压力容器壳体局部应力计算和强度评定[1]
- 格式:pdf
- 大小:156.78 KB
- 文档页数:6
压力容器的结构强度与安全性评估引言:压力容器是工业生产中常见的一种设备,广泛应用于化工、石油、制药等领域。
压力容器在工作过程中承受着巨大的内外压力,因此其结构强度和安全性评估显得尤为重要。
本文将从压力容器的结构强度和安全性评估两个方面进行探讨。
一、压力容器的结构强度评估压力容器的结构强度评估是指通过对其结构进行分析和计算,判断其是否能够承受工作过程中的内外压力而不发生破坏。
结构强度评估包括材料强度、焊接强度和容器整体结构强度等方面的考虑。
1. 材料强度评估压力容器常见的材料有碳钢、不锈钢等,其强度是评估其结构强度的主要指标之一。
在评估过程中,需要考虑材料的屈服强度、抗拉强度、冲击韧性等参数,通过比较材料的强度与工作条件下的应力情况,判断材料是否能够满足强度要求。
2. 焊接强度评估压力容器的焊接强度对于其整体结构的强度至关重要。
在焊接过程中,需要注意焊缝的质量,确保焊接强度满足要求。
评估焊缝强度时,需要考虑焊接材料和焊接工艺对焊缝强度的影响,并进行相应的计算和检验。
3. 容器整体结构强度评估容器整体结构强度包括容器壳体和端头的强度评估。
对于壳体部分,需要考虑容器的形状和尺寸、内外压力、温度等因素,计算壳体的强度和变形情况。
对于端头部分,需要考虑其几何形状和受力情况,通过应力分析和有限元计算等方法,评估端头的强度和稳定性。
二、压力容器的安全性评估压力容器的安全性评估是指对容器在正常工作条件下的使用安全性进行判断和评价。
安全性评估包括容器的材料耐蚀性、泄漏风险和破裂风险等方面的考虑。
1. 材料耐蚀性评估在化工和石油行业等腐蚀介质的作用下,容器材料可能发生腐蚀现象。
因此,在安全性评估中需要对材料的耐蚀性进行评估和测试,确保容器在腐蚀环境下能够保持足够的强度和完整性。
2. 泄漏风险评估泄漏是压力容器使用过程中的一个重要安全隐患。
通过对容器的密封性和接口连接的评估,可判断容器在正常运行情况下是否存在泄漏的风险。
百度文库- 让每个人平等地提升自我东北石油大学课程综合实践(二)课程过程设备设计题目典型局部应力学院机械科学与工程学院专业班级装备12-2班学生姓名李早东学生学号指导教师林玉娟2014年5月11日目录第一章局部应力 (1)1.局部应力的计算方法与概述 (1)WRC方法 (1)介质压力引起的应力计算 (3)强度评定 (3)欧盟的压力容器标准EN13445 (4)有限元法 (4)第二章补强分析 (5)2.降低局部应力的方法与措施 (5)直立容器支承式支座处的强度校核 (5)支座处封头的局部载荷 (5)支座处封头截面上的应力 (6)支座处封头的强度校核条件 (9)补强措施 (10)第三章结束语 (12)第一章局部应力1.局部应力的计算方法与概述压力容器除了承受介质压力载荷外,常常还要受到附件传来的其他外载荷。
通过支座、托架、吊耳等附件传来的载荷,主要是设备的自重及其内部物料等静重;通过接管传来的载荷主要是管道和管系反力、重量以及由于受热膨胀引起的推力和力矩。
这些载荷对壳体的影响虽仅限于附件与壳体连接处附近的局部区域,但常会产生较高的局部应力。
除外载荷产生的局部应力外,介质压力载荷还将在附件与壳体连接区产生另外一些局部应力,如局部薄膜应力、弯曲应力,以及截面尺寸突变的转角处的应力集中。
外载荷应力和介质压力载荷应力的联合作用将会使附件和壳体连接区域成为压力容器发生破坏的主要根源。
因此,计算外载荷作用下附件和壳体中的局部应力就显得十分重要,但是由于问题的非对称性,对局部应力作完整的理论计算过于复杂,对于实际设计往往不便于应用。
目前,对于压力容器壳体上由接管外载荷引起的局部应力的计算,主要有以Bijlaard理论为基础的两种方法:一是美国焊接研究协会(WRC)第107公报和有关补充规定WRC第297公报介绍的方法;二是英国压力容器设计标准BS550附录G建议的方法。
随着压力容器向高参数化发展和分析设计方法的广泛采用,要求进行局部应力计算和采用分析设计法进行强度评定的压力容器会越来越多,故本文在对WRC107方法理解基础上,对一高压反应器底封头上由接管载荷引起的局部应力作了详细计算,并按分析设计原理对接管和封头连接区的应力进行了强度评定,以便对工程中同类结构的局部应力计算、强度评定及压力容器分析设计方法的应用提供一定的参考。
气瓶应力分析和强度计算气瓶应力分析和强度计算气瓶应力分析和强度计算气瓶是一种承受内压的压力容器,一般由圆筒、封头、封底所组成。
从受力情况看(这是强度设计的力学基础),它可以分为头部及其影响区、简体、底部及其影响区三部分。
而强度设计的任务就是要正确确定每一部分的结构形状及其尺寸,保证在整个使用年限内安全运行。
对已有的气瓶,则可利用应力分析及强度设计有关公式进行安全校验和剩余寿命的估算。
图4—1为一凹形底气瓶的应力分布图。
强度设计的基本原则是安全可靠,经济合理。
一、气瓶筒体的应力状态气瓶筒体部分是一薄壁圆柱形壳体,或称薄壁圆筒。
由于气瓶的公称工作压力可达30MPa,属于高压容器。
制造气瓶的材料一般都选用强度较高的优质结构钢,所以其壁厚S相对于半径Ri来说仍是很小的,一般S/Ri<1/10。
根据力学分析及有关压力容器的设计规定,当圆筒外、内直径之比Do/Di≤1.2时,可认为是薄壁圆筒,均可按薄壁圆筒设计。
所谓薄壁圆筒,从力学上讲,就是指:当圆筒的壁厚相对于半径很小时,圆筒断面上承受弯矩的能力很小,筒壁主要承受拉力或压力,因此,可以近似地认为应力在整个筒壁上,沿壁厚度是均匀分布的,即所谓无力矩理论。
按无力矩理论计算求得的应力称为薄膜应力。
现在我们来分析气瓶简体即薄壁圆筒的应力状态。
圆筒是最简单的一种回转壳体,也是压力容器中最基本的部分。
薄壁圆筒的无力矩理论应力状态可以用分析回转壳体应力状态的一般方法求解,也可以更简单的从静力平衡方程式直接求得。
以图4—2为例,如果我们在气瓶中部以垂直于轴线的平面(横截面)将气瓶截为上下二段,则作用在环断面的经向应力(亦称轴向应力)的合力为πDSo经,此力应与由内压P 作用在气瓶底端的总轴向力(不管封头形状如何,均为π/4D2i p)相平衡,即因系薄壁圆筒,故内径D”可近似地等于平均直径Di.即D1≈D,由此,可求得作为了求得环向应力(亦称周向应力或切向应力),则可取长度为L的一段圆筒,并以通过轴线的纵向截面将此圆环沿轴线切开,如图4—3所示,一辟两半,并沿Y--Y方向列公式(4.1)及(4.2)中圆筒的直径均为内径,所以有时亦称内径公式。
压力容器应力分析标准压力容器是一种用于承受内部压力的设备,通常用于储存或加工气体、液体或蒸汽。
在设计和制造压力容器时,应力分析是至关重要的步骤。
应力分析可以帮助工程师确定材料的合适性,以及在使用过程中可能出现的应力集中区域,从而确保压力容器的安全运行。
首先,压力容器应力分析需要遵循一定的标准和规范。
国际上广泛应用的压力容器设计规范包括ASME(美国机械工程师协会)的《压力容器规范》和欧洲的PED(压力设备指令)。
这些规范详细规定了压力容器的设计、制造、检验和使用要求,其中包括应力分析的相关内容。
在进行应力分析时,工程师需要考虑压力容器在运行过程中可能受到的各种载荷,包括内压、外压、温度载荷、地震载荷等。
针对这些载荷,工程师需要进行应力分析,计算压力容器的应力分布情况,以及应力集中的位置和程度。
通过应力分析,工程师可以评估材料的强度是否足够,以及是否需要采取一些措施来减轻应力集中的影响。
此外,应力分析还需要考虑压力容器的几何形状、焊接接头、支撑结构等因素。
这些因素都会对应力分布产生影响,因此在进行应力分析时需要全面考虑。
在实际工程中,工程师通常会利用有限元分析等计算工具来进行应力分析。
有限元分析是一种数值计算方法,可以对复杂结构的应力分布进行精确计算。
通过有限元分析,工程师可以得到压力容器各个部位的应力情况,从而指导后续的设计和制造工作。
总的来说,压力容器应力分析是压力容器设计和制造过程中不可或缺的一部分。
遵循相应的标准和规范,全面考虑各种载荷和因素,并利用适当的计算工具进行应力分析,可以确保压力容器的安全可靠运行。
在未来的工作中,我们需要不断改进应力分析的方法和技术,以适应不断发展的压力容器应用需求。
压力容器的强度计算第11章压力容器的强度计算本章重点要讲解内容:(1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则;(2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差;(3)掌握内压圆筒的厚度设计;(4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。
(5)熟悉内压容器强度校核的思路和过程。
第一节设计参数的确定1、我国压力容器标准与适用范围我国现执行GB150-98“钢制压力容器”国家标准。
该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。
JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。
其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。
2、容器直径(diameterofvessel)考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。
对于用钢板卷制的筒体,以内径作为其公称直径。
表1压力容器的公称直径(mm)如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。
表2无缝钢管制作筒体时容器的公称直径(mm)3、设计压力(designpressure)(1)相关的基本概念(除了特殊注明的,压力均指表压力)工作压力PW:在正常的工作情况下,容器顶部可能达到的最高压力。
①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同;②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际最高工作压力(themaximumallowableworkingpressure)。
③标准中的最大工作压力,最高工作压力和工作压力概念相同。
目录摘要 ............................................................. I I Abstract ........................................................ I II 1.绪论 (1)1.1 研究背景及意义 (1)1.2 研究方法 (2)1.2.1 钢制化工容器强度计算法 (2)1.2.2有限元(ANSYS Workbench)分析法 (3)2.计算支承式支座实际承受的载荷 (5)2.1支座选用分析 (5)2.2.支座实际承受载荷的计算 (5)3.用HG20582-1998钢制化工容器强度计算规定(WRC107/297计算方法)计算封头的局部应力 (7)3.1壳体参数和附件参数的确定 (7)3.2.壳体上局部应力的计算 (8)3.2.1 壳体上与支座接触处有垫板时局部应力的计算 (9)3.2.2 壳体上与支座接触处没有垫板时局部应力的计算 (11)3.3 局部应力的强度较核 (13)3.3.1 壳体上与支座接触处有垫板时的强度评定 (14)3.3.2 壳体上与支座接触处没有垫板时的强度评定 (15)4.用有限元法(ANSYS Workbench)计算支座承受载荷所引起的封头壳体应力 (16)4.1 ANSYS Workbench 在应力分析中的分析原理过程 (16)4.1.1 应力分析中的不连续区 (15)4.1.2 有限元的设计分析原理 (17)4.1.3 ANSYS Workbench的使用 (18)4.2 用ANSYS分析压力容器封头壳体的局部应力 (18)4.2.1 问题的分析 (18)4.2.2 有限元模型的建立 (19)4.2.3 载荷和位移边界条件处理 (20)4.2.4 网格划分情况 (20)4.2.5 施加载荷 (21)4.2.6 支座与封头接触处有垫板时的局部应力分析 (23)4.2.7 壳体上与支座接触处没有垫板时局部应力的分析 (24)4.3 ANSYS Workbench对局部应力的强度较核 (24)4.3.1 壳体上与支座接触处有垫板时的强度评定 (25)4.3.2 壳体上与支座接触处没有垫板时的强度评定 (26)5.总结 (28)谢辞 (29)参考文献 (30)压力容器局部应力是压力容器设计过程中经常遇到的问题,过大的局部应力可能使容器结构局部强度不足,发生破坏或导致过大的局部形变,危及设备安全性,本文研究的是压力容器支承式支座局部区域的应力分析和强度评定。
压力容器壁厚计算及说明一、压力容器的概念同时满足以下三个条件的为压力容器,否则为常压容器。
1、最高工作压力P :9.8×104Pa ≤P ≤9.8×106Pa ,不包括液体静压力;2、容积V ≥25L ,且P ×V ≥1960×104L Pa;3、介质:气体,液化气体或最高工作温度高于标准沸点的液体。
二、强度计算公式1、受内压的薄壁圆筒当K=1.1~1.2,压力容器筒体可按薄壁圆筒进行强度计算,认为筒体为二向应力状态,且各受力面应力均匀分布,径向应力σr =0,环向应力σt =PD/4s ,σz = PD/2s ,最大主应力σ1=PD/2s ,根据第一强度理论,筒体壁厚理论计算公式,δ理=PPD -σ][2 考虑实际因素,δ=P PD φ-σ][2+C 式中,δ—圆筒的壁厚(包括壁厚附加量),㎜;D — 圆筒内径,㎜;P — 设计压力,㎜;[σ] — 材料的许用拉应力,值为σs /n ,MPa ;φ— 焊缝系数,0.6~1.0;C — 壁厚附加量,㎜。
2、受内压P 的厚壁圆筒①K >1.2,压力容器筒体按厚壁容器进行强度计算,筒体处于三向应力状态,且各受力面应力非均匀分布(轴向应力除外)。
径向应力σr =--1(222a b Pa 22r b ) 环向应力σθ=+-1(222ab Pa 22r b ) 轴向应力σz =222a b Pa - 式中,a —筒体内半径,㎜;b —筒体外半径,㎜;②承受内压的厚壁圆筒应力最大的危险点在内壁,内壁处三个主应力分别为:σ1=σθ=P K K 1122-+ σ2=σz =P K 112-σ3=σr =-P第一强度理论推导处如下设计公式σ1=P K K 1122-+≤[σ] 由第三强度理论推导出如下设计公式σ1-σ3=P K K 1122-+≤[σ] 由第四强度理论推导出如下设计公式:P K K 132-≤[σ] 式中,K =a/b3、受外压P 的厚壁圆筒径向应力σr =---1(222a b Pb 22r a ) 环向应力σθ=-+-1(222ab Pb 22r a ) 4、一般形状回转壳体的应力计算经向应力 σz =sP 22ρ 环向应力 sP t z =+21ρσρσ 式中,P —内压力,MPa ;ρ1—所求应力点回转体曲面的第一主曲率半径,㎜;(纬)ρ2—所求应力点回转体曲面的第一主曲率半径,㎜;(经)s —壳体壁厚,㎜。
压力容器设计常用计算一、强度计算强度计算是压力容器设计中最基本的计算,其目的是通过计算容器的应力和应变,判断容器在承受工作压力时是否会发生破坏。
根据不同的容器形状和材料性质,常用的强度计算方法有以下几种:1.束缚应力法:根据容器的材料属性,计算容器各部位的允许最大内、外应力和总应力,然后与工作过程中的应力进行比较,判断容器是否会发生破坏。
2.等效应力法:将容器内、外表面上的应力用一个等效应力来代替,然后与容器的抗拉极限强度进行比较,以判断容器是否会发生破坏。
3.具体应力分析法:针对特定形状的容器,通过具体的应力分布分析,计算出容器各部位的应力和应变,进而判断容器是否会发生破坏。
二、蠕变计算蠕变是指材料在高温和长时间作用下发生的塑性变形,其对压力容器的安全性和可靠性产生较大的影响。
常用的蠕变计算方法有以下几种:1.应力分析法:根据容器的材料性质和工作条件,计算容器各部位的蠕变应力,然后与容器材料的蠕变强度进行比较,以判断容器在工作过程中是否会发生蠕变破坏。
2.强度工作时间积法:将容器的工作时间乘以其工作温度下的应力值,得到强度工作时间积,然后与容器材料的蠕变强度工作时间积进行比较来判断容器是否会发生蠕变破坏。
三、疲劳计算在压力容器的使用过程中,往往会受到不断重复的循环载荷,这会导致容器材料的疲劳破坏。
常用的疲劳计算方法有以下几种:1.安全系数法:根据容器的工作周期和载荷特性,计算容器的疲劳安全系数,然后与容器要求的疲劳安全系数进行比较,以判断容器是否会发生疲劳破坏。
2.极限状态法:根据容器的应力分布和载荷变化情况,通过计算容器的疲劳极限状态,判断容器在使用过程中是否会发生疲劳破坏。
四、稳定性计算容器的稳定性计算主要是为了防止在工作过程中容器发生失稳和挤压变形等现象,影响容器的安全性和稳定性。
常用的稳定性计算方法有以下几种:1.柱稳定计算:根据容器的几何形状和材料性质,通过计算容器的柱稳定系数,判断容器在工作过程中是否会发生失稳破坏。
项目一压力容器任务四压力容器的强度计算及校核容器按厚度可以分为薄壁容器和厚壁容器,通常根据容器外径Do与内径Di 的比值K来判断,K>1.2为厚壁容器,K≤1.2为薄壁容器。
工程实际中的压力容器大多为薄壁容器。
为判断薄壁容器能否安全工作,需对压力容器各部分进行应力计算与强度校核。
一、圆筒体和球形壳体1.壁厚计算公式圆筒体计算壁厚:圆筒体设计壁厚:球形容器计算壁厚:球形容器设计壁厚:式中δ——圆筒计算厚度,mmδd——圆筒设计厚度,mmpc——计算压力,MPa。
pc=p+p液,当液柱静压力小于5%设计压力时,可忽略Di——圆筒的内直径,mm[σ]T——设计温度T下,圆筒体材料的许用应力,MPa(可查表)φ——焊接接头系数,φ≤1.0C2——腐蚀裕量,mm2.壁厚校核计算式在工程实际中有不少的情况需要进行校核性计算,如旧容器的重新启用、正在使用的容器改变操作条件等。
这时容器的材料及壁厚都是已知的,可由下式求设计温度下圆筒的最大允许工作压力[pw]。
式中δe——圆筒的有效厚度,mm设计温度下圆筒的计算应力σT:σT值应小于或等于[σ]Tφ。
设计温度下球壳的最大允许工作压力[pw]:设计温度下球壳计算应力σT:σT值应小于或等于[σ]Tφ。
二、封头的强度计算1.封头结构封头是压力容器的重要组成部分,常用的有半球形封头、椭圆形封头、碟形封头、锥形封头和平封头(即平盖),如图1-4所示。
工程上应用较多的是椭圆形封头、半球形封头和碟形封头,最常用的是标准椭圆形封头。
以下只介绍椭圆形封头的计算,其他形式封头的计算可查阅GB150—2011。
图1-4 封头的结构型式2.椭圆形封头计算椭圆形封头由半个椭球面和高为h的直边部分所组成,如图1-5所示。
直边h的大小根据封头直径和厚度不同有25mm、40mm、50mm三种,直边h的取值可查表1-7。
表1-7 椭圆形封头材料、厚度和直边高度的对应关系单位:mm图1-5 椭圆形封头椭圆形封头的长、短轴之比不同,封头的形状也不同,当其长短轴之比等于2时,称为标准椭圆形封头。