爱因斯坦时空观:
1. 相对时空观:爱因斯坦认为时间和空间是密切相互联系的,两者不
是独立存在的,而是组成了时空。
2. 相对性原理:爱因斯坦提出了相对性原理,任何所有者都不存在绝
对运动状态,而任何物理规律的表达式都应该适用于所有惯性系。
3. 光速不变原理:爱因斯坦认为光速是不变的,即光速在所有惯性系中都是相同的。
牛顿和爱因斯坦的时空观有很大的不同。
其实,爱因斯坦的相对论是对牛顿力学的颠覆,揭示了物理规律的底层本质,深刻影响了物理学的后续发展。
4、时空的相对性科恩说:“科学史上时常碰到有些重大问题似乎得到了解决,但是都又以新的形式重新出现。
爱因斯坦说,这也许是物理学的一个特征,并且认为某些基本问题可能会永远纠缠着我们。
”19世纪末的爆发的第三次数学危机,导致了后起之秀——操作主义思潮在欧洲横行,对于物理学的直接作用就是物理量的可测量性问题。
如今人们已经明白,不能要求所有基本物理量都具有所谓的测量性。
但是基本定律所给出的物理量的解,原则上必须具有可测性。
放宽地讲,不要求基本原理本身的每一个物理量均具有可测量性。
个别物理量数学上能够满足伽利略的思想实验即可。
贝索说:“牛顿在他的《自然哲学的数学原理》中说,时间是绝对的,空间也是绝对的。
绝对的意思就是和一切事物都没有关系。
既然空间、时间和任何事物都没有关系,你又怎么知道空间和时间存在呢?”Einstein在其《论运动物体的电动力学》一文中有这样的一个假设:“设有一个坐标系,在此系统中Newton力学方程有效。
为了更确切表达我们的思想,并和以后的其它系统在字面上有所区别,我们称这个系统为“静止系统”。
如果一个质点相对于这个坐标系是静止的,它的位置应可以用刚尺测量与欧几里德几何学的方法相对地来确定,并可用笛卡尔坐标来表示。
”爱因斯坦在1948年为《美国人民百科全书》所写的《相对性:相对论的本质》条目中所强调的“运动决不可能作为‘对于空间的运动’或者所谓‘绝对运动’而被观察到的,‘相对性原理’在其最广泛的意义上是包含在如下的陈述里:全部物理现象都具有这样的特征,即它们不为‘绝对运动’概念的引进提供任何根据;或者用比较简短的但不那么精确的话来说:没有绝对运动。
”在Einstein的思维中这纯粹是运动学的问题,为了讨论这个问题他假定了一个理想的刚杆测量系统和一个基于理想时钟的时间测量系统,他没有假定这两个测量系统会随着观测者的不同运动状态而有所改变。
经过对空间测量系统以及物体的运动对于空间测量系统的改变的分析发现正是此假设隐含着绝对空间的假设。
相对论爱因斯坦相对论爱因斯坦相对论是物理学中的重要理论,对我们对宇宙和时间的理解产生了深远影响。
其中最为著名的相对论就是爱因斯坦的相对论,它包括狭义相对论和广义相对论两部分。
爱因斯坦的相对论革命性地改变了我们对于时空的认识,成为现代物理学的重要基石。
狭义相对论是爱因斯坦在1905年提出的。
相对论的核心思想是时空的相对性和光速不变原理。
根据相对论,物体的质量和能量并不是固定不变的,而是取决于观察者的参考系。
当一个物体的速度接近光速时,其质量将增加,时间也会变得相对变慢。
这一概念在当时是非常激进的,与牛顿力学的观点形成了鲜明对比。
广义相对论是爱因斯坦在1915年提出的。
相对论的核心思想是物质和能量会改变时空的几何结构,形成所谓的时空弯曲。
爱因斯坦提出了著名的"弯曲时空"的概念,物体在弯曲的时空中运动时,其轨迹也会发生弯曲。
这一理论解释了万有引力的本质,并预言了黑洞和引力波的存在。
广义相对论被广泛应用于宇宙学研究中。
根据广义相对论,宇宙的演化是由物质和能量决定的,并且时空的几何形状将会随着宇宙的演化而改变。
爱因斯坦还提出了著名的宇宙学常数,用于描述宇宙的膨胀速度。
这一理论为宇宙大爆炸理论提供了基础,并推动了现代宇宙学的发展。
爱因斯坦的相对论不仅仅改变了我们对于时空的认知,也对其他领域产生了影响。
例如,爱因斯坦的质能方程E=mc²揭示了质量与能量之间的等价关系,为原子能和核能的研究提供了重要基础。
这一方程的意义深远,被广泛运用于现代科学和工程领域。
尽管相对论理论已经过去了将近一个世纪,但它仍然是物理学中的重要理论。
爱因斯坦的相对论不仅仅改变了我们对宇宙和时间的认知,也为现代科学的发展提供了重要的基础。
相对论的思想影响着我们对于自然界的理解,并推动了科学技术的进步。
总而言之,相对论是爱因斯坦的伟大成就之一,它对于物理学、宇宙学和科学技术的发展产生了深远影响。
爱因斯坦的相对论成为了现代物理学的重要基石,其影响力将长久地延续下去。
粤教版选修3-4第五章5.2 《时空相对性》2010-10-19 17:18:41 字体放大:大中小5.2 时空相对性★新课标要求(一)知识与技能1.理解“同时”的相对性。
2.通过推理,知道时间间隔的相对性和长度的相对性。
3.通过对两个结论的分析认识时间和空间是不能脱离物质而单独存在的。
(二)过程与方法1.通过时间间隔相对性和长度相对性的推导,培养逻辑推理能力。
2.通过建立相对论时空观,提高学生认识物质世界的能力。
(三)情感、态度与价值观培养学生对逻辑推理形成的结论要有一个科学的接受态度。
★教学重点同时的相对性,长度的相对性,时间间隔的相对性。
★教学难点相对论的时空观。
★教学方法在教师的引导下,通过对具体实例的分析,建立模型、形成结论、形成理论,并在应用中加以巩固。
★教学用具:投影仪及投影片。
★教学过程(一)引入新课师:上一节课我们学习了狭义相对论的两个假设。
请同学们回忆一下这两个假设的内容。
生:在不同惯性参照系中,一切物理规律都是相同的;真空中的光速在不同惯性系中都是相同的。
师:根据这两个假设,我们可以得出那些推论呢?这节课我们继续来学习狭义相对论的有关知识。
(二)进行新课1.“同时”的相对性师:首先我们来认识一下“事件”的概念,在这里我们说的事件可以指一个婴儿的诞生,一个光子与观测仪器的撞击或闪电打击地面等等.请大家再举几个例子。
生:光从光源发出,宇宙中某个星体的爆发,一个车辆的启动等都是“事件”。
师:下面我们通过一个实例分析,来看看经典物理和相对论对同时的理解有何不同。
[投影问题]车厢长为L,正以速度v匀速向右运动,车厢底面光滑,现有两只完全相同的小球,从车厢中点以相同的速率v0分别向前后匀速运动,(相对于车厢),问(1)在车厢内的观察者看来,小球是否同时到达两壁?(2)在地上的观察者看来两球是否同时到达两壁?分析:在车上的观察者看来,A球经时间tA= =B球经时间tB= =因此两球同时到达前后壁。
在经典物理学家看来,同时发生的两件事在任何参照系中观察,结果都是同时的,两球也应同时到达前后壁.这是我们在日常生活中得到的结论。
师:如果把上述事件换成两列光的传播,情况如何呢?(引导学生,从经典观点和光速不变原理两方面分析)生:在车上的观察者看来,闪光同时到达前后壁,在地上的观察者看来,闪光先到达后壁. 师:为什么呢?生:根据爱因斯坦相对性原理,在不同参考系中一切物理规律都是相同的,这里匀速运动规律也一样,据s=ct得t= ,车上观察者看来s相同,c也一样,所以t相同,而对地面的观察者,光向后位移s小,而光速仍然不变,所以向后运动光需要较短时间到达后壁。
师:分析得不错,由此看来,根据爱因斯坦相对性原理和光速不变原理,我们自然会得出“同时是相对的”这样一个原理,也就是说,在一个参考系中看来“同时”的,在另一个参考系中却可能“不同时”。
师:那么为什么我们平时不能观察这种现象呢?生:因为火车速度相对于光速来说太小,在光传播的短时间内,火车位移不大,我们不能发现这么短的时间差.如果火车速度接近光速,这一现象一定很明显。
师:是的,看来经典的时间观动摇了,相对论给我们展示了高速运动状态下全新的世界。
21世纪教育网2.长度的相对性师:下面我们来讨论在不同参考系中测量一个杆的长度结果会如何。
[来源:21世纪教育网] 投影下图。
师:甲图中是一个刻度尺测出的静止的杆的长度,大家看是多少?生:1.2 m师:怎么求出的呢?生:拿N点坐标9.2 m减M点坐标8 m得到的。
师:乙图中尺仍然静止,杆水平向右匀速运动,我们应该怎么算杆长?生:MN长或M′N′长度。
师:其实这里你是用某时刻N、M坐标差值或另一时刻N′、M′坐标差值得到的.如果有人用N′,M的坐标差值算出杆长是9.7 m-8 m=1.7 m显然是没有意义的,它不能代表杆的长度.因此我们要测量这一杆长,就必须“同时”读出杆两端坐标才行。
现在的问题是不同参考系中“同时是相对的”。
师:请大家看课本图15.2-3,地面上的人看到杆的M、N两端发出的光同时到达他的眼睛,他读出N、M的坐标之差为l,即地上的观察者测到的杆长。
请大家考虑车上的观察者是同时看到N、M两端的闪光吗?生:不是同时看到,他看到N端先发出光,而M端后发出光。
师:那他认为地上的人观测的长度就是投影图中的N、M′间距,地上观察者读短了。
因此车上观察者测量的长度l0比地上观察者测量的长度l长,即l>l0。
正是因为同时的相对性导致了长度的相对性。
师:严格的数学推导告诉我们l′和l之间有如下关系:由式可见总有l<l0。
一个杆,当它沿自身方向相对于测量者运动时,测量者的测量结果如何?生:变短了。
师:若杆沿着垂直自身方向相对测量者运动呢?生:应该一样。
师:如果一个人在地上量好一根静止杆的长度是l,他将这根杆带到以0.5c速度运动的飞船上,坐在飞船上测量这根杆的长度又是多少?生:应该是L,可以从公式l=l0 求出。
师:大家看对吗?(少数人赞同,多数人沉默)教师引导学生讨论,强调参考系的相对运动是长度缩短的原因,即观察者与被测物间的相对运动才是长度缩短的原因,进而否定上述答案,得到杆长仍为l 的结果还可发挥学生想像力,鼓励学生想象高速运动下的长度变化,加深对长度相对性的理解。
21世纪教育网3.时间间隔的相对性[投影课本图15.2-4]师:这是一列高速火车上发生的两个事件:假定车箱安装着一个墨水罐,它每隔一定时间地出一滴墨水。
墨水在、两个时刻在地上形成P、Q两个墨点,设车上的观察者测得两事件间隔Δt′时间,地面上的观察者测得两事件间隔Δt时间,车厢匀速前进速度为v。
车上观察者认为两个事件的时间间隔:,地面观察者认为两个事件的时间间隔:,根据公式,通过一定的数学推导可以得出:Δt=师:式中是与滴管相对静止的观察者测得的两次滴下墨水的时间间隔,习惯上用希腊字母表示。
于是上式写成Δt=师:从上式可以发现哪一位观察者感觉时间长?生:地上的观察者感觉时间间隔较长。
师:上式具有普遍意义。
下面请大家计算一个问题。
[投影]一对孪生兄弟,出生后甲乘高速飞船去旅行,测量出自己飞行30年回到地面上,乙在地面上生活,问甲回来时30岁,乙这时是多少岁?(已知飞船速度v= c)分析:已知飞船观察者甲经时间Δ =30年,地面上的观察者乙经过时间为Δt== 年=60年可见甲的孪生兄弟已经60岁了。
学生兴趣盎然,教师引导学生进一步讨论激发学生对高速运动状态下的各种过程,例如物理、化学、生命过程变慢进行讨论,加深对时间间隔相对性的理解。
师:通过前面的讨论我们看到在不同参考系中,时间间隔是相对的。
4.时空相对性的验证师:请同学们不要忘记,时空相对性的奇妙图景都是在两个“假设”的基础上推出的,它必须接受实验的检验,否则永远是猜想.大家有什么好的办法吗?生:设法造出高速运动的飞船或火车。
师:目前我们还没有办法实现这样高的速度的宏观火车或飞船,但在微观世界,这样的高速是普遍存在的,宇宙射线中的μ子的行为为我们提供了有力的证据.寿命3.0μs速度0.99c这段时间位移应为s=vt≈0.99×108×3.0×3.0×10-6 m≈890 m这样,它在100 km高的大气层上方根本不可能到达地面,而我们却在地面找到了这100 km 高处的来客,请大家分析原因。
生:因为μ子高速运动时的自身存在时间Δt′总是大于地面观察到的时间Δt,也就是它的寿命变长了。
师:很好,大家再从长度相对性角度考虑解释。
生:在μ子看来,这100 km厚的大气层被变短了,在它的眼里只有890 m,它能成功穿越。
师:宏观的证据是1971年的铯原子钟的环球飞行,实验结果与理论符合得很好。
5.相对论的时空观21世纪教育网师:下面我们来看看经典物理学的时空观与相对论时空观的差异。
[投影下面表格]经典时空观相对论时空观时间天然存在;一分一秒地流逝;与物质运动无关与物质存在与否及运动状态有关空间一个大盒子;物质运动的场所与物质存在与否及运动状态有关联系二者脱离,没有联系,独立存在物质、时间、空间是紧密联系的统一体21世纪教育网适用范围低速运动物体遵循经典物理学规律更有普遍意义,广泛适用(三)课堂总结、点评本节课我们通过两个基本假设,推导出了“同时”的相对性,长度的相对性,时间间隔的相对性。
还 通过对微观粒子探测和宏观实验验证分析掌握了时空相对性的证据。
通过比较认识了经典物理学和相对论时空观的不同。
★课余作业完成P114“问题与练习”的题目。
课下阅读课本内容和113页“科学足迹”。
相对时空观在爱因斯坦的相对论中,否定了牛顿的绝对时空观,提出了相对时空观。
在相对时空观中,时间和空间被联系在一起,它们互相联系又互相制约,物质的运动对时间和空间有一定的影响。
爱因斯坦还把时间看作第四维,与三维的空间一起组成了四维时空。
同时性的相对性同时性的相对性,是爱因斯坦论述相对论的一个重要依据,也是体现相对时空观的重要现象。
然而很多人并未彻底理解这个问题。
同时性的相对性,产生的根源是测量速度慢而引起的,而并非经典理论不能解决的问题。
我们通常所说的同时,是指绝对的同时,是假设测量信号无穷大的结果,或者是处于距离两个事件的位置,信号传递的时间相同。
相对同时,是和测量速度和位置相关的,是主观同时,而不是客观同时。
例如:AB两处发生爆炸,空气静止,在AB 中间的人同一时间听到AB两处爆炸,而靠近A处的人,先听到A处的爆炸,后听到B处的爆炸声,他听到的结果不在一个时间点上,就是不同时的。
在智者想来,这两个结果,完全是统一的,每个人测得的物理现象都没有错,错的是他们都认为自己的结论,是可以得到“公认”的唯一结论。
只要每个人都由测量现象,扣除信号传递需要的时间,都可得到,两个事件“同时”发生这个结论;或者都用无穷大速度测量,也会得到同时这个结论,所以同时性,是可以公认的结论,物理本质本身,不存在同时的相对性,是客观的规律,具有绝对性。
用绝对时空观思考问题,没有什么不对,而采用相对时空观,则会导致不同的人对AB爆炸事件的描述可以不同,而不必将其统一起来,其结论,也变成了主观结论,随着测量者的位置而变化,而不是客观的结论。
长度的收缩长度收缩效应,又称尺缩效应,是物理学理论。
在某一个运动的参考系中,对一根沿运动方向放置且相对于此参考系静止的棒的长度要比在一个静止的参考系中测得的此棒的长度短一些。
这种情况被叫做长度收缩效应,或尺缩效应。
这个效应显示了空间的相对性。
对于同一个物体,在相对于该物体运动的参考系中,沿运动方向测量它的长度,所得的结果要比在相对于该物体静止的参考系中测得的同方向长度短一些。
这种情况被叫做长度收缩效应。
由坐标的洛伦兹变换可知,物体的长度只在物体运动方向上收缩。