三视图与直观图(习题)
- 格式:doc
- 大小:141.50 KB
- 文档页数:5
高三数学空间几何体的三视图与直观图试题答案及解析1.一个多面体的三视图如图所示,则该多面体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V正方体-2V棱锥侧2×2×2−2×.故选:A.【考点】三视图求解几何体的体积.2.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..3.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图,知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.长方体中EH=4,HG=4,GK=5,所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π,选A.4.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.5.一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()【答案】C【解析】依题意可知该几何体的直观图如图所示,故其俯视图应为C.6.某几何体的三视图如图所示,则该几何体的体积为A.12B.18C.24D.30【答案】C【解析】由三视图可知该几何体是一个底面为直角三角形的直三棱柱的一部分,其直观图如上图所示,其中,侧面是矩形,其余两个侧面是直角梯形,由于,平面平面,所以平面,所以几何体的体积为:故选C.【考点】1、空间几何体的三视图;2、空间几何体的体积.7.一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径,则,故选B.【考点】三视图内切圆球三棱柱8. [2013·四川高考]一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由正视图和侧视图可知,该几何体不可能是圆柱,排除选项C;又由俯视图可知,该几何体不可能是棱柱或棱台,排除选项A、B.故选D.9.[2013·宁波质检]如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.2B.C.2D.4【答案】A【解析】由题意可知,该三棱柱的侧视图应为矩形,如图所示.在该矩形中,MM1=CC1=2,CM=C1M1=·AB=.所以侧视图的面积为S=2.10.某几何体的三视图如图所示,则该几何体的体积的最大值为 .【答案】【解析】该几何体是类似墙角的三棱锥,假设一条直角的棱长为x,则三条直角棱长分别为.所以体积为.当且仅当时取等号.【考点】1.三视图.2.函数最值问题.3.空间想象能力.11.(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π【答案】C【解析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C12. (2014·咸宁模拟)某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π. 13.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为【答案】D【解析】条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的。
高三数学空间几何体的三视图与直观图试题答案及解析1.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为.【答案】2.【解析】由已知几何体的视图可知,几何体为四棱锥,其中SA垂直于平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,所以四棱锥的体积为【考点】三视图求几何体的体积.2.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.B.C.D.【答案】B【解析】由三视图知,原几何体是由一个长方体与一个三棱柱组成,其体积为,故选B.【考点】根据三视图还原几何体,求原几何体的体积,容易题.3.若某多面体的三视图(单位: cm)如图所示, 则此多面体的体积是()A.cm3B.cm3C.cm3D.cm3【答案】C【解析】由三视图可得,该几何体相当于一个正方体切去一个三个侧棱长为1的三棱锥.所以该几何体的体积为.故选C.【考点】1.三视图.2.空间想象力.3.几何体的体积.4. (2014·孝感模拟)一个几何体的三视图如图所示,其中俯视图与侧视图均为半径是2的圆,则这个几何体的表面积是( )A.16πB.14πC.12πD.8π【答案】A【解析】由三视图可知,该几何体是球挖去半球.其中两个半圆的面积为π×22=4π.个球的表面积为×4π×22=12π,所以这个几何体的表面积是12π+4π=16π.5.如图,某几何体的三视图都是等腰直角三角形,则几何体的体积是()A.8B.7C.9D.6【答案】C【解析】由三视图可知,几何体是底面为等腰直角三角形,有一侧棱与底面垂直(垂足在非直角处)的三棱锥,其底面面积为×6×3=9,三棱锥的高为3,所以三棱锥的体积=×9×3=9.6.已知某几何体的三视图(如图),正视图和侧视图均为两个相等的等边三角形,府视图为正方形,则几何体的体积为()A.B.4C.9D.9【答案】C【解析】由三视图可知,几何体由两个同底之正四棱锥组成所以其体积为V=2××32×3×=9 7.一空间几何体的三视图如图所示,该几何体的体积为12π+,则正视图中x的值为( )A.5B.4C.3D.2【答案】C【解析】三视图,由正四棱锥和圆柱组成,故选C.8.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A.1B.2C.3D.4【答案】B【解析】由题意,棱锥的高为,底面面积为,∴.【考点】三视图,体积.9.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为()A.1B.C.D.【答案】C【解析】这是由两个三棱锥拼成的几何体,其体积为.选C.【考点】三视图及几何体的体积.10.―个几何体的三视图如图所示(单位:),则该几何体的体积为.【答案】18+9【解析】由三视图可知,此几何体为两个相切的球上方放了一个长方体组成的组合体,所以其体积为:V=3×6×1+2××=18+911.一个空间几何体的三视图如图所示,该几何体的表面积为__________.【答案】152【解析】几何体为一个三棱柱,底面为一个等腰三角形,底边长为6,底边上高为4,腰长为5.棱柱的高为8.因此表面积为【考点】三视图12.某三棱锥的三视图如图所示,则这个三棱锥的体积为;表面积为.【答案】;.【解析】由三视图知几何体如下图,为一个三棱锥,且三棱锥的一个侧面与底面垂直,底面三角形的一条边长为,该边上的高为,∴几何体的体积.它的表面积为.【考点】由三视图求面积、体积.13.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是_______.【答案】【解析】由题意可得该几何体是一个三棱锥,体积.【考点】1.三视图的知识.2.立几中的线面关系.3.三棱锥的体积公式.14.一个空间几何体的三视图如图所示,其正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,则这个几何体的体积是【答案】【解析】由三视图,可知该几何体是三棱锥,并且侧棱,,,则该三棱锥的高是,底面三角形是直角三角形,所以这个几何体的体积==.【考点】由三视图求几何体的体积.15.一个几何体的三视图如图所示,则该机合体的体积为( )A.B.C.D.【答案】B【解析】分析可得该几何体是底面为菱形的四棱锥,则高底面面积,所以.故选B【考点】三视图四棱锥体积16.一个几何体的三视图如图所示,则该几何体的体积是【答案】【解析】通过三视图的观察可得,该几何体是一个四棱柱,底面是一个直角梯形,其上下底分别为2,3,梯形的高为2.四棱柱的高为2.所以几何体的体积为.【考点】1.三视图的知识.2.几何体的体积.3.空间想象力.17.某长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4B.4C.6D.8【答案】D【解析】割补可得其体积为2×2×2=8.18.某几何体的三视图如图所示,则该几何体的体积是________.【答案】16π-16【解析】由三视图知,该几何体是由一个底面半径为2,高为4的圆柱内挖去一个底面边长为2,高为4的正四棱柱后剩下的部分,∴V=(π×22-22)×4=16π-16.19.已知正方体ABCD-A1B1C1D1,M为棱A1B1的中点,N为棱A1D1的中点.如图是该正方体被M,N,A所确定的平面和N,D,C1所确定的平面截去两个角后所得的几何体,则这个几何体的正视图为().【答案】B【解析】对于选项A,由于只是截去了两个角,此切割不可能使得正视图成为梯形.故A不对;对于B,正视图是正方形符合题意,线段AM的影子是一个实线段,相对面上的线段DC1的投影是正方形的对角线,由于从正面看不到,故应作成虚线,故选项B正确;对于C,正视图是正方形,符合题意,有两条实线存在于正面不符合实物图的结构,故不对;对于D,正视图是正方形,符合题意,其中的两条实线符合俯视图的特征,故D不对.20.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则该棱柱的体积为()A.B.C.D.6【答案】B【解析】由三视图知该直三棱柱高为4,底面正三角形的高为3,所以正三角形边长为6,所以V=×36×4=36.故选B.【考点】1.三视图;2.柱体体积计算.21.某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为的扇形,则该几何体的体积为()A.B.C.D.【答案】D【解析】由题意知道,该几何体体积是圆柱体积的,即.【考点】1、三视图;2、几何体体积.22.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A.B.C.D.【答案】B【解析】由三视图可得该几何体是一个圆台,其两底直径分别为2和4,母线长为4,所以该几何体的侧面积是,选B..【考点】三视图,圆台的侧面积.23.如图是一个组合几何体的三视图,则该几何体的体积是 .A.B.C.D.【答案】A【解析】由三视图还原可知该几何体是一个组合体,下面是一个半径为4,高为8的圆柱,,上面是一个三棱柱,故所求体积为.【考点】三视图,圆柱、三棱柱的体积公式.24.已知一个几何体的三视图如图所示,则该几何体的体积为___________【答案】【解析】该几何体为圆柱中挖去半个球而得的组合体,其体积为.【考点】三视图.25.一个几何体的三视图如图所示(单位长度:),俯视图中圆与四边形相切,且该几何体的体积为,则该几何体的高为 .【答案】【解析】由如图所示的几何体的三视图知:这个几何体是一个半径为的球和一个直四棱柱的结合体,且这个直四棱柱的底面是对角线分别为和的棱形,这个直四棱柱的高为,∴这个几何体的体积:V=,解得h=.【考点】1.三视图;2.几何体的面积和体积26.一个几何体的三视图如图所示,则该几何体的直观图可以是()【答案】D【解析】通过三视图的俯视图可知,该几何体是由两个旋转体组成,故选D.【考点】1.三视图的应用.27.如图为一个几何体的三视图正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图所示,则该几何体的表面积为()A.B.C.D.【答案】D【解析】由三视图可知,这是一个由半个圆柱和一个三棱柱构成的组合体,这个组合体仍为一个柱体。
必修2 第一章空间几何体的三视图与直观图制卷:王小凤学生姓名一.选择题本大题共12小题,每小题5分,共60分.1.(2012湖南)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()2.在斜二测画法的规则下,下列结论正确的是()A.角的水平放置的直观图不一定是角B.相等的角在直观图中仍然相等C.相等的线段在直观图中仍然相等D.若两条线段平行,且相等,则在直观图中对应的两条线段仍然平行且相等3.(2012福建)一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱4.一梯形的直观图是一个如图所示的等腰梯形,且该梯形面积为2,则原梯形的面积为()A.2B. 2C.2 2D.45.(2013江西)一几何体的三视图如图所示,则该几何体的体积为( )A.200+9πB.200+18πC.140+9πD.140+18π6.(2012广东)某几何体的三视图如图所示,它的体积为()(第7题)(第6题)A.12πB.45πC.57πD.81π7.(2012湖北)已知某几何体的三视图如图所示,则该几何体的体积为()A.8π3B.3πC.10π3D.6π8.(2011北京)某四棱锥的三视图如图所示,该四棱锥的表面积是()A.32 B.16+162C.48 D.16+322(第8题)(第9题)9.(2011陕西)某几何体的三视图如图所示,则它的体积是()A.283π-B.83π-C.82π-D.23π55655565正视图侧视图俯视图俯视图侧视图2正视图42 421210.(2013重庆)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240 11.(2013辽宁)某几何体的三视图如图所示,则该几何体的体积是( )A .816π-B .1616π-C .168π-D .6416π-12.(2013北京)某四棱锥的三视图如图所示,该四棱锥的体积为( ).A .3B .6C .9D .12二.填空题:本大题共5小题,每小题8分,共40分.13.(2011上海)若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形, 则该圆锥的侧面积是。
高三数学空间几何体的三视图与直观图试题1.若一个四棱锥的三视图如图所示,其中正视图与侧视图都是边长为2的等边三角形,则该四棱锥的四条侧棱长之和等于_____________【答案】【解析】由三视图可知该四棱锥的四个侧面是底边长为2,高为2的全等的等腰三角形,所以每条侧棱长都等于,所以四条侧棱长之和为.【考点】三视图.2.已知某几何体的三视图如图所示,则该几何体的表面积等于________.【答案】【解析】据三视图可知,该几何体是一个正方体(棱长为2)去掉一角(左前上角)而得,直观图如图所示,其中DA=DB=DC=1,∴△ABC是边长为的等边三角形,∴其表面积为S=6×22-3××12+×()2×=.3.一个多面体的直观图及三视图如图所示:(其中M、N分别是AF、BC的中点)(1)求证:MN∥平面CDEF;(2)求多面体A-CDEF的体积.【答案】(1)见解析(2)【解析】解:由三视图可知,AB=BC=BF=2,DE=CF=2,∠CBF=.(1)证明:取BF的中点G,连接MG、NG,由M、N分别为AF、BC的中点可得,NG∥CF,MG∥EF,∴平面MNG∥平面CDEF,又MN⊂平面MNG,∴MN∥平面CDEF.(2)取DE的中点H.∵AD=AE,∴AH⊥DE,在直三棱柱ADE-BCF中,平面ADE⊥平面CDEF,平面ADE∩平面CDEF=DE.∴AH⊥平面CDEF.∴多面体A-CDEF是以AH为高,以矩形CDEF为底面的棱锥,在△ADE中,AH=.S矩形=DE·EF=4,CDEF∴棱锥A-CDEF的体积为V=·S·AH=×4×=.矩形CDEF4.一个几何体的主视图和俯视图如图所示,主视图是边长为的正三角形,俯视图是边长为的正六边形,则该几何体左视图的面积是【答案】【解析】左视图的面积为.【考点】三视图.5.一空间几何体的三视图如图所示,该几何体的体积为12π+,则正视图中x的值为( )A.5B.4C.3D.2【答案】C【解析】三视图,由正四棱锥和圆柱组成,故选C.6.三棱柱的直观图和三视图如下图所示,其侧视图为正三角形(单位cm)⑴当x=4时,求几何体的侧面积和体积⑵当x取何值时,直线AB1与平面BB1C1C和平面A1B1C1所成角大小相等。
高三数学空间几何体的三视图与直观图试题答案及解析1.某几何体的三视图如图所示,则该几何体的体积是()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是圆锥的四分之一,其底半径为,高为,所以其体积为,故选.【考点】1.三视图;2.几何体的体积.2.若某三棱柱截去一个三棱锥后所剩几何体的三视图如下图所示,则此几何体的体积等于()A.B.C.D.【答案】C【解析】由三视图可知,空间几体体的直观图如下图所示:所求几何体的体积故选C.【考点】1、三视图;2、空间几何体的体积.3.如图,一个几何体的三视图(正视图、侧视图和俯视图)为两个等腰直角三角形和一个边长为1的正方形,则其外接球的表面积为A.πB.2πC.3πD.4π【答案】C【解析】原几何体为有一条侧棱垂直于底面的四棱锥,且底面是边长为1的正方形,垂直于底面的侧棱长也为1,因此,该几何体可以补形为一个棱长为1的正方体,其外接球就是这个正方体的外接球,直径为正方体的对角线长,即2R=,故R=故外接球表面积为:4πR2=3π.【考点】三视图,几何体的外接球及其表面积4.如图所示,一个三棱锥的三视图是三个直角三角形(单位: cm),则该三棱锥的外接球的表面积为________cm2.【答案】29π【解析】从三棱锥的三视图可知,三棱锥有两侧面与底面垂直,把三棱锥补成长,宽,高分别为4,2,3的长方体,设外接球的半径为R,由42+22+32=4R2得,S=4πR2=29π(cm2).球5.某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4B.2C.D.8【答案】D【解析】由三视图可知,该几何体如图所示,其底面为正方形,正方形的边长为2.HD=3,BF =1,将相同的两个几何体放在一起,构成一个高为4的长方体,所以该几何体的体积为×2×2×4=8.6.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.7.一个几何体的三视图如图所示,已知这个几何体的体积为,= .【答案】【解析】由三视图知,原几何体是一个四棱锥,底面是面积为的矩形,高为,所以,解得.【考点】三视图,空间几何体的体积.8.如图,水平放置的正三棱柱的主视图是一边长为2的正方形,则该三棱柱的左视图的面积为.【答案】【解析】左视图为一个矩形,长宽分别为,因此面积为.【考点】三视图9.若一个正三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为() A.B.C.D.【答案】B【解析】依题意得,该正三棱柱的底面正三角形的边长为2,侧棱长为1.设该正三棱柱的外接球半径为R,易知该正三棱柱的底面正三角形的外接圆半径是2sin 60°×=,所以R2=+=,则该球的表面积为4πR2=.10.图中的网格是边长为1的小正方形,在其上用粗线画出了某多面体的三视图,则该多面体的体积为________.【答案】16【解析】从三视图可知,这是一个四棱锥,.【考点】三视图.11.如图所示,一个空间几何体的正视图和左视图都是边长为的正方形,俯视图是一个直径为的圆,那么这个几何体的体积为 ( )A.B.C.D.【答案】B【解析】几何体是圆柱,.【考点】三视图,圆柱的体积.12.一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的体积为( )A.1B.C.D.【答案】B【解析】由三视图可知,此几何体为三棱锥,如图,其中正视图为,是边长为2的正三角形,,且,底面为等腰直角三角形,,所以体积为,故选B.13.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.C.D.【答案】C【解析】由题意知,正视图的最大面积为对角面的面积,最小面积为,而,故选C.【考点】三视图.14.已知某几何体的三视图如右图所示,其中俯视图是圆,且该几何体的体积为;直径为2的球的体积为.则()A.B.C.D.【答案】C【解析】由题意,该几何体是一个圆柱挖去一个圆锥得到的几何体,,,∴.选B.【考点】三视图,体积.15.三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A.B.C.D.【答案】B【解析】过B作BD⊥AC于点D,则BD=2,CD=2,所以BC=,因为SC⊥平面ABC,所以SC⊥BC,所以SB=,故选B.【考点】三视图、直线与平面垂直的性质.16.一个几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是由一个半圆柱和一个三棱锥拼接而成,且半圆柱的底面是半径为的半圆,高为,其底面积为,故其体积为,三棱锥的底面是一个直角三角形,三棱锥的高也为,其底面积为,故其体积为,所以该几何体的体积为,故选A.【考点】1.三视图;2.组合体的体积17.右图为某几何体的三视图,则该几何体的体积为 .【答案】【解析】所求几何体为一个底面半径为1,高为1的圆柱与半径为1的四分之一的球的组合体,所以体积为【考点】三视图18.一个空间几何体的三视图如图所示,该几何体的体积为______.【答案】96【解析】几何体为一个三棱柱,底面为一个等腰三角形,底边长为6,底边上高为4,棱柱的高为8.因此所求体积为【考点】三视图19.把边长为1的正方形ABCD沿对角线BD折起,形成三棱锥C-ABD,它的主视图与俯视图如右上图所示,则二面角 C-AB-D的正切值为.【答案】【解析】如图所示,做BD,AB的中点分别为点E,F.则有CE面ABD,由于EF为等腰直角三角形ABD的中位线,故EF AB,则为二面角 C-AB-D的代表角,所以,故填.【考点】二面角三视图20.已知水平放置的△ABC的直观图△A′B′C′(斜二测画法)是边长为a的正三角形,则原△ABC 的面积为()A.a2B.a2C.a2D.a2【答案】D【解析】斜二测画法中原图面积与直观图面积之比为1∶,则易知S= ( a)2,∴S=a2.21.一个空间几何体的三视图如图所示,则该几何体的体积为()A.πcm3B.3πcm3C.πcm3D.πcm3【答案】D【解析】由三视图可知,此几何体为底面半径为1cm、高为3cm的圆柱上部去掉一个半径为1cm的半球,所以其体积为V=3π-π=π(cm 3).22. 右图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =AD =2EC =2.(1)请画出该几何体的三视图; (2)求四棱锥B-CEPD 的体积.【答案】(1)见解析 (2)2【解析】解:(1)该组合体的三视图如图所示.(2)∵PD ⊥平面ABCD , PD ⊂平面PDCE ,∴平面PDCE ⊥平面ABCD. ∵四边形ABCD 为正方形,∴BC ⊥CD ,且BC =DC =AD =2. 又∵平面PDCE∩平面ABCD =CD , BC ⊂平面ABCD. ∴BC ⊥平面PDCE.∵PD ⊥平面ABCD ,DC ⊂平面ABCD , ∴PD ⊥DC.又∵EC ∥PD ,PD =2,EC =1,∴四边形PDCE 为一个直角梯形,其面积: S 梯形PDCE = (PD +EC)·DC =×3×2=3, ∴四棱锥B-CEPD 的体积V B-CEPD =S 梯形PDCE ·BC =×3×2=2.23. 某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【答案】A【解析】将三视图还原成直观图为:上面是一个正四棱柱,下面是半个圆柱体.所以V=2×2×4+×22×π×4=16+8π.24.某几何体的三视图如图所示,则其体积为________.【答案】【解析】由三视图还原几何体为半个圆锥,高为2,底面半圆的半径r=1.∴体积V=×(π×12×2)=.25.如图所示为一个几何体的直观图、三视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形).(1)求四棱锥P-ABCD的体积;(2)若G为BC上的动点,求证:AE⊥PG.【答案】(1)(2)见解析【解析】(1)由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=4 ,BE=2 ,AB=4.∴VP-ABCD =PA·S四边形ABCD=×4 ×4×4=.(2)∵=,∠EBA=∠BAP=90°,∴△EBA∽△BAP,∴∠BEA=∠PBA.∴∠BEA+∠BAE=∠PBA+∠BAE=90°,∴PB⊥AE又∵BC⊥平面APEB,∴BC⊥AE.∵BC∩PB=B,∴AE⊥平面PBC.∵PG⊂平面PBC,∴AE⊥PG.26.如图所示,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为________.【答案】9【解析】由题意知,此几何体是三棱锥,其高h=3,相应底面面积为S=×6×3=9,∴V=Sh=×9×3=9.27.某几何体的三视图如图所示,主视图和侧视图为全等的直角梯形,俯视图为直角三角形.则该几何体的表面积为( )A. B. C. D【答案】B【解析】此几何体直观图如图所示。
1.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8答案 B解析 由三视图可知,此组合体是由半个圆柱与半个球体组合而成的,其表面积为πr 2+2πr 2+4r 2+2πr 2=20π+16,所以r =2,故选B.2.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15 答案 D解析 如图,不妨设正方体的棱长为1,则截去部分为三棱锥A -A 1B 1D 1,其体积为16,又正方体的体积为1,则剩余部分的体积为56,故所求比值为15.故选D.3.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A .6 2B .6C .4 2D .4 答案 B解析 如图所示的正方体ABCD -A 1B 1C 1D 1的棱长为4.取B 1B 的中点G ,即三棱锥G -CC 1D 1为满足要求的几何体,其中最长棱为D 1G ,D 1G =(42)2+22=6.4.在空间直角坐标系O -xyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,2).若S 1,S 2,S 3分别是三棱锥D -ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1答案 D解析 三棱锥D -ABC 如图所示. S 1=S △ABC =12×2×2=2, S 2=12×2×2=2, S 3=12×2×2=2, ∴S 2=S 3且S 1≠S 3,故选D.5.一几何体的直观图如图,下列给出的四个俯视图中正确的是( )答案 B解析 俯视图为在水平投射面上的正投影,结合几何体可知选B.6.某空间几何体的正视图是三角形,则该几何体不可能是( ) A .圆柱 B .圆锥 C .四面体 D .三棱柱 答案 A解析 因为圆锥、四面体、三棱柱的正视图均可以是三角形,而圆柱无论从哪个方向看均不可能是三角形,所以选A.7.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2D.616a 2答案 D解析 如图①、②所示的平面图形和直观图. 由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a , 在图②中作C ′D ′⊥A ′B ′于D ′, 则C ′D ′=22O ′C ′=68a .∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.8.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是( )A .等腰四棱锥的腰与底面所成的角都相等B .等腰四棱锥的侧面与底面所成的二面角都相等或互补C .等腰四棱锥的底面四边形必存在外接圆D .等腰四棱锥的各顶点必在同一球面上 答案 B解析 因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A ,C 正确,且在它的高上必能找到一点到各个顶点的距离相等,故D 正确,B 不正确,如底面是一个等腰梯形时结论就不成立,故选B.9.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1C.2 D.3答案 A解析①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;③不一定是.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.10.已知一三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()答案 C解析由已知条件得直观图如图所示,正视图是直角三角形,中间的线是看不见的线P A形成的投影,应为虚线.故选C.11.如图,三棱锥V-ABC的底面为正三角形,侧面VAC与底面垂直且VA=VC,已知其正视图的面积为23,则其侧视图的面积为()A.32 B.33C.34 D.36答案 B解析设三棱锥V-ABC的底面边长为a,侧面VAC边AC上的高为h,则ah=43,其侧视图是由底面三角形ABC边AC上的高与侧面三角形VAC边AC上的高组成的直角三角形,其面积为12×32×43=33,故选B.。
三视图练习
1.(三视图→直观图)下面是一些立体图形的三视图(如图),•请在括号内填上立体图形
的名称.
2.(平面展开图与直观图)下列图形都是几何体的平面展开图,你能说出这些几何体的名称?
3.(直观图→三视图)如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?
4.一天,小明的爸爸送给小明一个礼物,小明打开包装后画出它的主视图和俯视图如图所示.根据小明画的视图,你猜小明的爸爸送给小明的礼物是()
A.钢笔 B.生日蛋糕 C.光盘 D.一套衣服
5.一个几何体的主视图和左视图如图所示,它是什么几何体?请你补画出这个几何体的俯视图.
6.一个物体的三视图如图所示,试举例说明物体的形状.
7.已知一个几何体的三视图如图所示,则该几何体的直观图?
8.已知几何体的主视图和俯视图如图所示.
(1)画出该几何体的左视图;
(2)该几何体是几面体?它有多少条棱?多少个顶点?
(3)该几何体的表面有哪些你熟悉的平面图形?
9.小刚的桌上放着两个物品,它的三视图如图所示,你知道这两个物品是什么吗?
参考答案:
1.圆柱,正三棱锥 2.圆锥圆柱正方体三棱柱
3.上正侧 4.B 5.略
6.如粉笔,灯罩等 7.120
8.(1)略(2)六面体,12条,8个(3)等腰梯形,•正方形。
高三数学空间几何体的三视图与直观图试题答案及解析1.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为.【答案】2.【解析】由已知几何体的视图可知,几何体为四棱锥,其中SA垂直于平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,所以四棱锥的体积为【考点】三视图求几何体的体积.2.右图为某几何体的三视图,则该几何体的体积为【答案】【解析】由三视图知,该几何体是底面半径为1,高为1的圆柱与半径为1的球体组成的组合体,其体积为=.【考点】简单几何体的三视图,圆柱的体积公式,球的体积公式3.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为()A.B.C.D.【答案】C【解析】由三视图可知:该几何体是一个如图所示的三棱锥P-ABC,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4.设其外接球的球心为O,O点必在高线PE上,外接球半径为R,则在直角三角形BOE中,BO2=OE2+BE2=(PE-EO)2+BE2,即R2=(4-R)2+(3)2,解得:R=,故选C.【考点】三视图,球与多面体的切接问题,空间想象能力4.如图是一个几何体的三视图,则该几何体的表面积是____________【答案】28+12【解析】这是一个侧放的直三棱柱,底面是等腰直角三角形,侧棱长为6故表面积为2×(×2×2)+(2+2+2)×6=28+12.【考点】三视图,几何体的表面积.5.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..6.某空间几何体的正视图是三角形,则该几何体不可能是()圆柱圆锥四面体三棱柱【答案】A【解析】由于圆柱的三视图不可能是三角形所以选A.【考点】三视图.7.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.【答案】2(π+)【解析】由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积为2;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+).8.一个锥体的主(正)视图和左(侧)视图如图所示,下面选项中,不可能是该锥体的俯视图的是()【答案】C【解析】俯视图是选项C的锥体的正视图不可能是直角三角形.另外直观图如图1的三棱锥(OP⊥面OEF,OE⊥EF,OP=OE=EF=1)的俯视图是选项A,直观图如图2的三棱锥(其中OP,OE,OF两两垂直,且长度都是1)的俯视图是选项B,直观图如图3的四棱锥(其中OP⊥平面OEGF,底面是边长为1的正方形,OP=1)的俯视图是选项D.9.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6B.8C.2+3D.2+2【答案】B【解析】如图,OB=2,OA=1,则AB=3.∴周长为8.10.某几何体的三视图如图所示,且该几何体的体积是2,则正(主)视图的面积等于()A.2B.C.D.3【答案】A【解析】由三视图可知该几何体是一个四棱锥,其底面积就是俯视图的面积S=(1+2)×2=3,其高就是正(主)视图以及侧(左)视图的高x,因此有×3×x=2,解得x=2,于是正(主)视图的面积S=×2×2=2.11.如图,三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥底面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为( )A. C.4 D.【答案】A【解析】侧视图也为矩形,底宽为原底等边三角形的高,侧视图的高为侧棱长,所以侧视图的面积为,故选B.【考点】三视图12.一个几何体的三视图如图所示,则该几何体内切球的体积为 .【答案】【解析】依题意可得该几何体是一个正三棱柱,底面边长为2,高为.由球的对称性可得内切球的半径为.由已知计算得底面内切圆的半径也为.所以内切球的体积为.【考点】1.三视图.2.几何体内切球的对称性.3.球的体积公式.4.空间想象力.13.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的左视图面积的最小值是________.【答案】【解析】如图,正三棱柱中,分别是的中点,则当面与侧面平行时,左视图面积最小,且面积为.【考点】三视图.14.某几何体的三视图如图3所示,则其体积为________.【答案】【解析】原几何体可视为圆锥的一半,其底面半径为1,高为2,∴其体积为×π×12×2×=.15.已知正△ABC的边长为2,那么用斜二测画法得到的△ABC的直观图△A′B′C′的面积为()A.B.C.D.【答案】D【解析】∵正△ABC的边长为2,故正△ABC的面积S==设△ABC的直观图△A′B′C′的面积为S′则S′=S=•=故选D16.一个体积为12的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.B.C.D.【答案】A【解析】依题意可得三棱柱的底面是边长为4正三角形.又由体积为.所以可得三棱柱的高为3.所以侧面积为.故选A.【考点】1.三视图的知识.2.棱柱的体积公式.3.空间想象力.17.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为()A.1B.C.D.【答案】C【解析】这是由两个三棱锥拼成的几何体,其体积为.选C.【考点】三视图及几何体的体积.18.一个四面体的顶点在空间直角坐系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()A.B.C.D.【答案】A【解析】设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O,A,B,C为顶点的四面体补成一正方体后,因为OA⊥BC,所以补成的几何体以zOx平面为投影面的正视图为A.19.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几体的体积为()A.6B.9C.12D.18【答案】B【解析】由三视图可知,此几何体为如图所示的三棱锥,其底面△ABC为等腰三角形且AB=BC,AC=6,AC边上的高为3,SB⊥底面ABC,且SB=3,因此此几体的体积为V=××6×3×3=920.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 .【答案】【解析】由三视图知,该几何体是一个圆柱,其表面积为.【考点】三视图及几何体的表面积.21.在三棱锥中,,平面ABC,.若其主视图,俯视图如图所示,则其左视图的面积为【答案】【解析】左视图是一个直角三角形,其直角边分别是2与.所以面积为.【考点】1.三视图知识.2.三角形面积的计算.22.一个几何体的三视图如图所示,则这个几何体的体积是_________.【答案】【解析】由三视图还原几何体,该几何体为底面半径为,高为的圆柱,去掉底面半径为,高为的圆锥的剩余部分,则其体积为.【考点】1、三视图;2、几何体的体积.23.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是( ).A.B.4C.D.3【答案】B【解析】如图,红色虚线表示截面,可见这个截面将正方体分为完全相同的两个几何体,则所求几何体的体积即是原正方体的体积的一半,.【考点】1.三视图;2.正方体的体积24.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A.1B.2C.3D.4【答案】B【解析】由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为的正方形,故其底面积为,由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形,由于此侧棱长为,对角线长为,故棱锥的高为,此棱锥的体积为,故选B.【考点】由三视图求面积、体积.25.已知某几何体的三视图如右图所示,其中,正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.【答案】C【解析】由已知的三视图可知原几何体是上方是三棱锥,下方是半球,∴,故选C.【考点】1.三视图;2.几何体的体积.26.如图是一个组合几何体的三视图,则该几何体的体积是.【答案】36+128π【解析】由三视图还原可知该几何体是一个组合体,下面是一个圆柱,上面是一个三棱柱,故所求体积为V=×3×4×6+16π×8=36+128π.27.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体是三分之一个圆锥,其体积为.【考点】三视图及几何体的体积.28.某几何体的三视图(图中单位:cm)如图所示,则此几何体的体积是()A.36 cm3B.48 cm3C.60 cm3D.72 cm3【答案】B【解析】由三视图可知几何体上方是一长方体,下方是一放倒的直四棱柱,且四棱柱底面是等腰梯形,上底长为2 cm,下底长为6 cm,高为2 cm,故几何体的体积是2×2×4+×(2+6)×2×4=48(cm3),故选B.29.如图是某三棱柱被削去一个底面后的直观图、侧(左)视图与俯视图.已知CF=2AD,侧视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示.求该几何体的体积.【答案】3【解析】解:取CF中点P,过P作PQ∥CB交BE于Q,连接PD,QD,则AD∥CP,且AD=CP.所以四边形ACPD为平行四边形,所以AC∥PD.所以平面PDQ∥平面ABC.该几何体可分割成三棱柱PDQ-CAB和四棱锥D-PQEF,所以V=V-CAB+V D-PQEFPDQ=×22sin 60°×2+××=3.30.一个几何体的三视图如图所示,则该几何体的表面积是()A.6+8B.12+7C.12+8D.18+2【答案】C【解析】该空间几何体是一个三棱柱.底面为等腰三角形且底面三角形的高是1,底边长是2 ,两个底面三角形的面积之和是2,侧面积是(2+2+2)×3=12+6,故其表面积是12+8.31. 已知四棱锥P-ABCD 的三视图如右图所示,则四棱锥P-ABCD 的四个侧面中的最大面积是( ).A .6B .8C .2D .3【答案】A【解析】四棱锥如图所示:PM =3,S △PDC =×4×=2,S △PBC =S △PAD =×2×3=3,S △PAB =×4×3=6,所以四棱锥P-ABCD 的四个侧面中的最大面积是6.32. 若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).【答案】B【解析】分别从三视图中去验证、排除.由正视图可知,A 不正确;由俯视图可知,C ,D 不正确,所以选B.33. 一个几何体的三视图如图所示,已知这个几何体的体积为,则h________.【答案】【解析】依题意可得四棱锥的体积为.所以可得.解得.故填.本小题的是常见的立几中的三视图的题型,这类题型关键是要能还原几何体的直观图形.所以培养空间的思想很重要.【考点】1.三视图的识别.2.空间几何体的直观图.34.图中的网格纸是边长为的小正方形,在其上用粗线画出了一四棱锥的三视图,则该四棱锥的体积为()A.B.C.D.【答案】C【解析】由三视图知,该几何体是一个四棱锥,且其底面为一个矩形,底面积,高为,故该几何体的体积,故选C.【考点】1.三视图;2.锥体的体积35.已知某几何体的三视图如图,其中主视图中半圆直径为2,则该几何体的体积____________【答案】24-【解析】由三视图可知,该几何体是有长方体里面挖了一个半圆柱体,可知,长方体的长为4,宽为3,高为2,那么圆柱体的高位3,底面的半径为1,则可知该几何体的体积为,故答案为.【考点】由三视图求面积、体积.36.把边长为的正方形沿对角线折起,连结,得到三棱锥,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.B.C.D.【答案】B【解析】在三棱锥中,在平面上的射影为的中点,∵正方形边长为,∴,∴侧视图的面积为.【考点】1.三视图;2.三角形的面积.37.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的()A.外接球的半径为B.体积为C.表面积为D.外接球的表面积为【答案】D.【解析】由题意设外接球半径为,则,A错误;外接球的表面积为,D正确;此几何体的体积为,故B错误;此几何体的表面积为,C错误.【考点】三视图及球的表面积公式.38.一个几何体的三视图如图所示,则该几何体的体积为( )A.4B.8C.D.【答案】B【解析】有三视图可以看出,该几何体是一个三棱锥,它的体积为.【考点】三视图,几何体的体积.39.如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为()A.B.C.4D.2【答案】A【解析】由题意易知,直三棱柱的底面是边长为2的正三角形.其侧视图为矩形,矩形的高为2,宽为底面正三角形的高.易知边长为2的正三角形的高为.所以面积为.【考点】三视图40.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是( )A.B.21C.D.24【答案】A【解析】还原几何体,得棱长为2的正方体和高为1的正四棱锥构成的简单组合体,如图所示,=,选A.【考点】1、几何体的表面积;2、三视图.41.某几何体的三视图如图所示,则它的表面积为()A.B.C.D.【答案】A【解析】易知该三视图的直观图是倒立的半个三棱锥,其表面积由底面半圆,侧面三角形和侧面扇形,所以,故选A.【考点】1.立体几何三视图;2.表面积和体积的求法.42.一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π【答案】A【解析】通过观察三视图,易知该几何体是由半个圆柱和长方体组成的,则半个圆柱体积;长方体的体积为,所以该几何体的最终体积,故选A.【考点】1.三视图的应用;2.简单几何体体积的求解.43.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A.B.C.D.【解析】把原来的几何体补成以为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,,,.【考点】1.补体法;2.几何体与外接球之间的元素换算.44.一个几何体的三视图如图所示,其中府视图为正三角形,则侧视图的面积为()A.8B.C.D.4【答案】B【解析】由三视图可知:该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为的矩形,.【考点】三视图与几何体的关系、几何体的侧面积的求法能力.45.某几何体的三视图如图所示,则它的侧面积为()A.B.C.24D.【答案】A【解析】由三视图得,这是一个正四棱台,由条件,侧面积.【考点】1.三视图;2.正棱台侧面积的求法.46.一个几何体的三视图如图所示,其中正视图与侧视图都是底边长为6、腰长为5的等腰三角形,则这个几何体的全面积为()A.B.C.D.【解析】由三视图知,该几何体是一个圆锥,且圆锥的底面直径为,母线长为,用表示圆锥的底面半径,表示圆锥的母线长,则,,故该圆锥的全面积为.【考点】三视图、圆锥的表面积47.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )A.3πB.4πC.6πD.8π【答案】B【解析】此空间几何体是球体切去四分之一的体积,表面积是四分之三的球表面积加上切面面积,切面面积是两个半圆面面积.故这个几何体的表面积是.【考点】1、几何体的三视图; 2、球的表面积公式.48.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为和,腰长为的等腰梯形,则该几何体的表面积是.【答案】【解析】从三视图可以看出:几何体是一个圆台,上底面是一个直径为4的圆,下底面是一个直径为2的圆,侧棱长为4.上底面积,下底面积,侧面是一个扇环形,面积为,所以表面积为.【考点】空间几何体的三视图、表面积的计算.49.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为的圆(包括圆心),则该零件的体积是 ( )A.B.C.D.【解析】由题意易知该几何体为一半球内部挖去一圆锥所成,故体积为.故选C.【考点】1.体积; 2.三视图.50.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A.B.C.D.【答案】B【解析】由三视图可知,该四棱台的上下底面边长分别为和的正方形,高为,故,故选B.【考点】三视图与四棱台的体积51.若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A.B.C.D.【答案】B【解析】由已知底面是正三角形的三棱柱的正视图,我们可得该三棱柱的底面棱长为2,高为1,则底面外接圆半径,球心到底面的球心距,则球半径,则该球的表面积,故选B.【考点】由三视图求面积、体积.点评:本题考查的知识点是由三视图求表面积,其中根据截面圆半径、球心距、球半径满足勾股定理计算球的半径,是解答本题的关键.52.如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的可能图像是()A. B. C. D.【答案】B【解析】由三视图可知该几何体是圆锥,顶点在下,底面圆在上,在匀速注水过程中水面高度随着时间的增大而增大,且刚开始时截面积较小,所以高度变化较快,随着水面的升高,截面圆面积增大,高度变化速度减缓,因此函数的瞬时变化率逐渐减小,导数减小,图像为B项【考点】函数导数的定义点评:本题通过高度的瞬时变化率的变化情况得到函数的导数的大小,从而通过做出的切线斜率的变化得出正确图像53.已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()A.B.C.D.【答案】B【解析】根据题意,由于三棱锥的俯视图为直角三角形,正视图为直角三角形,且斜边长为2,直角边长为,那么结合图像可知其侧视图为底面边长为1,高为的三角形,因此其面积为,故选B.【考点】三棱锥点评:解决的关键是根据三棱锥的三视图来得到底面积和高进而求解侧视图,属于基础题。
高一数学空间几何体的三视图与直观图试题答案及解析1.某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.36cm3B.48cm3C.60cm3D.72cm3【答案】B.【解析】该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.【考点】三视图和几何体的体积.2.一空间几何体的三视图如图所示,则该几何体的体积为( )A.B.C.D.【答案】C【解析】由三视图知几何体是一个简单组合体,上面是一个四棱锥,四棱锥的底面是一个正方形,对角线长是2,侧棱长是2,高是,下面是一个圆柱,圆柱的底面直径是2,高是2,∴组合体的体积是=故答案为:【考点】圆锥和圆柱的体积.3.如图,网格纸上小正方形的边长为1,实线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18【答案】C【解析】该几何体是三棱锥,底面是俯视图,三棱锥的高为4;底面三角形是斜边长为6,高为3的等腰直角三角形,此几何体的体积为.故选C.【考点】三视图与几何体的关系;几何体的体积的求法.4.某向何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是一个长方体和一个半圆柱组成的几何体,所以体积为。
【考点】(1)根据三视图确定几何体的构成,(2)圆柱及长方体的体积公式的应用。
5.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为 .【答案】11【解析】由图可知切去的是直淩柱的一角,先算直棱柱的体积,再算切去部分的体积,所以.【考点】1、立体图形的三视图;2、体积的计算.6.右图中的三个直角三角形是一个体积为的几何体的三视图,则()A.B.C.D.【答案】B【解析】由三视图可知该几何体为三棱锥,其中一侧棱垂直底面,且底面为直角三角形,∴三棱锥的体积为,解得,故选B.【考点】由几何体的三视图求体积.7.已知四棱锥的三视图如图所示,则四棱锥的四个侧面中面积最大的是()A.3B.C.6D.8【答案】C【解析】通过三视图可作出该几何体的直观图,如图所示.其中底面为矩形,面面,且,,.易得,,,故侧面中面积最大值为6.【考点】几何体的三视图与直观图.8.右图是水平放置的的直观图,轴,,则是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形【答案】C【解析】直观图为斜二测画法,原图的画为,因此原为直角三角形.【考点】斜二测画法.9.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.B.C.D.【答案】D【解析】主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是球和圆柱的表面积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.由三视图可知几何体是半径为1的球和底面半径为1,高为3的圆柱,故其表面积应为球的表面积与圆柱的表面积面积之和减去圆柱一个底面积,即.故选D.【考点】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用10.如图是一个简单的组合体的直观图与三视图,一个棱长为4的正方体,正上面中心放一个球,且球的一部分嵌入正方体中,则球的半径是()A.B.1C.D.2【答案】B【解析】由已知题中三视图中的俯视图中圆上的点到正方形边长的最小距离为1,已知中的正方体的棱长为4,可得球的半径为1,故选B.【考点】由三视图还原实物图.11.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由正视图和左视图可知此几何体为台体,结合俯视图可知此几何体为圆台。
第61题 三视图与直观图问题I .题源探究·黄金母题【例1】如图是一个奖杯的三视图,试根据奖杯的三视图计算它的表面积与体积(尺寸如图,单位:cm ,π取3.14,结果精确到21cm ,可用计算器)【解析】由奖杯的三视图知奖杯的上部是直径为4cm 的球,中部是一个四棱柱,其中上、下底面是边长分别为8cm 、4cm 的矩形,四个侧面中的两个侧面是边长分别为20cm 、8cm 的矩形,另两个侧面是边长分别为20cm 、4cm 的矩形,下部是一个四棱台,其中上底面是边长分别10cm 、8cm 的矩形,下底面是边长分别20cm 、16cm 的矩形,直棱台的高为2cm ,所以它的表面各和体积分别为11933cm 、10673cm .【名师点睛】1.解答此类题目的关键是由多面体的三视 图 想象出空间几何体的形状并画出其直观 图,具体方法为;II .考场精彩·真题回放【例2】【2017课标1理7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【答案】B【解析】分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体平面内只有两个相同的梯形的面,则含梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.【例3】【2017课标II 理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A . 90πB .63πC .42πD .36π【答案】B个底面半径为3,高为4的圆柱,其体积213436V ππ=⨯⨯=,上半部分是一个底面半径为3,高为4的圆柱的一半,其体积()22136272V ππ=⨯⨯⨯=,该组合体的体积为:12362763V V V πππ=+=+=。
数学空间几何体的三视图与直观图试题1.若一个空间几何体的三个视图都是直角边长为的等腰直角三角形,则这个空间几何体的外接球的表面积是()A.B.C.D.【答案】A【解析】这个空间几何体是一个三条侧棱长度为,侧棱两两垂直的三棱锥,其外接球与单位正方体相同,故其外接球的半径为,故其表面积为【考点】三视图与几何体的体积2.一个几何体的三视图如图所示,正视图和侧视图都是腰长为的全等的等腰三角形,若该几何体的四个顶点在空间直角坐标系的坐标分别是,,,,则第五个顶点的坐标为()A.B.C.D.【答案】B【解析】正视图和侧视图是等腰三角形,俯视图是正方形,所以该几何体是正四棱锥,还原几何体并结合其中四个顶点的坐标,建立如图所示的空间直角坐标系,设点,由题意知,底面是边长为2的正方形,故,又正四棱锥的高为,故,则第五个顶点的坐标为.【命题意图】本题考查空间几何体的三视图和空间直角坐标系,意在考查学生空间想象能力.3.如图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为()A.6B.9C.12D.18【答案】B【解析】由三视图可还原几何体的直观图如图所示.此几何体可通过分割和补形的方法拼凑成一个长和宽均为3,高为的长方体,所求体积V=3×3×=9.4.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为(A) (B) (C) (D)【答案】A【解析】由题意可知:该四面体为正四面体,其中一个顶点在坐标原点,另外三个顶点分别在三个坐标平面内,所以以zOx平面为投影面,则得到的正视图可以为选项A.【考点】本小题主要考查立体几何中三视图的有关知识,考查同学们的空间想象能力,属中档题. 5.浙江理)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________。
高二数学空间几何体的三视图与直观图试题答案及解析1.如图示,在四棱锥A-BHCD中,AH⊥面BHCD,此棱锥的三视图如下:(1)求二面角B-AC-D的余弦弦值;(2)在线段AC上是否存在一点E,使ED与面BCD成45°角?若存在,确定E的位置;若不存在,说明理由。
【答案】(1)(2)不存在【解析】(1)观察三视图,得到边长以及线面关系,取AC的中点M,过M作MN∥CD交AD于N,则是所求二面角的平面角,(2)假设存在,把“ED与面BCD成45°角”作为条件,进行计算.试题解析:(1)由AH⊥面BHCD及三视图知:AH=BH=HC=1,,取AC的中点M,过M作MN∥CD交AD于N,则是所求二面角的平面角,,,;(2)假设在线段AC上存在点E合题意,令E在HC上的射影为F,设(),则,矛盾。
所以,不存在(注:本题也可用向量法)【考点】二面角,线面角.2.某几何体是由直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为A.B.C.D.【答案】C【解析】设正视图正方形的边长为m,根据正视图与俯视图的长相等,得到俯视图中椭圆的短轴长2b=m,俯视图的宽就是圆锥底面圆的直径,得到俯视图中椭圆的长轴长2a=,则椭圆的焦距,根据离心率公式得,;故选:C.【考点】1.三视图;2.椭圆的性质.3.如图,某四棱锥的三视图如图所示,则最长的一条侧棱长度为()A.B.C.D.【答案】C【解析】由三视图知:四棱锥的一条侧棱与底面垂直,且高为1,如图:SA⊥平面ABCD,AD=CD=SA=1,AB=2,∴最长的侧棱为SB=;故选:C.【考点】三视图4.如图是一个空间几何体的三视图,则该几何体的外接球的体积是()A.B.C.D.【答案】C【解析】由三视图可知,该几何体为直三棱锥,底面为等腰直角三角形,把三棱锥补成长方体,三棱锥和长方体具有相同的外接球,,因此,.【考点】球的体积.5.如图是多面体和它的三视图.(1)若点是线段上的一点,且,求证:;(2)求二面角的余弦值.【答案】(1)证明见解析;(2)【解析】(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明线面垂直,需证线线垂直,只需要证明直线的方向向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:解:(1)由题意知AA1,AB,AC两两垂直,建立如图所示的空间直角坐标系,则A(0,0,0),A1(0,0,2),B(-2,0,0),C(0,-2,0),C1(-1,-1,2),则=(-1,1,2),=(-1,-1,0),=(0,-2,-2).(1分)设E(x,y,z),则=(x,y+2,z),=(-1-x,-1-y,2-z).(3分)=2,得E(=设平面C1A1C的法向量为m=(x,y,z),则由,得,取x=1,则y=-1,z=1.故m=(1,-1,1),=,BE⊥平面A1CC1.(6分)(2)由(1)知,平面C1A1C的法向量为m=(1,-1,1)而平面A1CA的一个法向量为n=(1,0,0),则cos〈m,n〉===,故二面角的余弦值.(12分)【考点】利用空间向量证明垂直和夹角问题.6.一个几何体的三视图如图所示,则该几何体的体积为A.2B.1C.D.【答案】C【解析】由三视图可知该几何体是一个四棱锥,其底面是一个对角线为2的正方形,高为1,故其底面面积S=×2×=2,则V=•Sh=,故选C.【考点】由三视图求面积、体积.7.右图是某几何体的三视图,其中正视图是正方形,侧视图是矩形,俯视图是半径为2的半圆,则该几何体的表面积等于()A.B.24πC.D.12π【答案】A【解析】由题意可得,直观图为底面直径为4,高为4的圆柱的一半,所以该几何体的表面积是正方形面积+圆柱侧面积的一半+圆的面积,即,故选A.【考点】由三视图求表面积.8.某几何体的三视图如图所示,其中正视图为正三角形,则该几何体的体积为 .【答案】【解析】由空间几何体的三视图可知,该几何体为平放的三棱柱,上下底面为边长是2的正三角形,高为3,所以.【考点】空间几何体的三视图、表面积和体积的计算.9.下图是一几何体的直观图、主视图、俯视图、左视图.(1)若F为PD的中点,求证:AF⊥面PCD;(2)证明:BD∥面PEC;(3)求该几何体的体积.【答案】(1)详见解析;(2)详见解析;(3)【解析】由三视图可知底面是边长为4的正方形,,,∥,且。
空间几何体的三视图和直观图一、探究 探究一:直观图1.如图,这是长方体、圆柱等四个几何体的直观图。
把空间图形(平面图形和立体图形的统称)画在平面内,使得既富有立体感,又能表达出主要部分的位置关系和度量关系的图形叫做直观图.空间几何体的直观图通常是在 投影下把空间图形展现在平面上,用平面的图形表示空间几何体。
探究二:斜二测画法 1.斜二测画法的方法步骤:①在已知图形中建立直角坐标系xOy ,画直观图时,把x 轴、y 轴画成对应的x '轴和y '轴,两轴交于点O ',使 ,它们确定的平面表示水平面.②已知图形中平行于x 轴或y轴的线段,在直观图中分别画成 于x '轴和y '轴的线段.③已知图形中平行于x 轴的线段,在直观图中 ,平行于y 轴的线段, . 2.空间几何体直观图的画法:立体图形与平面图形相比多了一个z 轴,90xoz ∠=o 。
其直观图中对应于z 轴的是z '轴,''90x oz ∠=o,平行于z 轴的线段,在直观图中画成 于z '轴,长度 . 二、自我检测1.下列结论正确的有 ①相等的线段在直观图中仍然相等。
②若两条线段平行,则在直观图中对应的两条线段仍然平行。
③矩形的直观图是矩形。
④圆的直观图一定是圆。
⑤角的水平放置的直观图一定是角。
2.直角坐标系中一个平面图形上的一条线段AB 的实际长度为4cm ,若AB//x 轴,则画出直观图后对应的线段=''B A ,若y AB //轴,则画出直观图后对应的线段B A ''= 。
3.根据斜二测画法的规则画直观图时,把Ox 、Oy 、Oz 轴画成对应的x O ''、y O ''、z O '',作y O x '''∠与z O x '''∠的度数分别为( )A .οο90,90 B .οο90,45 C .οο90,135D .ο45或οο90,1354.如图,A B C '''△是ABC △的直观图,那么ABC △是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .锐角三角形 三、应用示例例1.用斜二测画法画水平放置的正六边形、任意三角形的直观图。
三视图和直观图试题1. 一个空间几何体的三视图如图1-1所示,则该几何体的表面积为( )图1-1A .48B .32+817C .48+817D .80C 【解析】 由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱(如图所示),所以该直四棱柱的表面积为S =2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.2. 一个空间几何体的三视图如图1-1所示,则该几何体的表面积为( )图1-1A .48B .32+817C .48+817D .80图1-33.某四面体的三视图如图1-3所示,该四面体四个面的面积中最大的是( ) A .8 B .6 2 C .10 D .8 2C 【解析】 由三视图可知,该四面体可以描述为SA ⊥平面ABC ,∠ABC =90°,且SA =AB =4,BC =3,所以四面体四个面的面积分别为10,8,6,62,从而面积最大为10,故应选C.图1-44.某四棱锥的三视图如图1-1所示,该四棱锥的表面积是( )图1-1A .32B .16+16 2C .48D .16+32 2B 【解析】 由题意可知,该四棱锥是一个底面边长为4,高为2的正四棱锥,所以其表面积为4×4+4×12×4×22=16+162,故选B.5. 如图1-2,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( )图1-2A .6 3B .9 3C .12 3D .18 3B 【解析】 由三视图知该几何体为棱柱,h =22-1=3,S 底=3×3,所以V =9 3.如图1-2,某几6.何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .4 3B .4C .2 3D .2 C 【解析】 由三视图知该几何体为四棱锥,棱锥高h =232-32=3,底面为菱形,对角线长分别为23,2,所以底面积为12×23×2=23,所以V =13Sh =13×23×3=2 3.图1-16.设图1-1是某几何体的三视图,则该几何体的体积为( ) A.92π+12 B.92π+18 C .9π+42 D .36π+18 B 【解析】 由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3、高为2的长方体所构成的几何体,则其体积为:V =V 1+V 2=43×π×⎝ ⎛⎭⎪⎫323+3×3×2=92π+18,故选B.7.设图1-1是某几何体的三视图,则该几何体的体积为( )图1-1A .9π+42B .36π+18 C.92π+12 D.92π+18D 【解析】 由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3高为2的长方体所构成的几何体,则其体积为: V =V 1+V 2=43×π×⎝ ⎛⎭⎪⎫323+3×3×2=92π+18,故选D.8. 在一个几何体的三视图中,正视图和俯视图如图1-2所示,则相应的侧视图可以为( )图1-2 图1-3D 【解析】由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如下图,故侧视图选D.图1-59.一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图1-5所示,左视图是一个矩形,则这个矩形的面积是________.【解析】由俯视图知该正三棱柱的直观图为图1-6,其中M,N是中点,矩形MNC1C为左视图.由于体积为23,所以设棱长为a,则12×a2×sin60°×a=23,解得a=2.所以CM=3,故矩形MNC1C面积为2 3.图1-6图1-310.一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图1-3所示,左视图是一个矩形,则这个矩形的面积是( )A.4 B.2 3 C.2 D. 3] B 【解析】由俯视图知该正三棱柱的直观图为下图,其中M,N是中点,矩形MNC1C为左视图.图1-4由于体积为23,所以设棱长为a,则12×a2×sin60°×a=23,解得a=2.所以CM=3,故矩形MNC1C面积为23,故选B.11.在一个几何体的三视图中,正视图和俯视图如图1-2所示,则相应的侧视图可以为( )图1-2 图1-3D 【解析】由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如图,故侧视图选D.图1-4图1-212. 如图1-2是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图1-2;②存在四棱柱,其正(主)视图、俯视图如图1-2;③存在圆柱,其正(主)视图、俯视图如图1-2.其中真命题的个数是( )A .3B .2C .1D .0A 【解析】 ①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的圆柱,所以也正确.图1-313.如图1-3是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图1-3;②存在四棱柱,其正(主)视图、俯视图如图1-3;③存在圆柱,其正(主)视图、俯视图如图1-3.其中真命题的个数是( )A .3B .2C .1D .0A 【解析】 ①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的圆柱,所以也正确.14. 某几何体的三视图如图1-2所示,则它的体积是( )图1-2A .8-2π3B .8-π3C .8-2π D.2π3A 【解析】 分析图中所给的三视图可知,对应空间几何图形,应该是一个棱长为2的正方体中间挖去一个半径为1,高为2的圆锥,则对应体积为:V =2×2×2-13π×12×2=8-23π.15.某几何体的三视图如图1-2所示,则它的体积为( )图1-2A .8-2π3B .8-π3C .8-2π D.2π3A 【解析】 主视图与左视图一样是边长为2的正方形,里面有两条虚线,俯视图是边长为2的正方形与直径为2的圆相切,其直观图为棱长为2的正方体中挖掉一个底面直径为2的圆锥,故其体积为正方体的体积与圆锥的体积之差,V 正=23=8,V 锥=13πr 2h =2π3(r =1,h =2),故体积V =8-2π3,故答案为A.16. 一个几何体的三视图如图1-5所示(单位:m),则该几何体的体积为________ m 3.图1-56+π 【解析】 根据图中信息,可得该几何体为一个棱柱与一个圆锥的组合体,V =3×2×1+13π×1×3=6+π.17.一个几何体的三视图如图1-4所示(单位:m),则该几何体的体积为________ m 3.图1-44 【解析】 根据三视图还原成直观图,可以看出,其是由两个形状一样的,底面长和宽都为1,高为2的长方体叠加而成,故其体积V =2×1×1+1×1×2=4.18.若某几何体的三视图如图1-1所示,则这个几何体的直观图可以是( )图1-1图1-2B 【解析】由正视图可排除A,C;由侧视图可判断该该几何体的直观图是B.。
1.2空间几何体的三视图和直观图自我检测1.已知△ABC ,选定的投影面与△ABC 所在平面平行,则经过中心投影后所得的三角形与△ABC( )B A .全等 B .相似 C .不相似 D .以上都不正确 2.一条直线在平面上的平行投影是( )D A .直线B .点C .线段D .直线或点3.下列说法错误的是( )DA .正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度B .俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度C .侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度D .一个几何体的正视图和俯视图高度一样,正视图和侧视图长度一样,侧视图和俯视图宽度一样 4.在已知图形中平行于x 轴的线段AB =6 cm ,则在直观图中线段A ′B ′=________cm ;在已知图形中平行于y 轴的线段CD =4 cm ,则在直观图中线段C ′D ′=________cm.解析:由于平行于x 轴的线段在直观图中保持原长度不变,则A ’B ’=AB=6cm,平行于y 轴的线段在直观图中长度变为原来的一半,则C ’D ’=CD 21=2cm. [答案] 6 25、在空间几何体中,平行于z 轴的线段AB =10 cm ,则在直观图中对应的线段A ′B ′=________cm.[解析] 由于平行于z 轴的线段在直观图中保持长度不变,则A ′B ′=AB =10 cm. [答案] 106、水平放置的△ABC 的直观图如图所示,已知A ′C ′=3,B ′C ′=2,求AB 边上的中线的实际长度为多少.[解析] 由于在直观图中,∠A ′C ′B ′=45°,则在原图形中,∠ACB =90°,又∵在直观图中,A ′C ′=3,B ′C ′=2,则在原图形中,AC =3,BC =4,∴由勾股定理,得AB =5,则AB 边上的中线的长度为52.考点一 画简单几何体的三视图例1 画出如图所示的正三棱柱和正五棱台的三视图[解析] 上图(1)所示的正三棱柱的三视图如图①所示.上图(2)所示的正五棱台的三视图如图②所示.[点评] 正五棱台的正视图中有两条虚线,它们是正五棱台后面两条棱所形成的投影,辨析某条棱的可见与不可见的方法是:把物体看成是不透明的,能看见的棱就是可见轮廓线,看不见、但又确实存在的棱就是不可见轮廓线.例2、如图所示,水平放置的圆柱形物体的三视图是图中的( )[解析] 此题主要研究实物图到三视图的转化过程,正视图是通过正面观察物体的形状,侧视图是从左侧面去观察,俯视图是从上往下看物体的形状如何.从正面看是个矩形,从左面看是个圆,从上往下看是一个矩形,对照图中的A、B、C、D,可知A是正确的.例3、某几何体的正视图和侧视图均如左图所示,则该几何体的俯视图不可能是( )[分析]本题是组合体的三视图问题,由几何体的正视图和侧视图均如左图所示知,几何体下面为圆柱或直四棱柱,上面是圆柱或直四棱柱或底面是直角三角形的直三棱柱.[解析]A,B,D都可能是该几何体的俯视图,C不可能是该几何体的俯视图,因为它的正视图上面应为如下图所示的矩形.[答案] C例4、如图所示,画出四面体AB1CD1三视图中的正视图,以面AA1D1D为投影面,则得到的正视图可以为( )[分析]依次确定四面体AB1CD1的每一条棱在面AA1D1D上的投影即可.[解析]显然AB1,AC,B1D1,CD1分别投影得到正视图的外轮廓,B1C为可见实线,AD1为不可见虚线.故A正确.[答案] A例5、在一个几何体的三视图中,主视图和俯视图如图所示,则相应的侧视图可以为( )[解析]此几何体为一个半圆锥和一个三棱锥的组合体,只有D项符合题意.[答案] D变式练习1、画出圆台(如图所示)的三视图.[解析] 圆台的三视图如图.2、下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①② B.①③ C.①④ D.②④[解析]①正方体,三视图均相同;②圆锥,正视图和侧视图相同;③三棱台,三视图各不相同;④圆台,正视图和侧视图相同.[答案] D考点二画简单组合体的三视图例1 如下图所示,画出下列组合体的三视图.[分析] 图①是一个长方体挖去一个四棱柱,图②是上下叠起且轴线重合的三个圆柱组成的几何体.三视图如下图①②所示.1、如图①所示的几何体,则该几何体的俯视图是图②中的( )[解析] (1)此几何体俯视图首先为矩形.但上方被截去角的三棱柱的侧棱及角的边是看得见的,所以,俯视图中间有实线且靠左边有三角形形状.故选C.2、画出如图所示几何体的三视图.解:①此几何体的三视图如图所示:②此几何体的三视图如图所示:考点三由三视图还原空间几何体例1 某几何体的三视图如图所示,试分析该几何体的结构特征.[解析] 由正视图和侧视图可知,该物体的下半部分为柱体,上半部分为锥体,又因俯视图为一个正六边形,故该几何体是由一个正六棱柱和一个正六棱锥组合而成的,如图所示.例2、下面是某立体图形的三视图,请说出立体图形的名称.[解析] 该立体图形为长方体,如下图所示.1、若一个几何体的正视图和侧视图都是等腰三角形,俯视图是圆,则这个几何体是( )A.圆柱 B.三棱柱 C.圆锥 D.球[解析] 正视图和侧视图都是等腰三角形,俯视图是圆说明此几何体是圆锥.答案:C2、如图所示是两个立体图形的三视图,请说出立体图形的名称.解析:由已知可知甲的俯视图是圆,则该几何体是旋转体,又正视图和侧视图均是矩形,则甲是圆柱:乙的俯视图是三角形,则该几何体是多面体,又正视图和侧视图均是三角形,则该多面体的各个面都是三角形,则乙是三棱锥.答案:甲是圆柱;乙是三棱锥.考点四斜二测画法的性质例1、在用斜二测画法画水平放置的△ABC时,若∠A的两边平行于x轴、y轴,则在直观图中,∠A′=( ) A.45°B.135° C.90°D.45°或135°[解析] 因∠A的两边平行于x轴、y轴,故∠A=90°,在直观图中,按斜二测画法规则知∠x′O′y′=45°或135°,即∠A′=45°或135°.[答案] D例2.给出以下关于斜二测直观图的结论,其中正确的个数是( )①角的水平放置的直观图一定是角.②相等的角在直观图中仍相等.③相等的线段在直观图中仍然相等.④若两条线段平行,则在直观图中对应的两条线段仍然平行.A.0 B.1 C.2 D.3[解析]由斜二测画法规则可知,直观图保持线段的平行性,∴④对,①对;而线段的长度,角的大小在直观图中都会发生改变,∴②③错.[答案] C例3.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上说法正确的是( )A .①B .①②C .③④D .①②③④[解析] 根据画法规则,平行性保持不变,与y 轴平行的线段长度减半.[答案] B变式练习1.下列关于用斜二测画法画直观图的说法中,正确的是( )A .水平放置的正方形的直观图不可能是平行四边形B .平行四边形的直观图仍是平行四边形C .两条相交直线的直观图可能是平行直线D .两条垂直的直线的直观图仍互相垂直[点评] 斜二测画法主要保留了原图的三个性质:①保平行;②保共点;③保平行线段的长度比.[答案] B考点五 水平放置的平面图形直观图的画法例1、画正五边形的直观图画法: (1)以正五边形的中心为原点O ,建立如图(1)所示的直角坐标系xOy ,再建立如图(2)所示的坐标系x ′O ′y ′,使∠x ′O ′y ′=45°;(2)在图(1)中作BG ⊥x 轴于G ,EH ⊥x 轴于H ,在坐标系x ′O ′y ′中作O ′H ′=OH ,O ′G ′=OG ,O ′A ′=12OA ,O ′F ′=12OF ,过F ′作C ′D ′∥x ′轴使C ′D ′=CD 且F ′为C ′D ′的中点.(3)在平面x ′O ′y ′中,过G ′作G ′B ′∥y ′轴,且G ′B ′=12BG ,过H ′作H ′E ′∥y ′轴,且H ′E ′=12HE ,连接A ′B ′,B ′C ′、C ′D ′、D ′E ′、E ′A ′,得五边形A ′B ′C ′D ′E ′为正五边形ABCDE 的平面直观图.(4)擦去x ′,y ′轴得直观图五边形A ′B ′C ′D ′E ′.例2、在下列选项中,利用斜二测画法,边长为1的正三角形ABC 的直观图不是全等三角形的一组是( )[解析] C 中前者画成斜二测直观图时,底AB 不变,原来高h 变为h2,后者画成斜二测直观图时,高不变,边AB 变为原来的12.[答案] C变式练习1、画边长为1 cm 的正三角形的水平放置的直观图.[解析] (1)如图所示,以BC 边所在直线为x 轴,以BC 边上的高线AO 所在直线为y 轴,再画对应的x ′轴与y ′轴,两轴相交于点O ′,使∠x ′O ′y ′=45°.(2)在x ′轴上截取O ′B ′=O ′C ′=0.5 cm ,在y ′轴上截取O ′A ′=12AO =34 cm ,连接A ′B ′,A ′C ′,则△A ′B ′C ′即为正三角形ABC 的直观图.(3)擦去x ′,y ′轴得直观图△A ′B ′C ′.2、如图,用斜二测画法画一个水平放置的平面图形的直观图为一个正方形,则原来图形的形状是( )[解析] 由斜二测画法可知,与y ′轴平行的线段在原图中为在直观图中的2倍.故可判断A 正确.考点六 画几何体的直观图例1、用斜二测画法画出六棱锥P-ABCDEF 的直观图,其中底面ABCDEF 是正六边形,点P 在正六边形的投影是正六边形ABCDEF 的中心(尺寸自定)[解析] 画法:(1)画六棱锥P -ABCDEF 的底面.①在正六边形ABCDEF 中,取AD 所在直线为x 轴,对称轴MN 所在直线为y 轴,两轴相交于O(如图1所示),画相应的x ′轴和y ′轴、z ′轴,三轴交于O ′,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°(如图2所示).②在图2中,以O ′为中点,在x ′轴上取A ′D ′=AD ,在y ′轴上取M ′N ′=12MN ,以点N ′为中点画B ′C ′平行于x ′轴,并且等于BC ;再以M ′为中点画E ′F ′平行于x ′轴,并且等于EF .③连接A ′B ′,C ′D ′,D ′E ′,F ′A ′得到正六边形ABCDEF 水平放置的直观图A ′B ′C ′D ′E ′F ′.(2)画六棱锥P -ABCDEF 的顶点,在O ′z ′轴上截取O ′P ′=OP.(3)成图.连接P ′A ′,P ′B ′,P ′C ′,P ′D ′,P ′E ′,P ′F ′,并擦去x ′轴,y ′轴,z ′轴,便得到六棱锥P -ABCDEF 的直观图P ′-A ′B ′C ′D ′E ′F ′(图3).变式练习1、用斜二测画法画长、宽、高分别是4 cm,3 cm,2 cm 的长方体ABCD -A ′B ′C ′D ′的直观图.[画法] (1)画轴.如图①所示,画x 轴、y 轴、z 轴,三轴相交于点O ,使∠xOy =45°,∠xOz =90°.(2)画底面.以点O 为中点,在x 轴上取线段MN ,使MN =4 cm ;在y 轴上取线段PQ ,使PQ =32 cm.分别过点M 和点N 作y 轴的平行线,过点P 和Q 作x 轴的平行线,设它们的交点分别为A ,B ,C ,D ,四边形ABCD 就是长方体的底面ABCD .(3)画侧棱,过A ,B ,C ,D 各点分别作z 轴的平行线,并在这些平行线上分别截取2 cm 长的线段AA ′,BB ′,CC ′,DD ′. (4)成图.顺次连接A ′,B ′,C ′,D ′,并加以整理(擦掉辅助线,将被遮挡的线改为虚线),就得到长方体的直观图(如图②).考点七 由三视图画直观图例1、某几何体的三视图如图所示,用斜二测画法画出它的直观图.[画法] (1)画轴.如图①,画x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°.(2)画圆台的两底面.利用斜二测画法,画出底面⊙O ,在z 轴上截取OO ′,使OO ′等于三视图中相应的高度,过O ′作Ox 的平行线O ′x ′,作Oy 的平行线O ′y ′,利用O ′x ′与O ′y ′画出上底面⊙O ′(与画⊙O 一样). (3)画圆锥的顶点.在Oz 上取一点P ,使PO ′等于三视图中相应的高度.(4)成图.连接PA ′,PB ′,A ′A ,B ′B ,整理得到三视图表示的几何体的直观图,如图②.变式练习1、利用下图所示的三视图,画出它的直观图.[解析] 该几何体是一个三棱柱,直观图如下图所示.2、下图是一个几何体的直观图,画出它的三视图.[解析] 三视图如图所示.考点八 与直观图有关的计算问题例1、如图,一个水平放置的平面图形的斜二测直观图是一个底角为45°、腰和上底均为1的等腰梯形,则这个平面图形的面积是( )[解析] 如图所示, ∵A ′D ′∥B ′C ′, ∴AD ∥BC .∵∠A ′B ′C ′=45°, ∴∠ABC =90°. ∴AB ⊥BC .∴四边形ABCD 是直角梯形.其中,AD =A ′D ′=1,BC =B ′C ′=1+2,AB =2, ∴S 梯形ABCD =2+ 2.例2、如图,水平放置的△ABC 的斜二测直观图是图中的△A ′B ′C ′,已知A ′C ′=6,B ′C ′=4,则AB 边的实际长度是________.[解析]由斜二测画法,可知△ABC 是直角三角形,且∠BCA =90°,AC =6,BC =4×2=8,则AB =AC 2+BC 2=10. [答案] 10例3、如图,是△AOB 用斜二测画法画出的直观图,则△AOB 的面积是________.[解析] 由图易知△AOB 中,底边OB =4,又∵底边OB 的高为8,∴面积S =12×4×8=16.[答案] 16 变式练习1、已知正△ABC 的边长为a,那么正△ABC 的直观图△A ’B ’C ’的面积是( )[解析] 如图(1)为实际图形,建立如图所示的平面直角坐标系xOy.如图(2),建立坐标系x′O′y′,使∠x′O′y′=45°,由直观图画法知:A′B′=AB=a,O′C′=12OC=34a.过C′作C′D′⊥O′x′于D′,则C′D′=22O′C′=68a.所以△A′B′C的面积是S=12·A′B′·C′D′=12·a·68a=6 16a2.2、有一个长为5 cm,宽为4 cm的矩形,则其直观图的面积为________.[解析]由于该矩形的面积为S=5×4=20(cm2),所以由公式S′=24S,其直观图的面积为S′=24S=52(cm2).易错题例1、画出如图所示的正视图和俯视图.解:正视图和俯视图,如图所示.例2、如图①所示,△ABC水平放置的直观图为△A’B’C’,∠B’A’C’=30°,∠A’C’B’=90°,请用作图法画出原△ABC,并量出△ABC的各个内角,∠BAC是否等于∠B’A’C’的2倍?∠BCA是否等于∠B’C’A’?[正解] 如图②所示,画出直角坐标系xOy,以点A为原点.在直观图中过C′作C′D′∥O′y′轴,交A′B′于D′,在Ox轴上截取AB=A′B′,AD=A′D′.过D作DC∥Oy轴,使DC=2D′C′,连接AC,BC,则△ABC为原三角形.用量角器量出∠BAC,可以得出∠BAC≠60°,所以∠BAC≠2∠B′A′C′,∠BCA≠∠B′C′A′.11变式练习1、如图所示的是水平放置的三角形ABC在直角坐标系中的直观图,其中D为AC的中点,原ABC中,∠ACB ≠30°,则原图形中与线段BD的长相等的线段有________.[解析] 先按照斜二测画法把直观图还原为原来的平面图形,然后根据平面图形的几何性质找与线段BD长度相等的线段,把△ABC还原为平面图形后为直角三角形,则D为斜边AC的中点. [答案] AD,DC2、如图所示的物体的三视图有无错误?如果有,请更正.总结:下图是最基本的常见几何体的三视图.几何体直观图形正视图侧视图俯视图正方体长方体圆柱圆锥圆台球1213。
三视图与直观图(习题)
1. 下列几何体各自的三视图中,有且仅有两个视图相同的是
____________.
④正四棱锥
③棱台②圆锥①正方体
2. 一个几何体的三视图如图所示,则该几何体的直观图可以是(
)
A .
B .
C .
D .
3. 长方体的正视图、俯视图如图所示,则其侧视图面积为( )
A .3
B .4
C .12
D .16
143
4俯视图
正视图
4. 如图,某几何体的正视图和俯视图都是矩形,侧视图是等腰直角三角形,则
该几何体的体积为________.
俯视图
正视图 侧视图2
2
4422
5. 某几何体的三视图如图所示,其中正视图与侧视图是完全相同的图形,则这
个几何体的体积为________.
俯视图
正视图 侧视图
1
1
1
1
3俯视图
正视图 侧视图
6. 某几何体的三视图如图所示,则其表面积为________.
俯视图
正视图 侧视图
第6题图 第7题图
7. 某几何体的三视图如图所示,则该几何体的表面积是______.
8. 某三棱锥的三视图如图所示,该三棱锥的体积为( )
A .80
B .40
C .
803
D .
403
侧(左)视图
俯视图正(主)视图
9. 某几何体的三视图如图所示,则该几何体的体积为( )
A .
163
π
B .
203
π
C .
403
π
D .5π
正视图 侧视图俯视图
54
24
俯视图侧视图
正视图
10. 一个几何体的三视图如图所示,则该几何体的表面积为____.
1
俯视图
正视图 侧视图
11. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观
图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论,正确的是( )
A .①②
B .①
C .③④
D .①②③④
12. 如图,用斜二测画法画一个水平放置的平面图形的直观图为一个正方形,则
原来图形的形状是( )
A .
B .
C .
D .
13. 如图是一个正三棱柱的三视图,根据此几何体的三视图,画出该正三棱柱的
直观图,并求出该三棱柱的体积和表面积.
俯视图
正视图 侧视图
2
23
【参考答案】
1.②④
2. D
3. A
4.8
5.
6.2
+
7.92
8. D
9. A
π+
10.238
11.A
12.A
13.图略,体积是24。