2.2 采用物理机理方法建模
(1) 单容过程的建模
只有一个存储容量的过程。自衡单容过程和无自衡单容过程。
自衡过程:被控过程在扰动作用下,平衡
状态被破坏后,无需操作人员或仪表的干
预,依靠自身能够恢复平衡的过程。
自衡过程的阶跃响应图
无自衡过程:被控过程在扰动作用下,平衡状 态被破坏后,若无操作人员或仪表的干预,依 靠自身能力不能恢复平衡的过程。 无自衡过程的阶跃响应图
2.1 概述
建立数学模型的方法:
物理机理方法建模
根据过程的内在机理,运用已知的静态和动态的能量(物料)平衡关 系,用数学推理的方法建立数学模型。
实验辨识 (系统辨识和参数估计法)
根据过程输入、输出的实验测试数据,通过辨识和参数估计建立过程 的数学模型。
混合法
首先通过机理分析确定过程模型的结构形式,然后利用实验测试数据 来确定模型中各参数的大小。
则系统特性可用下列微分方程式来描述:
2.1 概述
a n c ( n ) (t ) a n1c ( n1) (t ) a1c(t ) a0 c(t ) bm r ( m) (t ) bm1r ( m1) (t ) b1r (t ) b0 r (t )
式中 an , an1 ,, a1 , a0 及 bm , bm1 ,, b1 , b0 分别为与系统 结构和参数有关的常系数。它们与系统的特性有关, 一般需要通过系统的内部机理分析或大量的实验数 据处理才能得到。
2.1 概述
(b) 传递函数 复数域模型包括系统传递函数和结构图,传递函数不 仅可以表征系统的动态特性,而且可以用来研究系统的结 构或参数变化对系统性能的影响。 线性定常系统的传递函数定义为零初始条件下,输出 量(响应函数)的拉普拉斯变换与输入量(输入函数)的 拉普拉斯变换之比。拉普拉斯变换为: