离散控制系统分析方法
- 格式:doc
- 大小:593.00 KB
- 文档页数:12
离散控制系统分析方法离散控制系统分析方法指的是对离散控制系统进行建模、分析和设计的方法。
离散控制系统是一种基于离散时间的系统,其输入、输出和状态都是离散的。
离散控制系统广泛应用于工业自动化、通信网络、数字信号处理等领域,因此对其进行有效的分析和设计具有重要意义。
下面将介绍几种常用的离散控制系统分析方法。
1.差分方程法差分方程法是离散控制系统分析的基本方法之一、它通过建立系统的差分方程来描述系统的动态行为。
差分方程的形式类似于连续时间系统的微分方程,但系统状态的变化是以离散时间为单位进行的。
通过求解差分方程,可以得到离散时间下的系统响应。
2.离散频域分析方法离散频域分析方法是一种基于频域的分析方法,主要用于对离散时间系统的频率特性进行分析。
离散频域分析方法常用的工具包括离散傅里叶变换(DFT)、离散余弦变换(DCT)等。
通过对系统的输入和输出信号进行频域分析,可以确定系统的频率响应、幅频特性、相频特性等。
3.状态空间法状态空间法是一种用于描述离散控制系统的方法。
它通过引入状态变量,将系统的动态行为用一组状态方程来表示。
状态方程可以通过差分方程、差分方程组等形式来表示。
状态空间法可以方便地进行系统分析和控制器设计,并且可以应用于线性和非线性离散控制系统。
4.频域折叠法频域折叠法是一种基于频域的系统分析方法,主要用于对离散时间系统的稳定性和性能进行分析。
频域折叠法的基本思想是通过对系统的幅频特性进行折叠,将连续时间系统的频域特性转化为离散时间系统的频域特性。
通过对折叠后的频域特性进行分析,可以得到系统的稳定域、稳定裕度等性能指标。
5.传函数法传函数法是一种常用的线性离散控制系统分析方法。
它通过将离散时间系统表示为输入信号和输出信号之间的比值,建立系统的传函数模型。
传函数法可以方便地进行系统分析和控制器设计,并且可以应用于多输入多输出(MIMO)离散控制系统。
总结起来,离散控制系统分析方法包括差分方程法、离散频域分析方法、状态空间法、频域折叠法和传函数法等。
第五章离散系统的时域分析法目录5.1 引言5.2 离散时间信号5.3 离散系统的数学模型-差分方程 5.4 线性常系数差分方程的求解5.5 单位样值响应5.6 卷积和§5.1引言连续时间信号、连续时间系统连续时间信号:f(t)是连续变化的t的函数,除若干不连续点之外对于任意时间值都可以给出确定的函数值。
函数的波形都是具有平滑曲线的形状,一般也称模拟信号。
模拟信号抽样信号量化信号连续时间系统:系统的输入、输出都是连续的时间信号。
离散时间信号、离散时间系统离散时间信号:时间变量是离散的,函数只在某些规定的时刻有确定的值,在其他时间没有定义。
离散时间系统:系统的输入、输出都是离散的时间信号。
如数字计算机。
o k t ()k t f 2t 1−t 1t 3t 2−t 离散信号可以由模拟信号抽样而得,也可以由实际系统生成。
量化幅值量化——幅值只能分级变化。
采样过程就是对模拟信号的时间取离散的量化值过程——得到离散信号。
数字信号:离散信号在各离散点的幅值被量化的信号。
ot ()t f T T 2T 31.32.45.19.0o T T 2T 3()t f q t3421离散时间系统的优点•便于实现大规模集成,从而在重量和体积方面显示其优越性;•容易作到精度高,模拟元件精度低,而数字系统的精度取决于位数;•可靠性好;•存储器的合理运用使系统具有灵活的功能;•易消除噪声干扰;•数字系统容易利用可编程技术,借助于软件控制,大大改善了系统的灵活性和通用性;•易处理速率很低的信号。
离散时间系统的困难和缺点高速时实现困难,设备复杂,成本高,通信系统由模拟转化为数字要牺牲带宽。
应用前景由于数字系统的优点,使许多模拟系统逐步被淘汰,被数字(更多是模/数混合)系统所代替;人们提出了“数字地球”、“数字化世界”、“数字化生存”等概念,数字化技术逐步渗透到人类工作与生活的每个角落。
数字信号处理技术正在使人类生产和生活质量提高到前所未有的新境界。
离散时间系统频域分析离散时间系统的频域分析是研究离散时间信号在频域上的性质和行为的方法。
在离散时间系统频域分析中,使用离散时间傅里叶变换(Discrete Fourier Transform,DFT),来将离散时间信号从时域转换到频域。
通过分析信号在频域上的频谱分布和频谱特性,可以得到离散时间系统的频率响应和频域特性,对信号的频域分布和频率区间进行评估和分析。
离散时间傅里叶变换是时域信号分析的重要工具,它可以将离散时间信号从时域转换到频域。
离散时间傅里叶变换的定义可以表示为:X(k) = Σ[x(n) * exp(-j*2πkn/N)]其中,X(k)是离散时间信号在频域的频谱,x(n)是离散时间信号,N是信号的长度,k是频谱的索引。
离散时间傅里叶变换将时域信号分解成多个频率成分,通过频谱的幅度和相位信息,可以得到信号在频域上的分布情况。
通过离散时间傅里叶变换可以得到离散时间信号的频谱,进而分析信号在频域上的频率响应和频域特性。
频谱可以反映信号在不同频率上的能量分布情况,通过观察频谱的幅度和相位,可以得到信号的频率成分、频带宽度和频率特性等信息。
在离散时间系统频域分析中,常用的分析工具有频谱图、功率谱密度、频率响应等。
频谱图可以将信号的频谱以图形形式展示出来,通过观察频谱图的形状和分布,可以得到信号在频域上的特点。
功率谱密度是指信号在不同频率上的功率分布情况,可以评估信号在不同频率上的能量分布情况。
频率响应是指系统对不同频率信号的响应情况,可以评估系统对不同频率信号的滤波和增益特性。
离散时间系统频域分析的应用包括信号处理、通信系统、控制系统等领域。
在信号处理中,通过频域分析可以对信号进行滤波、去噪、频域变换等操作,提高信号的质量和分析能力。
在通信系统中,通过频域分析可以评估信号传输和接收的性能,并对系统进行优化和改进。
在控制系统中,通过频域分析可以评估系统的稳定性和控制特性,提高系统的响应速度和稳定性。
7-6 离散系统的动态性能分析线性定常离散系统的动态性能分析方法:时域法 ,根轨迹法, 频域法本节主要内容(1)在时域中求取离散系统的时间响应,指出采样器和保持器对系统动态性能的影响。
(2)在z平面上离散系统闭环极点与其动态性能之间的关系。
(3)离散系统的根轨迹分析(讲义没有,增加的)一.离散系统的时间响应及性能指标● 分析系统动态性能时,通常假定外作用输入为单位阶跃函数)(1t 。
● 如果可以求出离散系统的闭环脉冲传递函数由)(/)()(z R z C z =φ, 输入为单位阶跃函数)1/()(-=z z z R ,则系统输出的z 变换函数)(1)(z z z z C φ-= ● 通过z 反变换,可以求出输出信号的脉冲序列)(*t c。
● )(*t c 代表线性定常离散系统在单位阶跃输入作用下的响应过程。
● 离散系统时域指标的定义与连续系统相同。
● 根据单位阶跃响应)(*t c 可以方便地分析离散系统的动态性能。
例7-28 设有零阶保持器的离散系统如图7-41所示,其中)(1)(t t r =,s T 1=,1=K 。
试分析该系统的动态性能。
(注Word 与PPT 中编号不同) 解 先求开环脉冲传递函数)(z G 。
因为)1()1(1)(2s e s s s G --+= 对上式z 变换,可得 ])1(1[)1()(21+-=-s s Z z Z G查z 变换表,求出 )368.0)(1(264.0368.0)(--+=z z z Z G 再求闭环脉冲传递函数632.0264.0368.0)(1)()(2+-+=+=z z z z G z G z φ 单位阶跃输入时:321632.0632.121264.0368.0)()()(----+-+==zz z z z R z z C φ 展开得:+++++++++=---------887654321868.0868.0802.0895.0147.14.14.1368.0)(z z z z zz z z z z C 由上式求得系统在单位阶跃作用下的输出序列)(nT c 为:单位阶跃响应曲线:根据,...)2,1,0)((=n nT c 数值,绘图所示。
实验二离散控制系统的性能分析(时域/频域)一、实验目的1.掌握离散闭环系统的动态性能时域参数的分析与计算方法;2.掌握离散系统稳定性的频域典型参数分析与计算方法。
二、实验工具1.MATLAB 软件(6.5 以上版本);2.每人计算机一台。
三、实验内容1.在 Matlab 语言平台上,通过给定的闭环离散系统,深刻理解时域参数的物理意义与计算方法,内容包括如下:●阻尼比参数分析:Z 平面与 S 平面的极点相互转换编程实现;分析 S/Z 两个平面域特殊特性(水平线、垂直线、斜线、圆周等)的极点轨迹相互映射方法;系统阶跃响应参数:上升时间和超调量等。
2.采用频域分析方法,通过编程计算,进一步理解离散系统的稳定性参数,包括如下:●通过幅频图,进行增益裕度分析;●通过相频图,进行相位裕度分析。
四、实验步骤1.阻尼比计算注释:Example 1 Damping ratio computationts=0.1;gp=tf(1,[1 1 0])gz=c2d(gp,ts,'zoh')kz=tf(5*[1,-0.9],[1 -0.7],ts);sys_ta=feedback(gz*kz,1,-1)p=pole(sys_ta)- 2 -radii=abs(p);angl=angle(p)damp(sys_ta)real_s=log(radii)/tsimg_s=angl/tszeta=cos(atan(-img_s./real_s))wn=sqrt(real_s.^2+img_s.^2)运行结果:2.水平 S 平面线到 z 平面的映射注释:Example 2 Mapping of horizontal s-plane line to z-planexx=[0:0.05:1]'N=length(xx)s0=-xx*35;s=s0*[1 1 1 1 1]+j*ones(N,1)*[0,0.25,0.5,0.75,1]*pi/tsplot(real(s(:,1)),imag(s(:,1)),'-o',real(s(:,2)),imag(s(:,2)),'-s',... real(s(:,3)),imag(s(:,3)),'-^',real(s(:,4)),imag(s(:,4)),'-*',...real(s(:,5)),imag(s(:,5)),'-v'),sgridz=exp(s*ts)plot(real(z(:,1)),imag(z(:,1)),'-o',real(z(:,2)),imag(z(:,2)),'-s',... real(z(:,3)),imag(z(:,3)),'-^',real(z(:,4)),imag(z(:,4)),'-*',...real(z(:,5)),imag(z(:,5)),'-v'),zgrid3.垂直 S 平面线到 z 平面的映射注释:Example 3 Mapping of vertical s-plane line to z-planes0=j*xx*pi/ts;s=ones(N,1)*[0,-5,-10,-20,-30]+s0*[1 1 1 1 1]plot(real(s(:,1)),imag(s(:,1)),'-o',real(s(:,2)),imag(s(:,2)),'-s',...real(s(:,3)),imag(s(:,3)),'-^',real(s(:,4)),imag(s(:,4)),'-*',...real(s(:,5)),imag(s(:,5)),'-v'),sgridz=exp(s*ts)plot(real(z(:,1)),imag(z(:,1)),'-o',real(z(:,2)),imag(z(:,2)),'-s',...real(z(:,3)),imag(z(:,3)),'-^',real(z(:,4)),imag(z(:,4)),'-*',...real(z(:,5)),imag(z(:,5)),'-v'),zgrid4.恒定阻尼比 S 平面线映射到 z 平面注释:Example 4 Mapping of constant damping ratio s-plane lines into z-plane s=s0*[1 1 1 1]-imag(s0)*[0,1/tan(67.5*pi/180),...1/tan(45*pi/180),1/tan(22.5*pi/180)]s=[s,real(s(:,4))];plot(real(s(:,1)),imag(s(:,1)),'-o',real(s(:,2)),imag(s(:,2)),'-s',...real(s(:,3)),imag(s(:,3)),'-^',real(s(:,4)),imag(s(:,4)),'-*',...real(s(:,5)),imag(s(:,5)),'-v'),sgridz=exp(s*ts)plot(real(z(:,1)),imag(z(:,1)),'-o',real(z(:,2)),imag(z(:,2)),'-s',...real(z(:,3)),imag(z(:,3)),'-^',real(z(:,4)),imag(z(:,4)),'-*',...real(z(:,5)),imag(z(:,5)),'-v'),zgrid5.将圆 s 平面线映射到 z 平面注释:Example 5 Mapping of circle s-plane line to z-planephi=xx*pi/2s0=(pi/ts)*(-cos(phi)+j*sin(phi))s=s0*[1,0.75,0.5,0.25,0]plot(real(s(:,1)),imag(s(:,1)),'-o',real(s(:,2)),imag(s(:,2)),'-s',... real(s(:,3)),imag(s(:,3)),'-^',real(s(:,4)),imag(s(:,4)),'-*',...real(s(:,5)),imag(s(:,5)),'-v'),sgridz=exp(s*ts)plot(real(z(:,1)),imag(z(:,1)),'-o',real(z(:,2)),imag(z(:,2)),'-s',... real(z(:,3)),imag(z(:,3)),'-^',real(z(:,4)),imag(z(:,4)),'-*',...real(z(:,5)),imag(z(:,5)),'-v'),zgrid6.阶跃响应注释:Example 6 Step response measurek=[0:1:60];step(sys_ta,k*ts);7.根轨迹注释:Example 7 Root-locus analysisrlocus(gz*kz)Amplitude;注释:Example 8 Root-locus analysis in page 56 numg=[1 0.5];deng=conv([1 -0.5 0],[1 -1 0.5]);sys_z=tf(numg,deng,-1)rlocus(sys_z)注释:Example 9 Root-locus analysis in page 57numg=[1];deng=[1 4 0];ts=0.25sys_s2=tf(numg,deng)sys_z2=c2d(sys_s2,ts,'imp')rlocus(sys_z2)8.频率响应注释:Example 10 Analysis of frequency response and roots locus in page 59 a=1.583e-7;k=[1e7,6.32e6,1.65e6];w1=-1;w2=1;ts=0.1;v=logspace(w1,w2,100);deng=[1.638 1 0];numg1=k(1,1)*a*[-1 1]numg2=k(1,2)*a*[-1 1]numg3=k(1,3)*a*[-1 1]sys_s1=tf(numg1,deng)sys_s2=tf(numg2,deng)sys_s3=tf(numg3,deng)bode(sys_s1,sys_s2,sys_s3,v),grid onnumg=1.2e-7*[1 1]deng=conv([1 -1],[1 -0.242]);sys_z2=tf(numg,deng,ts)rlocus(sys_z2),grid on五、实验思考1. S 平面与 Z 平面不同位置的映射关系分析s平面虚轴的映射s平面整个虚轴映射为z平面单位圆,左半平面任一点映射在z平面单位圆内,右半平面任一点映射在单位圆外。
离散控制系统的稳定性分析与设计方法离散控制系统的稳定性是控制工程中一个非常重要的概念,它涉及到系统的可靠性和性能。
本文将介绍离散控制系统的稳定性分析与设计方法,并讨论如何确保系统的稳定性。
一、稳定性分析离散控制系统的稳定性分析是通过对系统传递函数进行分析来确定系统是否稳定。
常用的稳定性判据有两种:时域方法和频域方法。
1. 时域方法时域方法是通过分析系统的时域响应来确定系统的稳定性。
具体方法有零极点判据和步响应法。
零极点判据是通过确定系统传递函数的零点和极点位置来判断系统的稳定性。
一般来说,当系统的所有极点都位于单位圆内部时,系统是稳定的。
步响应法通过观察系统的步响应图来判断系统的稳定性。
当系统的步响应图趋于稳定状态并在有限时间内收敛到稳定值时,系统是稳定的。
2. 频域方法频域方法是通过分析系统的频率特性来确定系统的稳定性。
常用的频域方法有Nyquist判据和Bode图法。
Nyquist判据是通过绘制系统的Nyquist图来判断系统的稳定性。
当系统的Nyquist图不通过虚轴右半平面时,系统是稳定的。
Bode图法是通过绘制系统的Bode图来判断系统的稳定性。
当系统的幅频特性曲线和相频特性曲线满足一定条件时,系统是稳定的。
二、稳定性设计稳定性设计是通过设计控制器的参数来确保系统的稳定性。
通常有两种常见的设计方法:根轨迹法和PID控制器。
1. 根轨迹法根轨迹法是通过绘制根轨迹图来设计控制器的参数。
根轨迹图可以直观地显示系统的稳定性和性能。
设计过程中,可以根据系统的要求来调整控制器的参数,使得系统的根轨迹满足要求。
2. PID控制器PID控制器是一种常用的控制器,它包括比例、积分和微分三个部分。
PID控制器的设计可以根据系统的特性和需求来确定各个参数的取值。
比例部分可以控制系统的静态误差,积分部分可以消除系统的稳态误差,微分部分可以提高系统的动态响应。
通过合理地调整PID控制器的参数,可以实现系统的快速响应和稳定性。
离散控制系统的稳定性分析离散控制系统是一种由离散时间事件驱动的系统,它在控制工程中起着重要的作用。
稳定性分析是离散控制系统设计中的关键步骤,它可以帮助我们确定系统是否能够保持在稳定状态,并达到预期的控制效果。
本文将讨论离散控制系统的稳定性分析方法和应用。
1. 离散控制系统概述离散控制系统是一种以时序离散的方式进行操作和控制的系统。
它由输入、输出和状态三个主要部分组成。
其中,输入是指系统接收来自外部的信号或信息,输出是指系统作为响应产生的结果,状态是指系统在运行过程中的内在特征。
2. 稳定性的概念和分类稳定性是指系统在输入变化或干扰下是否能够保持有限范围内的响应。
离散控制系统的稳定性可以分为绝对稳定性和相对稳定性两种情况。
绝对稳定性:系统在任何情况下都能保持有限范围内的响应,不会出现不受控制或不可预测的振荡或失控现象。
相对稳定性:系统在特定条件下能够保持有限范围内的响应,但可能受到输入变化或干扰的影响而出现逐渐增大的响应。
3. 稳定性分析方法离散控制系统的稳定性分析可以使用多种方法,以下是几种常用的方法:3.1 传递函数法传递函数是离散控制系统中描述输入输出关系的数学模型。
通过将系统表示为传递函数的形式,可以使用极点、零点、阶跃响应等特征来分析系统的稳定性。
例如,当系统的所有极点都位于单位圆内时,系统是稳定的。
3.2 极坐标法极坐标法是一种绘制离散控制系统零极点的图形方法。
通过绘制零极点在单位圆上的位置,可以直观地判断系统的稳定性。
如果所有极点都位于单位圆内,系统是稳定的。
3.3 稳定性判据法稳定性判据法是一种通过计算系统的稳定性判据来判断系统的稳定性的方法。
常用的稳定性判据包括李雅普诺夫稳定性判据、M行列稳定性判据等。
这些判据可以通过计算系统的特征值或特征向量来得到。
4. 稳定性分析的应用稳定性分析在离散控制系统设计和调试过程中有着广泛的应用。
它可以帮助工程师确定系统参数,设计合适的控制策略,并提供有效的故障诊断方法。
离散控制系统的时域和频域分析方法离散控制系统是一种常见的控制系统形式,它在许多工程领域都有广泛的应用。
为了实现对离散控制系统的性能评估和优化设计,需要对其进行时域和频域分析。
本文将介绍离散控制系统的时域和频域分析方法。
一、时域分析方法时域分析是通过观察离散时间系统的时间响应来研究系统的动态特性。
常用的时域分析方法有以下几种:1. 单位脉冲响应(Unit Pulse Response)分析法单位脉冲响应分析法是通过在离散控制系统输入单位脉冲信号,观察系统的输出响应来研究系统的特性。
该方法可以获取系统的脉冲响应序列,从而了解系统的时域特性,如系统的阶数、稳定性等。
2. 阶跃响应(Step Response)分析法阶跃响应分析法是通过在离散控制系统输入阶跃信号,观察系统的输出响应来研究系统的特性。
通过分析系统的阶跃响应曲线,可以获得系统的响应时间、超调量等重要参数,从而评估系统的性能。
3. 差分方程分析法差分方程分析法是通过建立离散时间系统的差分方程,利用数学方法求解系统的时间响应。
通过分析差分方程的解析解或数值解,可以获取系统的时域响应,进一步研究系统的动态行为。
二、频域分析方法频域分析是通过研究离散控制系统在频域上的特性,如频率响应、幅频特性等,来评估系统的稳定性和性能。
以下是常用的频域分析方法:1. Z变换法Z变换是一种广泛应用于离散时间系统的频域分析方法。
通过对系统的差分方程进行Z变换,可以获得系统的传递函数,进而分析系统的稳定性、幅频特性等。
2. 频谱分析法频谱分析法是通过对离散信号的频谱进行分析,了解系统在频率域上的特性。
常用的频谱分析方法有傅里叶变换、快速傅里叶变换等,通过分析系统的频谱图,可以获取系统的频率响应、主要频率成分等信息。
3. Bode图法Bode图法是一种常用的频域分析方法,用于分析系统的幅频特性和相频特性。
通过绘制系统的幅频特性曲线和相频特性曲线,可以直观地评估系统的频率响应和稳定性。
离散控制系统的稳定性分析方法离散控制系统是指系统状态的变化是以离散的方式进行的控制系统。
在实际工程中,我们经常需要对离散控制系统进行稳定性分析,以确保系统的可靠性和正常工作。
本文将介绍几种常用的离散控制系统的稳定性分析方法。
一、特征方程法特征方程法是离散控制系统稳定性分析中使用最广泛的方法之一。
特征方程反映了离散系统的稳态响应特性。
对于一个线性离散控制系统,其特征方程可以通过以下公式表示:G(z) = N(z)/D(z)其中,N(z)和D(z)分别是分子和分母多项式。
为了分析系统的稳定性,我们需要求解特征方程的根。
通常情况下,离散系统稳定的充要条件是特征方程的所有根的模都小于1。
二、相位平面法相位平面法是另一种常用的离散控制系统稳定性分析方法。
通过绘制系统的相位平面图,我们可以直观地了解系统的稳定性。
相位平面图以根轨迹的形式表示,根轨迹是特征方程的根随着参数的改变而移动的轨迹。
相位平面图的绘制过程可以通过以下步骤完成:1. 根据特征方程,将根轨迹的初始点和终点确定在单位圆上;2. 根据特征方程的根的个数,确定根轨迹的曲线走向;3. 绘制根轨迹,并观察根轨迹与单位圆的交点。
通过相位平面法,我们可以直观地判断系统的稳定性。
当根轨迹上的点都位于单位圆内部时,系统为稳定。
而当根轨迹上的点位于单位圆外部时,系统为不稳定。
三、频域法频域法是利用频率响应函数来分析系统稳定性的方法。
频率响应函数是指在系统输入为正弦信号时,输出的幅值和相位与输入频率之间的关系。
常用的频域法包括傅里叶变换法、拉普拉斯变换法等。
在频域法中,我们可以通过绘制系统的频率响应曲线来分析系统的稳定性。
通常情况下,稳定的离散控制系统的频率响应曲线在低频段有较大的增益,而在高频段有较小的增益。
综上所述,离散控制系统的稳定性分析方法包括特征方程法、相位平面法和频域法等。
不同的方法适用于不同的系统,我们可以根据实际需求选择合适的方法进行分析。
通过稳定性分析,我们可以确保离散控制系统的可靠性和正常运行。
实验二离散控制系统分析方法
一、实验目的
利用MATLAB对各种离散控制系统进行时域分析。
二、实验指导
1.控制系统的稳定性分析
由前面章节学习的内容可知,对线性系统而言,如果一个连续系统的所有极点都位于s平面的左半平面,则该系统是一个稳定系统。
对离散系统而言,如果一个系统的全部极点都位于z平面的单位圆内部,则该系统是一个稳定系统。
一个连续的稳定系统,如果所有的零点都位于s平面的左半平面,即所有零点的实部小于零,则该系统是一个最小相位系统。
一个离散的稳定系统,如果所有零点都位于z平面的单位圆内,则称该系统是一个最小相位系统。
由于Matlab提供了函数可以直接求出控制系统的零极点,所以使用Matlab判断一个系统是否为最小相位系统的工作就变得十分简单。
2.控制系统的时域分析
时域分析是直接在时间域对系统进行分析。
它是在一定输入作用下,求得输出量的时域表达式,从而分析系统的稳定性、动态性能和稳态误差。
这是一种既直观又准确的方法。
Matlab提供了大量对控制系统的时域特征进行分析的函数,适用于用传递函数表示的模型。
其中常用的函数列入表1,供学生参考。
例1.z z z H 5.05.1)(2+=
试绘出其单位阶跃响应及单位斜波输入响应。
解:为求其单位阶跃响应及单位斜波输入响应,编制程序如下: num=[1.5];
den=[1 0.5 0];sysd=tf(num,den,0.1) [y,t,x]=step(sysd); subplot(1,2,1) plot(t,y);
xlabel('Time-Sec'); ylabel('y(t)');
gtext('单位阶跃响应') grid;
u=0:0.1:1; subplot(1,2,2)
[y1,x]=dlsim(num,den,u); plot(u,y1)
xlabel('Time-Sec'); ylabel('y(t)');
gtext('单位速度响应') grid
二、 实验内容
1、MATLAB 在离散系统的分析应用
对于下图所示的计算机控制系统结构图1,已知系统采样周期为T=0.1s ,被
控对象的传递函数为
2
()
s(0.11)(0.05s1)
G s
s
=
++
,数字控制器
0.36
()
0.98
z
D z
z
-
=
+
,试
求该系统的闭环脉冲传递函数和单位阶跃响应。
图1 计算机控制系统结构图
实验步骤:
1).求解开环脉冲传递函数,运用下面的matlab语句实现:>> T=0.1;
>> sys=tf([2],[0.005 0.15 1 0]); %将传函分母展开
>> sys1=c2d(sys,T,'zoh');
>> sys2=tf([1 -0.36],[1 0.98],0.1);
>> sys3=series(sys2,sys1)
执行语句后,屏幕上显示系统的开环脉冲传递函数为:
sys3 =
0.03362 z^3 + 0.05605 z^2 - 0.01699 z - 0.002717
-------------------------------------------------- z^4 - 0.5232 z^3 - 0.9201 z^2 + 0.4922 z - 0.04879
Sample time: 0.1 seconds
2).求其闭环脉冲传递函数,可以输入下列matlab语句来实现:
>> sys4=tf([1]);
>> sys5=feedback(sys3,sys4,-1)
执行语句后,会显示系统的开环脉冲传递函数为:
sys5 =
0.03362 z^3 + 0.05605 z^2 - 0.01699 z - 0.002717
--------------------------------------------------
z^4 - 0.4896 z^3 - 0.8641 z^2 + 0.4752 z - 0.05151
Sample time: 0.1 seconds
3).最后可用下列命令绘制该离散系统的单位阶跃响应,其结果如图所示:>> step(sys5)
离散系统的单位阶跃响应曲线为:
4).还可以绘制该离散系统的单位脉冲响应,其结果如图所示:>> impulse(sys5)
实验结果:
2、SIMULINK在离散系统的分析应用
所给的离散系统的Simulink仿真模型如图2所示,在建立的仿真模型中,设置数字控制器和零阶保持器的采样时间为0.1s。
运行仿真模型就可以获得系统的单位阶跃响应,该离散系统的单位阶跃响应曲线,如图3。
图2 系统的单位阶跃响应Simulink仿真模型
图3 离散系统的单位阶跃响应曲线
图4 系统的单位脉冲响应Simulink仿真模型设置脉冲输入参数如下:
图5 离散系统的单位脉冲响应曲线实验结果:
问题分析:在实验的过程中,由于对matlab软件熟练度不足和对软件某些认识上的不足,使得程序在运行过程中出现了许多差错,而对专业知识理解的不到位,使得软件实践和理论知识之间产生了隔阂。
最后在老师和同学的帮助下,最终完成了实验,得到了满意的结果和正确的答案。
希望自己将来在matlab的学习与应用中取得进步,感谢老师的教导和帮助!。